Influência do Método de Filetagem e Categorias de Peso sobre Rendimento de Carcaça, Filé e Pele da Tilápia do Nilo (*Oreochromis niloticus*)

Maria Luiza Rodrigues de Souza¹, Elisabete M. Macedo-Viegas², Sérgio do Nascimento Kronka³

RESUMO - O objetivo deste trabalho foi avaliar o efeito do método de filetagem (F_1 = retirada da pele com alicate e filetagem; F_2 = filetagem e retirada da pele, com faca e auxílio de alicate) e a categoria de peso (P_1 =250-300 g; P_2 =301-350 g; P_3 =351-400 g e P_4 = 401-450 g) sobre o rendimento de carcaça (RC), filé (RF) e pele da tilápia do Nilo. Foram utilizadas 48 tilápias, em delineamento inteiramente casualizado. Houve efeito para método de filetagem, sendo a média de F_1 (56,43 e 36,67%) superior à de F_2 , 53,46 e 32,89%, respectivamente, para RC e RF. Para categoria de peso, as médias P_1 (56,49 e 37,34%) e P_2 (56,34 e 36,40%) foram superiores em relação a P_3 (53,27 e 31,98%) e P_4 (53,71 e 33,42%), respectivamente, para RC e RF. Porcentagens de pele bruta, limpa e de descarne foram superiores para F_2 , mas não houve efeito para as categorias de peso. A filetagem F_1 proporcionou melhores rendimentos e resultados de pele e, para categoria de peso, P_1 e P_2 , maiores rendimentos.

Palavras-chave: Oreochromis niloticus, produção de pescado, processamento de pescado, processamento de filetagem, Tilápia do Nilo

Influence of Processing Method and Weight Categories on Carcass, Fillet and Skin Yield of Nile Tilapia (*Oreochromis niloticus*)

ABSTRACT - The objective of this study was to evaluate the processing methods (F_1 = to remove skin with pliers and then to cut in fillets; F_2 = to cut in fillet and then to remove skin with knife and pliers help) and weight categories (W_1 =250-300 g; W_2 =301-350 g; W_3 =351-400 g and W_4 =401-450 g), on the carcass (CY), fillet (FY) and skin yield of Nile tilapia. Forty-eight fishes were used in a completely randomized design. There was effect for the processing method, being the F_1 mean (56.43 and 36.67%) higher to the F_2 (53.46 and 32.89%) for CY and FY respectively. For the weight categories, W_1 (56.49 and 37.34%) and W_2 (56.34 and 36.40%) were superior as compared to W_3 (53.27 and 31.98%) and W_4 (53.71 and 33.42%), respectively for CY and FY. Crude skin percentage, clean and of fleshed were higher for F_2 , but there was no effect for weight categories. The F_1 processing method promoted the best yield and skin results, and for the weight categories W_1 and W_2 higher yields.

Key Words: Oreochromis niloticus, fish production, fish processing, fillet processing, Nile Tilapia

Introdução

A produção de alimento de qualidade para o consumo humano, uma das prioridades dos pesquisadores do setor agropecuário, destaca a participação da aqüicultura, bem como o seu potencial na produção mundial de alimentos protéicos de origem animal. Segundo TACON (1996), esta é a atividade zootécnica com maior índice de crescimento nesta década, cerca de 10,4% ao ano.

Dentro da aqüicultura, a piscicultura de água doce é a atividade que vem se mostrando mais promissora, sendo a tilápia do Nilo uma das espécies mais utilizadas mundialmente (CLEMENT e LOVELL, 1994), com maior potencial de cultivo. A demanda de consumo de seu filé tem crescido subs-

tancialmente nos últimos anos, sendo uma das espécies mais indicadas para o cultivo intensivo, devido a suas qualidades para a produção, excelente textura e paladar da sua carne, por não apresentar microespinhas e possibilitar a filetagem e a industrialização da carcaça (SCHMIDT, 1988; BOLL et al., 1995). Além destas qualidades, pode-se aliar a possibilidade do uso de sua pele para o curtimento, que pode representar outra fonte de renda para o piscicultor ou para a indústria de filetagem.

