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Complete understanding of the local stress triaxiality and stress concentration is essential to ensuring 
structural safety of several structures. A combination of mechanical tests with numerical simulations 
can be used to obtain this information. One way to study stress triaxiality is by modifying the standard 
tensile test geometry (ASTM E8) with a notch. Based on previous results from the literature, five notches 
were chosen: 10, 5, 3, 2, and 1 mm. These geometries were tested, and the results were numerically 
reproduced using the Abaqus/Explicit 2020 software. The models used were a non-linear model with 
the Gurson-Tvergaard-Needleman damage model to reproduce the failure. The numerical analyses 
allowed the assessment of the von Mises stress and stress triaxiality near the notch to compare with 
the standard smooth specimen. Two instants were considered as crack propagation onset; the instant of 
the maximum von Mises stress in the element at the center of the specimen, where the failure process 
begins; and the moment of maximum stress in the true stress x true strain curve. For the von Mises 
stress analysis, the difference between the curves was small. The stress triaxiality is a better variable 
to visualize the influences of the notch. When the strain is equal to a 0.07 (instant of the maximum 
force for the standard specimens), for the smaller notches (1 and 2 mm), there is a region where the 
effective plastic strain is zero. Consequently, the stress triaxiality is larger in this region than in the 
center. For the crack propagation onset instant, the plastic strain occurs along the whole transversal 
section. In this instant, the maximum value of stress triaxiality occurs in the center for all specimens. 
These results demonstrate that the stress triaxiality changes as the strain increases, i.e., varies with time.
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1. Introduction
Stress triaxiality is important in fracture mechanics to check 
the safety of several structures, e.g., pipelines, nuclear reactors, 
airplanes, etc. The formula used to define the stress triaxiality 
is the ratio of hydrostatic (mean) stress (σm) to von Mises 
(equivalent) stress (σe), i.e., σm/ σe 

1. Stress triaxiality is one 
of the main factors that influence the fracture process of 
high-toughness steels. For example, a ductile fracture tends 
to be more prevalent for a low-constraint geometry with less 
plastic restriction. This means that if the constraint is low 
the restriction for plastic deformation is small, therefore 
favoring a ductile fracture. The configuration and loading 
of the structural components are different from those of 
the mechanical test specimens used to obtain the material 
fracture properties1,2. Therefore, understanding local stress 
triaxiality is fundamental to ensure structural safety.

Understanding the stress distribution near the fracture 
region is also essential to the fracture process. Numerical and 
experimental results permit more important information and 
field descriptions. The simulations must be non-linear with 
a damage model to reproduce failures. The stress triaxiality 
could affect the calibration of the parameters of some damage 
models, including the Gurson-Tvergaard-Needleman model 

(GTN). Depending on the stress triaxiality, the calibrated 
parameters might be different for the same material. However, 
each model has its particularities.

GTN is a well-known model based on the ductile fracture 
process. The model considers the nucleation of microvoids, 
the growth, and the coalescence of the voids resulting in the 
failure3-6. This is an advantage compared with other models. 
However, nine parameters are necessary to model the failure 
process. In Abaqus (2020), the parameters are q1, q2, q3, fc, fF, 
fN, σN, εN, and r0

7. The first three (q1, q2, q3) are constitutive 
parameters and are independent of the material; q1 responds 
by a decrease in the force because of the interaction of the 
voids; q2 and q3 control the stress triaxiality and volume 
fraction void effect, respectively8,9; the parameters fN, σN, and 
εN are the secondary nucleation parameters;. εN is the plastic 
strain at the nucleation of new voids, and as this nucleation 
follows a normal distribution εN is the mean value; and σN is 
the standard deviation. In addition, fN is the volume of void 
nucleation particles5. The other material parameter, r0, is the 
initial relative density, i.e., the initial ratio of the volume of 
solid material to the total volume of the material7,9. Lastly, fc 
and fF are the parameters of the failure criteria, the first one 
is the critical parameter, and the second is the void volume 
fraction at which the element is removed. If the volume *e-mail: lspereira391@gmail.com
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fraction is between fc and fF, the micro-fracture mechanisms 
and void coalescence occur7. To facilitate the calibration, 
q1, q2 and q3 can be considered equal to 1.5, 1.0, and 2.25, 
repectively7,9-13. Furthermore, some authors10-13 recommend, 
for steel, εN = 0.3, σN = 0.1, and fc = 0.02. Lastly, r0 varies 
between 0.0001 and 0.000310-13.

