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1. Introduction
Natural rubber (NR) is naturally produced through 

bio‑synthesis by the Hevea brasiliensis tree. It is constituted 
by approximately 99.99% linear cis-1,4 polyisoprene. 
The average molecular weight of polyisoprene in the NR 
ranges from 200.000 to 400.000, with a broad distribution. 
As a result of this broad molecular weight distribution, NR 
has also a good performance during its processing1.

To acquire properties like elasticity and damping, 
elastomers have to go through a complex process known 
as vulcanization; the process in which the elastomers are 
mixed with chemicals to reduce their plasticity, tackiness 
and sensitivity to heat and cold, as well as to aggregate the 
useful properties such as elasticity and mechanical resistance2. 
This process converts, chemically, independent polymeric 
chains of elastomers into a three-dimensional elastic network1. 
However, while the vulcanization provides improvements in 
the properties of the elastomers and, with it, the possibility 
of a wide use as consumer goods, it brings difficulties for 
recycling after use, once the vulcanized rubber becomes a 
thermoset polymer, preventing its subsequent molding into 
another product by heating3.

Devulcanization is a way of providing energy to destroy, 
total or partially, the three-dimensional network formed during 
vulcanization4. The known methods that use different ways 
to promote the devulcanization of rubber include thermo-
mechanical, thermo-chemical and mechano-chemical5-9, 
physical (by microwaves3,10-20 and ultrasound21-29) and 
biochemical30-33. All of them involve complex transformations 
that lead to depolymerization, oxidation, and in many cases, 
the degradation of polymeric chains of rubber, with the 
consequent reduction on its viscosity34.

The microwave devulcanization is currently one of the 
most promising techniques, because the good properties 
of the devulcanized material and the possibility of high 
productivity. The process takes advantage of volumetric 
heating of the material by microwaves, promoting a more 
uniform heating than that achieved by more traditional 
methods of heating, which depend on conduction and/or 
convection14,15,35. Materials behave differently when exposed 
to an electromagnetic field, like the one generated by 
microwaves. In polar materials, molecules or free ions 
can create a momentum of dipole, which results in the 
volumetric heating throughout the mass of the material. 
Elastomers such as NR, ethylene propylene diene monomer 
rubber (EPDM) and styrene-butadiene rubber (SBR) have 
low microwaves absorption capacity. This limitation can be 
overcome by the addition of a conductive filler like carbon 
black36,37, that induces a phenomenon known as Maxwell-
Wagner polarization13,38. The process has physical nature, 
i.e. it does not involve chemicals during the process and 
due to this reason is named ecofriendly39. Devulcanization 
of elastomers by microwaves shows promising results for 
recycling rubber3,10,12-18,40.

The main technique of characterization of devulcanized 
rubber has been through Soxhlet extraction41,42. This technique 
is widely mentioned by the literature to detect the status of 
devulcanization of elastomers4,5,14-16,24,31,32,39,41,43-52. In general, 
the content of soluble material (sol) increases with the 
increasing of devulcanization degree, due to the breaks of 
the cross-linkings and, consequently, the release of these 
molecules from the three-dimensional network of vulcanized 
rubber. Although the insoluble part (gel) still makes part of 
the network, typically the devulcanization process tends 
to decrease the cross-linkings density, making even this 
part more easily moldable and breakable than the original 
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vulcanized rubber21. According to Yashin & Isayev23, as a 
result of devulcanization, the rubber contains a significant 
amount of sol, that allows the rubber to be reprocessed 
and revulcanized in order to obtain a usable material with 
reasonably good mechanical properties.