A definição do peso de abate, os diferentes métodos de processamento, o conhecimento sobre o rendimento do peixe, bem como os seus subprodutos, são de fundamental importância tanto para a indústria de processamento como para o produtor.

Para a produção da tilápia, devem ser considera-

¹ Prof. do Departamento de Zootecnia da Universidade Estadual de Maringá/UEM. Av. Colombo 5790 - 87020-900, Maringá - PR, Brasil.

² Prof. do Centro de Aqüicultura da Universidade Estadual Paulista/UNESP. Rodovia Carlos Tonanni, km 5 - 14870-000 - Jaboticabal - SP, Brasil.

³ Pesquisador do CNPq. Prof. do Centro de Aqüicultura da Universidade Estadual Paulista/UNESP. Rodovia Carlos Tonanni, km 5 -14870-000 -Jaboticabal - SP, Brasil.

2 SOUZA et al.

das algumas características mercadológicas, como o tamanho ou peso do peixe para o abate e peso do filé, por proporcionar maior rendimento de carcaça e de filé. Apesar de o rendimento de filé depender da eficiência das máquinas filetadoras, destreza manual do operário e da forma anatômica do corpo do peixe (CONTRERAS-GUZMÁN, 1994), deve-se considerar também a forma pela qual é realizada a esfola, ou seja, a retirada da pele da carcaça ou do filé.

Tendo em vista o crescente interesse pelo cultivo, pela industrialização e pela boa aceitação do filé de tilápia, aliado à carência de dados sobre seu processamento, realizou-se este trabalho com o objetivo de avaliar os rendimentos de carcaça e filé e as porcentagens da pele bruta, limpa e de descarne, da tilápia do Nilo, submetida a dois métodos de filetagem manual, para quatro categorias de peso.

Material e Métodos

Animais experimentais e procedimentos de filetagem

O experimento foi realizado no Centro de Aqüicultura da UNESP (CAUNESP-Jaboticabal), no mês de fevereiro de 1997. Foram utilizados 48 exemplares de tilápia do Nilo (*Oreochromis niloticus*), capturados de tanques de 38 m², por meio de tarrafas e sacrificados por destruição da medula espinhal.

Após o sacrifício, cada exemplar foi eviscerado e filetado, sendo submetido às pesagens em balança de precisão de 0,01 g e às medições de comprimento padrão (ponta do focinho até o pendúnculo caudal) e altura, com auxílio de um ictiômetro (graduado em cm). Consideraram-se o peso total, a carcaça (eviscerada, sem cabeça e pele), o filé sem pele e o peso da pele bruta (após a esfola, com escamas e restos de músculos) e limpa (após escamar e descarnar), para se determinarem o rendimento de carcaça (RC), o rendimento de filé (RF) e a porcentagem da pele bruta (PPB), limpa (PPL) e de descarne (PD).

O processo de filetagem foi realizado por uma única pessoa, aplicando-se os métodos de filetagem, ou seja, o método F₁, retirando-se a pele com alicate de ponta fina e depois o filé (Figura 1) e o outro método, o F₂, obtendo-se primeiramente o filé com pele e, em seguida, separando-se esta do filé com a faca e o auxílio do alicate de ponta fina (Figura 2), relatado por FREITAS e GURGEL (1984). O filé foi obtido a partir da musculatura dorsal nas duas laterais do peixe no sentido longitudinal, ao longo de toda a extensão da coluna vertebral e costelas. Todos os

dados de rendimento foram calculados em função do peso total do exemplar.

