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ABSTRACT - The objective of this study was to evaluate the genotype-environment interaction (GEI) in the body weight 
adjusted to 550 days of age (W550) of Polled Nellore cattle raised in Northeastern Brazil using reaction norms (RN) models. 
Hierarchical RN models included fixed effects for age of cow (linear and quadratic) and random effects for contemporary
groups (CG) and additive genetic RN level and slope. Four RN hierarchical models (RNHM) were used. The RNHM2S uses 
the solutions of contemporary groups estimated by the standard animal model (AM) and considers them as environmental 
level for predicting the reaction norms and the RNHM1S, which jointly estimate these two sets of unknowns. Two versions 
were considered for both models,  one with a homogeneous (Hm) and another with a heterogeneous (He) residual variance. 
The one-step homogeneous residual variance model (RNHM1SHm) offered better adjustment to the data when compared with 
other models. For the RNHM1SHm model, estimates of additive genetic variance and heritability increased with environment 
improvement (260.75±75.80 kg2 to 4298.39±356.56 kg2 and 0.22±0.05 to 0.82±0.01, for low- and high-performance 
environments, respectively). High correlation (0.97±0.01) between the intercept and the slope of RN shows that animals with 
higher genetic values respond better to environment improvement. In the evaluation of breeding sires with higher genetic 
values in the various environments using Spearman’s correlation, values between 0 and 0.98 were observed, pointing to 
high reclassification, especially among genetic values obtained by the animal model in comparison with those obtained via
RNHM1SHm. The existence of GEI is confirmed, and so is the need for specific evaluations for low, medium and high level
production environments.
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Introduction

Production environments in Brazil may vary 
considerably between regions as well as the average 
yield of herds, the feeding, and climatic variations such 
as rainfall, temperature and humidity. The phenomenon 
whereby genotypes respond differently to changes in their 
environment is known as genotype-environment interaction 
(GEI) or as differences in sensitivity of genotypes to 
environmental variation (Falconer and Mackay, 1996). An 
alternative study on this differential response is the analysis 
of reaction norms, which can describe the variation of 
genotypes as a function of an environmental gradient (Lynch 
and Walsh, 1998).

The use of reproductive technology such as artificial
insemination, embryo transfer, among others, allows 
breeders to have progenies in different production systems 
and geographical areas. The inclusion of GEI in statistical 
models should be considered during genetic evaluation 
of cattle in Brazil since the progenies are often raised in 
environments which are very different from those where 
the progenies of bulls were kept to generate their breeding 
values. The genotype-environment interaction needs to 
be evaluated in Zebu herds, because it can cause animal 
ranking changes or even scaling (Lynch and Walsh, 1998).

An alternative to the reaction-norms study is the use 
of random regression models (RRM), which allow the 
adjustment of one random trajectory for each animal and 
thereby allow each animal to have a different form from 
their performance trajectory, in genetic terms, in the 
various production environments (Mercadante et al., 2002; 
Schaeffer, 2004).

Studies with European breeds in Southern Brazil using 
Bayesian inference as a tool to characterize and quantify 
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GEI by RN were described by Corrêa et al. (2010), Cardoso 
et al. (2011) and Cardoso and Tempelman (2012). These 
authors demonstrated the importance of including this 
effect in genetic evaluation programs, since a breeding 
sire can have superior performance in a given stratum of 
the environmental gradient and much less than expected in 
another.

Northeast Brazil has a wide diversity of climates and 
production systems, where the farming of Zebu breeds 
predominates. Nevertheless, GEI studies with Zebu breeds 
are rare in this region (Ambrosini et al., 2012). Therefore, 
the objectives of this study were to verify the existence of 
genotype-environment interaction and to quantify its effect 
on weight adjusted to 550 days of age (W550) of Polled 
Nellore cattle in Northeast Brazil.

Material and Methods

The data used in this study is from field records collected
by the Brazilian Association of Zebu Breeders (ABCZ), 
pertaining to Polled Nellore animals born between 1975 
and 2007 in the Northeast region of Brazil. 

The contemporary groups (CG) were formed so that 
all animals shared a common production environment, 
including herd, year, diet, farm, gender, and birth period. 
The birth periods were grouped into four classes (period 
1: May, June and July; period 2: August, September and 
October; period 3: November, December and January; and 
period 4: February, March and April) so that each period 
was represented by the climatic conditions observed in the 
northeast region.

In order to prepare the dataset for RN analyses, we 
used routines created by Cardoso (2008) in SAS (Statistical 
Analysis System, version 9.2) language. Moreover, the 
AMC Program (Roso and Schenkel, 2006) was used to 
test the connectivity of CG based on the number of genetic 
ties to the main population group (minimum of 10). After 
the connectivity analysis, the main archipelago had 731 
connected CG and another 20 CG were disconnected.

The initial dataset consisted of 35,221 records, of 
which 21,955 were excluded due to lack of W550 records. 
Additionally, 123 records were deleted because they were 
disconnected, 248 that had W550 measurements outside the 
150-280 kg interval, 171 whose dams were aged less than 
1.9 or over 25 years, 566 pertaining to sires that had less than 
five calves, and 3,703 animals that were in contemporary
groups (CG) with less than five observations or their weight
was outside the range of ±3 standard deviations from their 
CG mean. The remaining 8,455 animals were used in the 
W550 analyses. 