One method to evaluate stress triaxiality is by modifying a 
standard tensile test geometry with an external circumferential 
notch. The standard specimen is a cylindrical bar (smooth 
round bar) based on the ASTM E8/E8M standard14. Several 
studies were carried out with different diameters and notch 
radii12,15-20. As the minimum diameter varies for each study, it 
is interesting to use the ratio of the radius (R) and minimum 
diameter (ϕmin). Derpenski and Seweryn15 tested 24 combinations 
of R/ϕmin, ranging from 0.038 to 5. Moreover, the values of 
R/ϕmin found in the literature are 0.167, 0.2, 0.24, 0.25, 0.312, 
0.333, 0.5, 0.667 0.78, 1.0, 1.512,16-20.

Studies show that it is possible to obtain the critical plastic 
fracture strain εp,crit relative to stress triaxiality, Equation 
118,20-24. The parameters α and β, Equation 1, are constants 
of the material and can be calibrated using results of tensile 
tests with different notches20. Some authors consider a β 
constant equal to 1.522-24. However, the best option is to 
calibrate them using the values of εp,crit, σm, and σe obtained 
for the instant of crack propagation onset. Both Bao18 and 
Ruggieri20 consider the instant before the stress decreases, 
of the true stress (σ) vs. true strain (ε) curve. Bao18 used the 
element located in the center of the specimen. Alternatively, 
Ruggieri20 considered the elements with porosity f = 0.1, 
analyzing JIS STPT370 steel, a material also applied to 
pipelines. Using the same material, Plata Uribe et al.21 applied 
a different methodology to discover α and β. The point of 
the crack propagation onset was obtained experimentally 
and used as the correspondent point in the simulation. These 
are the values used in the SMCS (Stress-Modified Critical 
Strain) damage model21,24.
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2. Methodology
The material used is a steel API X65 sour, classified by 

the API 5L standard25. This material is applied in pipelines 
of the oil and gas industry because of its high toughness. 
The number after the letter X is the yield stress in ksi25. 
The specimens were machined from sheets cut from a gas 
pipeline. The thickness of the sheets is 20.69” (0.53 m).

Two standard14 specimens were tested, one with a 
minimum diameter of 12.3 mm (S12), Figure 1(a), and the 
other with a diameter of 10 mm (S10), Figure 1(b). Five 
notched specimens were also tested. The notches were 
machined from specimen S12 with a minimum diameter of 
10 mm, only varying R, Figure 1(c). The radii of the notches 
are 10 mm (N10), 5 mm (N5), 3 mm (N3), 2 mm (N2), and 
1 mm (N1), and, consequently, the R/ϕmin values are 1.0, 0.5, 
0.3, 0.2, and 0.1, respectively.

Tests were performed on an MTS machine with a test 
speed of 0.9 mm/min (0.015 mm/s). For greater precision, an 
extensometer was used to obtain the strain. Additionally, two 
cameras, Figure 2, were used to obtain the minimum diameter 
and the radii after yielding for several instants. The cameras 
enable the true stress vs. true strain curve until total fracture 
to be obtained. Because of the anisotropy, the deformation is 
not constant in the cross-section, so two cameras provide the 
information to calculate the elliptical resistant area. The only 
part of the anisotropy that was considered in this study was 
the elliptical area. The anisotropy model is not available in 
Abaqus (2020) when the GTN model is used.