Delineamento experimental

O delineamento experimental foi inteiramente casualizado, com oito tratamentos, em fatorial 2x4, constituído de dois métodos de filetagem (F_1 = retirada da pele e filetagem; F_2 = filetagem com a pele e retirada da pele) e quatro categorias de peso (P_1 = 250-300 g; P_2 = 301-350 g; P_3 = 351-400 g e P_4 = 401-450 g), com seis repetições por tratamento, em que cada peixe foi considerado uma parcela experimental. Os dados de rendimento de carcaça, filé, porcentagem da pele bruta, limpa e descarne foram submetidos à análise de variância e as médias foram comparadas pelo teste Tukey, a 5% de probabilidade (BANZATTO e KRONKA, 1995). O modelo matemático utilizado foi:

$$Y_{ijk} = \mu + F_i + P_j + (FP)_{ij} + e_{ijk}$$

em que

Y_{ijk} = valor observado para o peixe k, com método de filetagem i e categoria de peso j;

 $\mu = \text{m\'edia};$

 F_i = efeito do método de filetagem i (i = 1,2);

 P_{j} = efeito da categoria de peso j (j = 1,2,3,4);

(FP)_{ij} = efeito da interação do método de filetagem i e a categoria de peso j; e

$$e_{ijk} = erro.$$

Resultados e Discussão

No Brasil são poucos os estudos relativos ao rendimento de carcaça ou filé de peixes. Em geral, não existe padronização no método de filetagem e na categoria de peso, em função das espécies de peixes sobre os seus rendimentos. Assim, os peixes foram capturados e classificados nas quatro categorias de peso, em função do que mais se utiliza em indústrias filetadoras e comercialização pelo piscicultor. Na Tabela 1, constam os valores médios do comprimento padrão e da altura (cm) dos peixes utilizados para análise do método de filetagem dentro de cada categoria de peso.

Comparando-se o método de filetagem para o rendimento de carcaça e filé (Tabela 2), houve efeito significativo (P<0,01), sendo a média da filetagem F_1 (56,43 e 36,67%) superior à da filetagem F_2 (53,46 e 32,89%), respectivamente, para as características analisadas. Pode-se observar que retirando o filé e, em seguida, a pele (F_2), permanece nesta quantidade razoável de músculos, proporcionando menor rendimento de filé, enquanto, retirando a pele e depois a filetagem (F_1), evidencia-se menor perda de carcaça e filé.

Rev. bras. zootec.

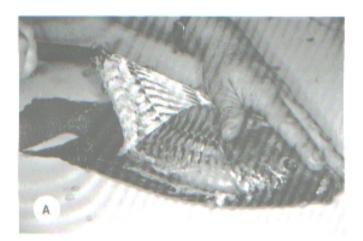


Figura 1 - Método de filetagem F_1 : retirada da pele com auxílio de alicate (A) e depois o filé (B). Figure 1 - Processing method F_1 : to remove skin with pliers (A) and then to cut in fillets (B)

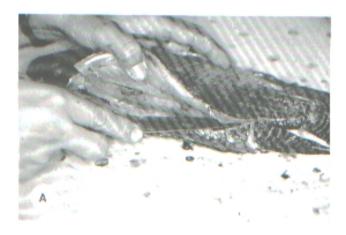


Figura 2 - Método de filetagem F_2 : retirada do filé com pele (A) e depois a retirada da pele, com faca e auxílio do alicate Figure 2 - Processing method F_2 : to cut in skin with fillet (A) and then to remove skin with knife and pliers.

4 SOUZA et al.

Tabela 1 - Dados biométricos médios de exemplares de Tilápia do Nilo

Table 1 - Average biometric data of specimens of Nile Tilapia

Table 1 Twerage biometric data of specimene of Trile Thapta						
Comprimento padrão (cm)	Altura (cm)					
Standard length	Height					
19,62	7,48					
20,56	8,06					
21,10	8,60					
21,65	9,13					
	Comprimento padrão (cm) Standard length 19,62 20,56 21,10					

Tabela 2 - Valores médios de rendimento de carcaça, filé e porcentagens de pele bruta, limpa e de descarne da Tilápia do Nilo Table 2 - Mean values of the carcass, fillet yield and crude skin percentage, clean and of fleshed of Nile Tilapia