Scuracchio et al.14,15 studied the characteristics of ground 
tire rubber (GTR) after devulcanization by microwaves at 
different exposure times. It was noted that, the greater the 
exposure time of the sample to microwaves, the greater the 
final temperature just after the treatment and, also, the lower 
the gel content verified by Soxlhet extraction. In other words, 
the higher the time of exposure of the rubber to microwaves, 
the higher its degree of devulcanization. Similar results were 
obtained by Zanchet et al.16, who analyzed the devulcanization 
of SBR by microwaves. According to the authors, the exposure 
time of the sample to the microwaves had a strong influence 
on the gel content, since for longer exposure times the material 
reached higher temperatures and generated materials with 
lower insoluble portion (gel content). A different behavior 
was observed by Pistor et al.13, who analyzed the properties 
of EPDM devulcanized by microwaves. For exposure times 
until 4 minutes, no significant changes in the gel content 
values were observed. Only exposure times to 5 minutes 
showed some changes in gel content.

In this work, special attention is paid to the influence 
of the carbon black amount present in the NR in the 
devulcanization process by microwaves, through the study 
of the devulcanization of NR with controlled composition of 
carbon black. It is important to bear in mind that the carbon 
black in the rubber is the responsible for the heating of these 
materials when exposed to microwaves, and the understanding 
of the mechanisms that occur during the devulcanization 
includes the role of the carbon black during the process.

2. Experimental

2.1. Materials
NR with controlled composition of carbon black 

(0, 20, 45, 60 and 80 phr) was kindly supplied by IPAB SA. 
The carbon black used was type N330 according to ASTM 
classification (ASTM D1765-14)53. The exact composition 
of the samples is not known, except the amount of carbon 
black. All composites have the same additives and the same 
amount for all the samples; they are vulcanized.

2.2. Devulcanization of NR
NR was devulcanized in a system comprised of a 

conventional microwave oven adapted with a motorized 
stirring system with speed control14. The speed of stirring 
was set at 40 rpm. The devulcanization process was done by 
using the maximum power of the oven (700 W). The time 
at which the material was exposed to microwaves ranged 
from 2 to 5 minutes. The temperature after devulcanization 
was measured by using a rod thermometer.

The nomenclature used in this work is type NRX, where 
NR represents the type of rubber used and X represents 
the amount of carbon black present in the sample (in phr), 
ranged in 0 (NR0), 20 (NR20), 45 (NR45), 60 (NR60) and 
80 phr (NR80).

2.3. Characterization
Granulometric analysis of the samples of NR0 and NR80 

was performed according to ASTM D5644-01[54].
In order to verify the influence of the amount of 

carbon black and the exposure time of NR to microwaves 
on devulcanization, gel content of devulcanized NR with 
controlled composition of carbon black was analyzed by 
performing Soxhlet extraction, by using toluene as solvent. 
The extraction time was 24 h and it was performed by using 
approximately 5 g of material. After the extraction, the 
material and the thimble filter were dried for 24 h at 80 °C 
and its mass was measured.

3. Results and Discussion
3.1. Granulometry

The granulometric analysis of the NR0 and NR80 is 
shown in the Figure 1.

According to the Figure 1, it can be seen that the NR80 
has a more refined granulometry in comparison to the 
compound NR0. Due to the presence of carbon black in 
NR80, rubber was probably more rigid and, thereby, easier to 
grind, resulting in a rubber with smaller particle sizes. So, the 
higher stiffness promoted by the presence of carbon black 
in the vulcanized sample, the easier the grinding process.

However, the difference of the particle sizes (Figure 1) is 
supposed not to have a significant effect on the devulcanization 
process, since the microwave heating is volumetric and less 
dependent on heat conduction.

3.2. Temperature measurements after treatment
Temperatures of the NR with controlled composition 

of carbon black after the time of exposure to microwaves 
are shown in Table 1.

In general, it can be observed the increase of the temperature 
of the samples with the increase of the time of exposure 
to microwaves, as also observed by other authors3,14,15,18. 
Besides, it can be verified a trend towards the increase of 
the temperature of NR after the treatment as the amount of 

Figure 1. Granulometric analysis of the NR0 and NR80.
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carbon black in the rubber got higher. As carbon black is 
a conductive filler13,36,37, it can absorb microwave radiation 
and converts this energy into heat3,18. So, by increasing the 
amount of carbon black in the NR, more microwave energy 
is absorbed.