The FEA code used in this study is Abaqus  (2020). 
The geometries were simulated in the Abaqus/Explicit, 
using a non-linear model. The non-linear effects are caused 
by the larger displacement and the elasto-plastic material 
properties. Using a non-linear model is fundamental for 
reproducing the test, because of the large plastic deformation 
that the specimen suffers before failure. The properties of the 
material were obtained from the test of the two specimens, 
following the ASTM E8 standard14 (S12 and S10). For this, 
the procedure described in the standard14 was followed, and 
the modulus of elasticity (E) and stress vs. strain curves were 

Figure 1. Geometries: (a) S12; (b) S10; and (c) notched specimen. Figure 2. Setup of the tensile test machine.
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obtained for the test. Using the real area, the real stress vs. 
stain curves were obtained, and these curves were corrected 
by the Bridgman26 method. Then a routine in Matlab was 
developed to obtain the average curve and modulus of 
elasticity. The elastic properties are E = 205.05 GPa and 
Poisson (ν) = 0.33. The ν utilized is a well-known value 
found in the literature. Thus, the plastic property inputs were 
points of the true stress vs. true strain curve, as shown in 
Figure 3. As the simulation is dynamic, so the density must 
be informed. The steel density is on average 7.85 g/cm3. 
The units used in the simulation are mm for length, Newton 
for strength, second for time, and MPa for stress. Because 
of this, the density needs to be in ton/mm3. Therefore, the 
density is 7.85×10-9 ton/mm3.

The model is axisymmetric with symmetry in the longitudinal 
direction (Y-symmetry). Because of the GTN the model 
must be explicit dynamic, allowing larger displacements, 
which means a large strain theory is being applied. The mesh 
is refined in the Y-symmetry region, where the damage 
propagates. Additionally, the smallest element has dimensions 
of 0.2 x 0.1 mm, near the Y-symmetry, and the largest is 
1.0 x 1.0 mm in the diameter 16.5 mm. The total elements 
are shown in Table 1. The elements are Quad (four nodes) 
with reduced integration, i.e., the calculations are performed 
for the center of the element. This reduced integration is 
needed when the GTN is used. The displacement in the Y 
direction of the Y-symmetry nodes was fixed (0). First, a 
test speed of 0.015 mm/s was applied in the Y direction, 
but convergence problems occurred. The time increment to 
achieve convergence in these simulations, needs to be very 
small. The problem is the density is very low, 7.85×10-9, as 
explained above. When the speed is low, the step time is larger, 
and consequently many increments are necessary. Using a 
test speed of 0.015 mm/s, more than 20,000,000 increments 
are necessary, causing errors. By increasing the speed, the 
step time is smaller, and therefore fewer increments are 
necessary, solving the problem. Thus, the speed was increased 
to 100 mm/s. In this case, the strain rate effect is not modeled. 
Some tests were performed with speeds of 10, 25, 50, 75, 
and 100 mm/s. The true stress x true strain curves obtained 
coincide, independent of the speed used. Thus, the results 
of the stress triaxiality and von Mises stress were also the 
same. Using 100 mm/s, the step time for each geometry is 
shown in Table 1.

The GTN model has nine parameters to calibrate. Therefore, 
to facilitate this calibration, all the parameters, except fN, 
were fixed, based on the literature information5,9-13. Then 
the calibration was performed, changing the fN value until 
reproduction of the experimental curve. The only parameters 
that are independent of the materials are q1,  q2 and q3. 
However, normally these parameters are considered fixed by 
several authors and equal to 1.5, 1.0, and 2.25, respectively. 
Before the calibration, a statistical analysis was performed 
and the fN was the most statistically relevant parameter. 
Thus, using the fN to calibrate the curve is interesting. In the 
literature instead of r0, the parameter f0, the initial volume 
fraction of voids, is used. So, r0 = 1 - f0. In the test performed 
prior to the calibration this was the parameter that least 
affected the result. Therefore, the chosen value for r0 is 
0.9997. The critical parameter chosen for fc, from which 
the damage process is accelerated, was 0.03. The fraction of 
void volume in the fracture, fF, is calculated using Equation 
2, in relation to q1, q2, q3, fc, and the damage acceleration 
factor κ10. Consequently, fF = 0.1892. The values chosen for 
the two secondary nucleation parameters besides fN are εN 
= 0.3 and σN = 0.1. Table 2 shows the calibrated fN values 
for each geometry. The differences between the values are 
considerable. This is noteworthy because the material is the 
same, i.e., the same constitutive model. The only difference 
between the specimens is the triaxiality. This proves that 
the values of the parameters are different depending on the 
triaxiality. In this study, the calibration was performed by 
varying the fN, but the calibration could be carried out by 
changing the values of the other parameters. As the q2 controls 
the stress triaxiality it should not be constant and equal to 
1.0 and should be calibrated for each geometry.