Fonte de variação	Rendimento (%)		Porcentagem (%)		
Source of variation	Yield		Percentage		
	Carcaça (RC)	Filé(RF)	Pele		Descarne (D)
	Carcass (CY)	Fillet(FY)	S	Skin	Fleshed (F)
			Bruta (PBR)	Limpa (PLI)	_
			Crude skin (CRS)	Clean skin (CLS)	
Filetagem(F)					
Fillet					
F_1 = retirar pele e filetar	56,43 a	36,67 a	5,32b	3,14b	40,63 b
$F_1 = to$ remove skin and fillet					
$F_2' = $ filetar e retirar pele					
F_2 = to cut in fillet and to remove skin	53,46b	32,89 b	8,51 a	3,45 a	58,97a
Categorias de peso (P)					
Weight categories (W)					
$P_1 = 250 - 300 g$	56,49 a ⁽¹⁾	37,34a	6,83 a	3,32 a	50,01 a
$P_2 = 301 - 350 \mathrm{g}$	56,34 ab	36,40 ab	7,09 a	3,37 a	50,16a
$P_3 = 351 - 400 \mathrm{g}$	53,27 c	31,98c	6,81 a	3,33 a	47,08 a
$P_4 = 401 - 450 \mathrm{g}$	53,71 bc	33,42 bc	6,92 a	3,15 a	51,95a
Teste F					
Ftest					
Filetagem(F)	17,04**	21,96**	124,74 **	4,68*	97,52**
Fillet					
Categorias de peso (P)	5,58*	9,68**	0,21	0,45	1,18
Weight categories (W)					
Interação (F x P)	1,03	2,77	1,77	0,29	1,56
Interaction (F x W)					
CV(%)	4,54	8,03	14,30	15,07	12,92

Médias na coluna, para cada fator, seguidas de letras diferentes são diferentes (P<0,05) teste Tukey. Means, within a column, by each factor, followed different letters are diferent (P<.05) by Tukey test.</p>

Para as categorias de peso, os maiores rendimentos de carcaça e filé foram obtidos em P_1 (56,49 e 37,34%) e P_2 (56,34 e 36,40%), em relação às categorias P_3 (53,27 e 31,98%) e P_4 (53,71 e 33,42%), respectivamente, para carcaça e filé. Houve diferença significativa entre a média de P_1 (250 - 300 g) em relação à de P_3 (351 - 400 g) e P_4 (401 - 450 g) e entre a média de P_2 (301 - 350 g) e P_3 (351 - 400 g) (Tabela 2).

Segundo CONTRERAS-GUZMÁN (1994), a

carcaça, em média, é 62,6% do peso dos peixes. Para a tilápia do Nilo pesando 585 g, considerando a carcaça sem cabeça, pele e vísceras. CLEMENT e LOVELL (1994) obtiveram valor de rendimento de carcaça de 51%, o qual é inferior aos obtidos neste experimento com peixes de 250 a 450 g (53,27 a 56,49%), conforme Tabela 2. NOVATO e VIEGAS (1997), trabalhando com a tilápia vermelha da Flórida, com peso de 451 a 550 g, verificaram rendimento de

^{*} Significativo [significant] (P<0,05).

^{**} Significativo [significant] (P<0,01).

carcaça sem cabeça de 75,5%.

Stansby e Olcott (1963), citados por FREITAS et al. (1979), afirmaram que o rendimento de filé varia de acordo com a espécie, entre 20 a 40%, enquanto SANTOS et al. (1995) mencionaram rendimento de filé de 21% para o cascudo; para o bagre africano, HOFFMAN et al. (1993) obtiveram 38,9 a 46,7%; POUEY e STINGELIN (1996), 44% para o peixe-rei.

CONTRERAS-GUZMÁN (1994) cita que a tilápia está entre as espécies que apresenta o menor rendimento de filé (inferiores a 40%); segundo o mesmo autor, rendimentos obtidos por Gurgel e Freitas (1972) e Freitas et al. (1972), para tilápias pesando de 400 a 600 g de peso vivo, foram acima de 32%. SOUZA et al. (1997) também citam rendimentos de filé de 35,8 a 37,2%, para tilápia do Nilo. Todavia, MACEDO-VIEGAS et al. (1997) obtiveram porcentagens de 32,15 a 40,39%, para a mesma espécie, pesando de 250 a 450 g. Entretanto, CLEMENT e LOVELL (1994) relataram rendimento de filé de 25,4% para a tilápia do Nilo, com peso médio de 585 g.