Even in the sample containing no carbon black, heating 
was observed, but it was much smaller in comparison to 
the samples containing this filler. The heating of the NR0 
probably happened due to the presence of some residue of 
any other chemical substance used during vulcanization, 
since the real composition of the rubber is not known.

3.3. Gel content
Table 2 shows the results of Soxhlet extraction of the 

samples.
As mentioned before, extraction technique is able 

to separate the insoluble fraction of the rubber (known 
as gel fraction - vulcanized part) of the soluble fraction 
(sol fraction - devulcanized part). So, the gel content is an 
index to evaluate the degree of vulcanization of the rubbers18. 
In general, the higher the sol fraction, the more efficient the 
devulcanization process is5,15,55.

According to the Table 2, in general, it could be observed 
that the gel contend decreased with the increasing of the 
exposure time of the NR to microwaves, as well as with the 
increasing of carbon black content present in the sample. These 
results show that the vulcanized rubbers were devulcanized 
by the action of microwaves, and the carbon black acting as a 
conductive filler was really efficient, increasing the efficiency 
of the process in the samples as its content increases.

It is important to point out that, during heating, the oil 
can evaporate when the rubber reaches high temperatures. 
As the exact quantity of oil is the one detected for the 
untreated sample, the value of the soluble phase can be 
even greater than the one obtained through the analysis of 
Soxhlet extraction, being that the process has been, in fact, 
more efficient. According to Scuracchio et al.14, the existence 
of some part soluble in toluene even for the sample with no 

treatment by microwaves is probably due to the presence of 
auxiliary process oils in the rubber.

The interaction of charged particles in some materials 
with the electric field component of electromagnetic radiation 
causes heating on the material38. Carbon black presents a 
sufficient electrical conductivity to promote this interaction 
between the wave and the material36. In the case of dielectric 
solid materials with charged particles, which are free to move 
in a delimited region of the material (such as π-electrons 
in carbon black), a current traveling in phase with the 
electromagnetic field is induced. As the electrons cannot 
couple to the changes of phase of the electric field, heat is 
the result of dissipated energy (Maxwell-Wagner effect56,57).

The ability of a microwave absorber material to be 
heated in the presence of a microwave field is defined by 
its dielectric loss tangent (Equation 1):

"tan =  '
εδ ε 	 (1)

The dielectric loss tangent is composed of two parameters, 
the dielectric constant (or real permittivity), ε′, and the 
dielectric loss factor (or imaginary permittivity), ε″. ε’ 
quantifies the efficiency with which the electromagnetic 
energy is converted to heat38,58,59. The tan δ value of carbon 
black is between 0.35-0.8360,61.

Pistor et al.12 studied the devulcanization of EPDM by 
microwaves and the influence of paraffinic oil in the process. 
They observed higher temperatures in the samples without 
paraffinic oil due to an increase in carbon black content and 
absence of evaporation or degradation of oil. According to 
the authors, carbon black has high thermal conductivity and 
heat capacity, what permit greater accumulation of internal 
energy and a better distribution of energy in the material. 
In the same way, some authors analyzed the conductivity 
of elastomers or blends based on elastomers containing 
carbon black. The conductivity got higher as the amount of 
filler present in the samples increased62-67, especially after 

Table 1. Temperatures of the samples immediately after the microwaves treatment.

Exposure time of 
NR to microwaves 

(min)

Temperature (°C)

NR0 NR20 NR45 NR60 NR80

2 56 66 101 109 166
3 74 94 153 175 244
4 80 117 185 271 250
5 103 138 217 280 307

Table 2. Gel content of the samples of NR with controlled composition of carbon black.

Exposure time of 
NR to microwaves 

(min)

Gel content (%)

NR0 NR20 NR45 NR60 NR80

0 83.04 80.38 89.52 82.70 80.09
2 79.19 80.31 82.26 79.77 79.66
3 78.43 79.37 79.91 76.74 64.93
4 78.29 78.82 77.71 65.45 59.17
5 77.51 77.84 60.32 53.61 55.09
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achieving the percolation threshold, showing its efficiency 
as a conductive filler.