Figure 3. Input of plastic properties.

Table 1. Elements and step time used in the simulations.

Specimen Elements Step Time
S10 2152 0.054
S12 2586 0.065
N10 2758 0.030
N5 2537 0.030
N3 2472 0.030
N2 2617 0.030
N1 2479 0.026

Table 2. Calibration of the fN parameter of GTN.

Specimen fN

S10 0.00015

S12 0.00045

N10 0.00060

N5 0.00050

N3 0.00045

N2 0.00100

N1 0.00170
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Using a Python routine, the values of stress, stress 
triaxiality, and effective plastic strain were obtained for the 
centroid of the elements, and the coordinate values ​​ for the 
nodes. The values were obtained for the centroid because 
the reduced integration was used, and therefore the value is 
not available for the nodes. The organization of values and 
the calculations were performed using a Matlab routine that 
wrote the results in Excel.

Three instants in time were chosen to perform the 
analyses. The first (instant 1) is the moment of maximum 
force of the standard specimen. The displacement measured 
by the virtual extensometer for the S10 was used to determine 
the instant for the notched specimen. Considering that the 
virtual extensometer is a set of nodes created in the position 
corresponding to the place where the extensometer was 
positioned during the test, instant 1 was considered when 
the displacement was equal to the S10. The second, instant 
2, is the moment of the maximum von Mises stress in the 
central element (the element close to the axisymmetric axis 
and the Y-symmetry line), Figure 4(a). The central element 
is the first one to start to fail. Then, instant 3 is the moment 
of maximum stress in the true stress x true strain curve.

The effective plastic strain (PEEQ) related to the stress 
triaxiality (T) curve18,20 must be obtained at the crack propagation 
onset. The problem is to determine the instant at which the crack 
is about to start propagating. Normally, the point of maximum 
stress on the true stress x true strain curve is considered (instant 
3)18,20,21. However, the stress in the elements starts to decrease 
before this instant. Thus, instant 2 was also considered.

In addition, two elements were considered: the central 
element, Figure 4(a), and the element with the volume void 
on the crack propagation onset, f = 0.

The analysis of the von Mises stress (SvM) variation 
on the Y coordinates was carried out at two instants in time, 
1 and 2. Instant 3 was not considered because the von Mises 
stress started to decrease because of the damage. Two sets 
of elements were used: the axisymmetric (internal) and the 
free surface (external). These sets are shown in Figure 4(b).

Finally, the stress triaxiality in relation to the relative 
radius was studied. The analyzed elements were those in 
Y-symmetry. The relative radius was calculated by dividing the 
distance between the element centroid and the axisymmetric 
axis (r) by the maximum radius(rmax). The analysis was also 
performed for instants 1 and 2.