Portanto, os resultados obtidos neste experimento estão de acordo com os citados por CONTRERAS-GUZMÁN (1994), inferiores aos citados por MACEDO-VIEGAS et al. (1997) e superiores ao relatado por CLEMENT e LOVELL (1994). Esta variação pode estar relacionada à forma de filetagem, ou seja, o método utilizado para a filetagem, que nem sempre é bem descrito, no trabalho; à experiência do filetador (mão-de-obra); ao estádio de desenvolvimento gonadal (reprodutivo); e à faixa de peso em que os peixes se encontravam na fase de abate.

As porcentagens de pele bruta, limpa e de descarne sofreram o efeito do procedimento de filetagem, em que as médias da filetagem F₂ foram significativamente superiores às da filetagem F₁. Para as categorias de peso, não houve efeito significativo para as variáveis estudadas (Tabela 2). Na literatura consultada, não há dados relativos a estas variáveis, pelo fato de ser recente o interesse pelo curtimento de peles de peixes, exceto alguns dados referentes a peso ou à porcentagem de pele de determinadas espécies de peixes.

Segundo CONTRERAS-GUZMÁN (1994), a pele perfaz, em média, 7,5% do peso dos peixes teleósteos. FREITAS et al. (1979) e FREITAS e GURGEL (1984) citaram que a pele da tilápia do Nilo, sem escama, corresponde a 5,0% do peso do peixe inteiro. De acordo com MACEDO-VIEGAS et al. (1997), a pele bruta da tilápia do Nilo, com pesos entre 250 a 450 g, utilizando o método de filetagem descrito neste trabalho como F₁, ou seja, retirou-se primeiramente a pele do peixe com auxílio de um alicate com ponta fina

e, em seguida, a obtenção dos filés, foi de 4,77 a 5,71%. Entretanto, os valores obtidos por MACEDO-VIEGAS et al. (1997) foram inferiores aos obtidos neste experimento, para as mesmas categorias de peso.

Para a indústria coureira que paga por peso, ou para o produtor que processa a pele, é interessante que as mesmas apresentem menor quantidade de escamas e musculatura, pois facilita o curtimento, devido às menores quantidades de produtos químicos necessários e mão-de-obra (tempo para descarnar a pele), o que é proporcionado pelo método de filetagem F_1 . No método de filetagem F_2 , observa-se que a porcentagem de pele limpa é superior à filetagem F_1 , em virtude das dificuldades de remoção de toda a musculatura e gordura da pele no método F_2 , permanecendo ainda alguns desses resíduos na própria pele.

Quanto ao descarne, o método de filetagem F_2 (Figura 2) foi significativamente superior (58,97%) ao método F_1 (40,63%). Portanto, a filetagem F_2 proporcionou maior quantidade de resíduos (músculos e gordura) para ser retirada das peles em relação ao método F_1 . Estes resíduos são prejudiciais ao processamento das peles, ou seja, para o curtimento. Para execução do curtimento das peles, estes resíduos devem ser totalmente retirados, caso contrário, poderá proporcionar peles mal curtidas e endurecidas.

Conclusões

O método de se retirar a pele com alicate e depois o filé proporcionou maior rendimento de carcaça e filé. Os peixes menores (250-300 g e 301-350 g) apresentaram os melhores rendimentos de carcaça e filé. A filetagem F₁ proporcionou melhores resultados de pele bruta, limpa e de descarne (menor quantidade de escamas e musculatura na pele).

Referências Bibliográficas

BANZATTO, D.A., KRONKA, S.N. 1995. Experimentação agrícola. 3.ed. Jaboticabal: FUNEP. 247p.

BOLL, M.G., SATO, G., AMARAL JR., H.A. Resultados preliminares de método alternativo de manejo da T ilápia, *Oreochromis niloticus*, no período de inverno em regiões de clima subtropical. In: ENCONTRO RIOGRANDENSE DE TÉCNICOS EM AQÜICULTURA, 6, ENCONTRO BRASILEIRO DE AQÜICULTURA, 3, 1995, Ibirubá. *Anais...* Porto Alegre: Universidade Federal do Rio Grande do Sul, Departamento de Zootecnia, Setor de Aqüicultura. 1995. p.88-93.