The presented results are in agreement with other 
authors3,18,68, who studied the influence of variation of the 
carbon black content present in SBR on its devulcanization by 
microwaves. According to them, the degree of devulcanization 
by microwaves is proportional to the amount of carbon black 
on the rubber. In other words, the electrical conductivity of 
rubber increases with the increase of the amount of carbon 
black due to the higher energy absorbance.

In order to deepen the analysis of the results, Figure 2 
presents the correlation between temperature of the samples 
after exposure to microwaves and gel content.

From the results presented in the Figure 2, a correlation 
between the temperature of the samples just after the 
treatment and the gel content obtained by Soxhlet extraction 
technique can be seen. In general, the higher the final 
temperature of the sample, the smaller its gel content, what 
proves that the devulcanization of the rubber was obtained. 
Then, the temperature rise is responsible for the occurrence 
of devulcanization. According to Hirayama & Saron18, “the 
heating of material, due to the presence of carbon black, 
is the main factor that leads to devulcanization, which is 
confirmed by an increase in the temperature of the rubber 
as a function of carbon black content in the material”. 
Based on the results found, it could be concluded that the 
time of exposure of the sample to microwaves has also 
great value, what can be highlighted from the analysis of 
the Figure 3.

According to the Figure 3, it is clear the dependence of 
the degree of devulcanization with the time of exposure of 
NR to microwaves. The devulcanization process is efficient 
from 3 minutes (or more) of exposure to microwaves, and 
depending on the content of carbon black present in the 
sample, the efficiency level of the process can be improved.

According to some authors3,18, the degree of devulcanization 
(Equation 2) can be calculated by the difference between 
gel content of the devulcanized rubber (DR) and the one of 
vulcanized rubber (VR).

( )= − −Degree of  devulcanization DR VR 	 (2)

The results of the degree of devulcanization of the NR 
with controlled composition of carbon black are showed in 
the Figure 4. It is noted, in general, that there is a tendency 
of the increase of the degree of devulcanization values 
as function of the amount of carbon black present in the 
rubber, and as function of the increasing of the exposure 
time of NR to microwaves. In addition, according to the 
Figures  2  and  3, it could be observed that the relevant 
amount of carbon black able to improve the process of 
devulcanization by microwaves is from 45 phr. Smaller 
quantities seem not to have influence on the process. 
According to Paulo et al.3, the amount of carbon black is 
an important factor to achieve a successful recycling by 
using devulcanization by microwaves.

As the increase of the final temperature of the compound 
is the responsible for devulcanization, the amount of carbon 
black and exposure time of the sample to microwaves 
are able to cause its increase, which is reflected in the 

Figure 2. Gel content versus temperature of the samples after 
exposure to microwaves.

Figure 3. Gel content versus amount of carbon black of the samples 
after different times of exposure to microwaves.

Figure 4. Degree of devulcanization of the NR with controlled 
composition of carbon black.

degree of devulcanization. The final temperature reached 
by the sample is the determining factor for the degree of 
devulcanization, being dependent on the time of exposure 
of the sample to microwaves and the amount of carbon 
black present on it.
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4. Conclusions
The compound containing carbon black (NR80) was 

easily ground and presented a more refined granulometry 
in comparison to the compound containing no carbon black 
(NR0).

The amount of carbon black present in the rubber, as well 
as the time of exposure of NR to microwaves, are able to 
influence its devulcanization degree. The temperature of the 
NR, immediately after the time of exposure to microwaves, 
increased as the amount of carbon black present in the sample, 
as well as the time of exposure to microwaves got higher. 
As the increase of the temperature is the responsible for the 

occurrence of devulcanization, both factors are important. 
The gel content of the samples decreased as the treatment 
time and carbon black content increased.
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