3. Results and Discussion
Figure 5 shows the PEEQ vs. T curves. For Figure 5(a), 

the values were obtained for the central element, Figure 4, 
at instant 3. The points do not follow a clear trend. So, after 
that, the values were obtained in the same element, but for 
instant 2, Figure 5(b). In this case, it was possible to use an 
exponential fit with a high R2. The parameters α and β are 
obtained from the regression analysis made in Excel to plot 
the exponential fit, shown in the equations in Figure 5(b) and 
Figure 5(c). Considering Equation 1, α is the constant and β 
is the exponent that multiplies the stress triaxiality. Finally, 
the third analysis was based on the study of Ruggieri20. 
The values were obtained for the element with a void volume, 
f, equal to 0.1 at instant 3. This methodology also allowed the 
regression analysis, with an R2 slightly smaller than the one 
in Figure 5(b). The values of α and β found by Ruggieri20 are 
1.77 and 0.5, respectively, close to the values obtained in 
Figure 5(c). On the other hand, Plata Uribe et al.21 found 
α = 4.2 and β = 1.7, which are closer to the values shown in 
Figure 5(b). Considering only the notched specimen, the values 
change. For Figure 5(b), the values changed from α = 6.3 and 
β = 1.9 to α = 5.6 and β = 1.8, while, for Figure 5(c) they 
changed from α = 2.6 and β = 0.9 to α = 2.0 and β = 0.7. These 
results are closer to Ruggieri20 and Plata Uribe et al.21 than 
to the standard specimens. As all the results have the same 
order of magnitude, this indicates that the numeric models 
present good agreement with the predicted results. Better 
understanding of the crack propagation onset instant is 
recommended to use the SMCS damage model. The main 
point is the moment when the damage started. For example, 
instant 3, is immediately prior to the deletion of the first 
element. However, as shown before, the element degradation 
has been going on for some time. The methodology presented 
by Ruggieri20 does not use the central element, because this 
element is already failing. Finally, the SMCS was not used 
in this study since we used the GTN model. The SMCS is 
simpler than GTN, but it is not available in Abaqus (2020).

The analysis of the numerical results enabled the 
assessment of the variation in the von Mises stress concerning 
coordinates in the Y direction. Figure 6(a) shows this variation 
for instant 1 for all specimen lengths and detailed for gauge 
length. The first observation is related to the notch influence 
until approximately 30 mm (gauge length). As shown in 
Figure 1, this is the limit of the minimum parallel length. 
For the standard specimen, the stress is practically constant 
in this region. Alternatively, for the notched specimens, the 
von Mises stress is concentrated at the Y-symmetry, followed 

Figure 4. (a) central element and symmetries; (b)  internal and 
external elements.
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by a decrease in stress. For the smaller radii (N2 and N1), 
the decrease is smaller; the stress is more concentrated in the 
notch. The same occurs for instant 1, Figure 6(b). For instant 2, 
the standard specimen behavior is the same for the notched 

specimens. For the external elements, Figure 6(c), between 
approximately 15 and 40 mm, the von Mises stress for the 
standard specimens is larger than for the notched specimens, 
mainly for the N10, N5, and N3. The deformation causes 

Figure 6. Y coordinate vs. von Mises stress: (a) internal elements for instant 1, (b) internal elements for instant 2, (c) external elements 
for instant 2.

Figure 5. effective plastic strain vs. triaxiality: (a) central element for instant 3, (b) central element for instant 2, (c) element with f = 0.1 
for instant 3.
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the increasing radius of the notch. On the other hand, for 
the standard specimens, after plastic instability (necking), 
the radius decreases. Therefore, the stress becomes closer to 
the smaller radius. Before the maximum force, it is possible 
to visualize the influence of the notch for the standard 
specimens. After that, because of the necking, the difference 
is not significant. Consequently, the von Mises stress is not 
the best variable to identify the length of the region affected 
by the notch after necking.