CLEMENT, S., LOVELL, R.T. 1994. Comparison of processing yield and nutrient composition of culture Nile tilapia (*Oreochromis niloticus*) and channel catfish (*Ictalurus punctatus*). Aquaculture, 119:299-310.

CONTRERAS-GUZMÁN, E.S. Bioquímica de pescados e deri-

6 SOUZA et al.

vados. Jaboticabal: FUNEP, 1994, 409p.

- FREITAS, J.V.F., GURGEL, J.J.S. 1984. Estudos experimentais sobre a conservação da tilápia do Nilo, *Oreochromis niloticus* (L. 1766) Trewavas, armazenada no gelo. *Bol. Téc. DNOCS*, 42(2):153-178.
- FREITAS, J.V.F., GURGEL, J.J.S., MACHADO, Z.L. 1979. Estudos de alguns parâmetros biométricos e da composição química, inclusive sua variação sazonal, da tilápia do Nilo, *Sarotherodon niloticus* (L.) do açude público "Paulo Sarasate" (Reriutaba, Ceará, Brasil), durante os anos de 1978 e 1979. *Bol. Téc. DNOCS*, 37(2):135-151.
- HOFFMAN, L.C., CASEY, N.H., PRINSLOO, J.F. Carcass yield and fillet chemical composition of wild and farmed African sharptooth catfish, Clarias gariepinus. Int. Conf. Bordeaux Aquaculture, Bordeaux (France), 25-27, mar, 1992. Bordeaux, France: European Aquaculture Society, 1993. p.421-432. (Special Publications of European Aquaculture, n.18).
- MACEDO-VIEGAS, E.M., SOUZA, M.L.R., KRONKA, S.N. 1997. Estudo da carcaça de tilápia do Nilo (*Oreochromis niloticus*), em quatro categorias de peso. *Rev. UNIMAR*, 19(3):863-870.
- NOVATO, P.F.E., VIEGAS, E.M.M. Carcass yield analyses of Florida Red Tilapia in three weight classes. In: INTERNATIONAL SYMPOSIUM BIOLOGY OF TRO-PICAL FISHES, 1997. Manaus. *Abstracts...* Manaus: INPA. 1997. p.150.
- POUEY, J.F., STINGELIN, L.A. Rendimento da carcaça e da carne do peixe-rei (*Odontesthes humensis*), na faixa de 200 a 300 g. In: SIMPÓSIO BRASILEIRO DE AQÜICULTURA, 9, 1996, Sete Lagoas. *Resumos...* Sete Lagoas: ABRAq, 1996. p.141.

- SANTOS, A.B., MELO, J.F.B., LOPES, P.R.S. Estudo da carcaça do cascudo *Hypostomus commersonii* na região de Uruguaiana-RS/Brasil. In: ENCONTRO SUL BRASILEIRO DE AQÜICULTURA, 3. ENCONTRO RIOGRANDENSE DE TÉCNICOS EM AQÜICULTURA, 6, 1995, Ibirubá. *Anais...* Porto Alegre: Universidade Federal do Rio Grande do Sul, Departamento de Zootecnia, Setor de Aqüicultura. 1995. p.70-76.
- SCHMIDT, A. A. P. 1988. *Piscicultura:* a fonte divertida de proteínas. São Paulo:Icone. 88p.
- SOUZA, M.L.R., CASTAGNOLLI, N., KRONKA, S.N. Nile tilapia's carcass characteristics dependence on stocking density and aeration system. In: THE ANNUAL INTERNATIONAL CONFERENCE. EXPOSITION OF THE WORLD AQUACULTURE SOCIETY, Seattle. *Abstracts...* Seattle: World Aquaculture Society. 1997. p.398.
- TACON, A.G.J. 1996. Trends in aquaculture production with particular reference to low income food deficit Countries 1984-1993. *Food Aquaculture Newsletter*, 12:6-9.

Recebido em: 12/03/98 **Aceito em**: 09/09/98