Figure 7 shows the stress triaxiality in the minimum 
diameter (Y-symmetry). For instant 1, Figure 7(a), the stress 
triaxiality for the S10 and S12 coincide. Furthermore, the 
stress state is practically uniaxial. For the N10 and N5, the 
largest stress triaxiality is in the center of the specimen. 
For the N3, the stress triaxiality close to the center is constant. 
Then, for N2 and N1, the curve is utterly different; the large 
stress triaxiality is close to the notch. The plastic strain in 
the notch region causes an area where the effective plastic 
strain is close to zero, as shown in Figure 8(a). The constraint 
in this region increases relative to the specimen center. 
On the other hand, for the N10, N5, and N3 specimens, the 

effective plastic strain in all Y-symmetry is different from 
zero, as shown for the N10, in Figure 8(b). For instant 2, 
Figure 7(b), all the curves follow the same trend. The plastic 
strain occurs in all the Y-symmetry for all specimens. For the 
standard specimens, the necking causes the same effect as 
the notch; however, in this study, the difference between the 
curves is more significant. Furthermore, the stress triaxiality 
changes as the strain increases, so the region where the 
notch affects the results changes with time. Consequently, 
the more instants analyzed the better.

The last analysis was the stress triaxiality (T) vs. 
the plastic stain (εp), shown in Figure 9. For the standard 
smooth specimen, S10 and S12, after the plastic instability 
(necking) the stress triaxiality starts to increase. Initially 
this increase is modest, then, after a plastic strain equal 
to 0.2 this increase becomes substantial. For the notched 
specimens N10, N5, and N3, the smaller the radius notch 
the greater the stress triaxiality. The stress triaxiality at the 
start of the curve for N2 and N1 is smaller than expected. 
Nevertheless, the variation in the stress triaxiality in relation 
to the plastic strain is larger than for the other specimens.

Figure 7. Triaxiality vs. relative radius: (a) instant 1, (b) instant 2.

Figure 8. Effective plastic strain at instant 1 for the: (a) N1, (b) N10.
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4. Conclusion
The calibration of the fN was chosen because it is the most 

statistically relevant parameter. The values are different for 
each geometry, proving the influence of the stress triaxiality 
on the GTN parameters. However, the calibration could be 
performed for any parameter. The next step would be to 
calibrate the q2, maintaining fN constant, then to obtain the 
graphics and compare with these results.

Based on the literature, it was possible to obtain an 
exponential curve relating the critical plastic fracture strain 
to the stress triaxiality. The main difficulty was to determine 
the crack propagation onset instant. Two methodologies were 
proven to be adequate. The values of α and β obtained had 
the same order of magnitude as values found in the literature, 
indicating that the numeric models agree with the predicted 
results. However, better understanding of when the failure 
begins is recommended.

The numerical results allowed the study of the stresses in 
different points of the specimen. Before the ultimate tensile 
strength for the standard specimens, it is possible to observe 
the effect of the notch on von Mises stress. However, at 
crack propagation onset, the difference between the curves 
is small, and therefore, the von Mises stress is not the best 
variable to identify the length of the region affected by the 
notch after the necking.

The largest value of stress triaxiality is close to the notch 
for the smaller radius (N2 and N1) and instant 1. A large 
plastic strain in the notch causes a region where the plastic 
strain is close to zero for this instant. Therefore, the stress 
triaxiality in this region is larger. After the plastic strain occurs 
in all Y-symmetry, the maximum value of stress triaxiality 
occurs in the center. For instant 2, the curves followed the 
same trend. The plastic strain occurs in all the Y-symmetry 
for all specimens. For the S10 and S12, the neck causes the 
same effect as the notch. The stress triaxiality is a better 
variable to visualize the influence of the notch on stress 
states and plasticity evolution.

For the S10 and S12 after the plastic instability, the stress 
triaxiality starts to increase. Initially, this increase is modest, 
then, after a plastic strain equal to 0.2 this increase becomes 
substantial. For the N10, N5, and N3, the smaller the radius 
notch the greater the stress triaxiality. For the N2 and N1, the 
variation in stress triaxiality is larger than for the other specimens.

It is concluded that the numerical results enable the 
visualization of the effect of the notch mostly in the minimum 
diameter (Y-symmetry) using the stress triaxiality. Finally, 
the stress triaxiality changes as the strain increases, so the 
region where the notch affects the results varies with time. 
For future considerations, more instants should be analyzed 
to better understand how stress triaxiality changes with time.
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