The INTERGEN program (Cardoso, 2008) was used to 
adjust Bayesian hierarchical models, that is, with parameters 
defined in structured levels or stages, which contemplate the
diversity of common situations in animal performance data. 
In the case of RN models, the genetic value of the animal 
is obtained by a function of the average environmental 
level corresponding to the solution of the GC to which the 
record belongs, that is, for each environmental level there 
is a specific genetic value for each animal (Cardoso and
Tempelman, 2012). 

Initially, a standard animal model (AM) ignoring GEI 
was fit to estimate the genetic value of the animal and obtain
the estimates of average environment effects based on CG:

yij = x′1β + Xj + ai + eij,     (1)

in which: yij = record of animal i in environment j; β = vector 
of fixed effects (linear and quadratic for cow age); x′1 = 
incidence vector; Xj = random CG environmental effect; ai = 
additive genetic value of animal i; and eij = residual error.

Additionally, two models were implemented to describe 
hierarchical reaction norms (RNHM): the model proposed 
by Kolmodin et al. (2002), which uses the AM solutions as 
co-variables in the RNHM, is called two-step RM model 
(RNHM2S), and its equations are presented as follows:

yij = x′1β + X̂ j + ai + biX̂ j + eij,     (2)

in which:  = fixed regression coefficient; ai= additive 
genetic value for the RN intercept or level of animal i; 
bi = random regression coefficient or RN slope of animal
i in the environment represented by X̂ j ; X̂ j =  Xj predictor 
obtained in (1); and eij = residual error.

In addition, we used the assumption of Su et al. (2006), 
called here one-step hierarchical RN model (RNHM1S), 
which in spite of its similarity with the previous model (2),  
presents a different and simultaneous estimating process 
for the solutions of GC and RN intercepts and slopes. In this 
model, the GC effects are considered unknown covariates 
in the RN model, in which the estimates for environmental 
effects were used as a covariant to obtain the slope of the 
RN of the animals, that is, Xj and bi are jointly estimated as 
follows: 

yij = x′1β + Xj + ai + biXj + eij,        (3)

Two different assumptions were adopted for residual 
variance in the models:

 (a) Homoscedasticity for AM, RNHM2S (RNHM2SHm) 
and RNHM1S (RNHM1SHm), with ei ~ N(0, σ2

e ) and σ2
e = 

residual variance; and (b) heteroscedasticity for models 
RNHM2S (RNHM2SHe) and RNHM1S (RNHM1SHe), with 
ei ~ N(0, σ2

ej ) and  σ2
ej = σ2

ej
Xj, in which  = heterogeneity of 

variance parameter in the environmental level Xj, following 
the structural model proposed by Cardoso et al. (2005).
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The additive genetic variance in environment X, σ2
A|X, 

was obtained by:
σ2

A|X = var (ai + biX) = σ2
a + σ2

bX
2 + 2Xσab ,

in which: σ2
a = estimate of the variance component for the 

intercept of the reaction norm; σ2
b = estimate of the variance 

component for the slope of the reaction norm; and σ2
a,b = 

estimate of the genetic covariance component between the 
intercept and slope.

The heritability was estimated by the ratio of genetic 
variance to phenotypical variance (genetic + environmental) 
as:

, 

in which: σ2
e|X,= residual variance in environment X, 

obtained by σ2
e̂

X in the heteroscedastic models, and by σ2
e 

in the homoscedastic model.
A Bayesian approach (Gianola and Fernando, 1986) 

was used to obtain estimates of the parameters, via the 
Markov Chain Monte Carlo (MCMC) methods (Blasco, 
2001), and by adopting the following procedure: 1) running 
a pilot analysis with 55,000 cycles, 5,500 burn-in and 5 for 
thinning; 2) using the variance-component samples saved in 
1) and the R package (R Development Core Team, 2008) - 
Bayesian Output Analysis - BOA (Smith, 2007), the Raftery 
and Lewis (1992) test was applied to determine chain size 
and thinning; in addition, the burn-in was evaluated using 
the criterion of Heidelberger and Welch (1983). 

The analyses (Figure 1) were rounds with chains that 
varied from 55,000 to 220,000 cycles. Means, standard 
deviations and percentiles (0.025 and 0.975) a posteriori of 
the parameters were obtained from their marginal posterior 
densities through procedure KDE of SAS (Statistical 
Analysis System, version 9.2).

The diagnosis by Geweke (1992) was used to verify the 
convergence of the chains to the different models. This is 
based on a Z-test for equality of means of the conditional 
data distribution logarithm, denoted by li

(j) = log p (y | θ(j), Mi), 

of the first samples (initial 10%), and of the last part of the
Markov chain (last 50%), similar to what was proposed by 
Brooks and Roberts (1998), using the following statistic:

,

in which: ; ; nA= 22,000; nB= 

110,000; n*= 110,001; and with ŜA
i (0) and ŜB

i (0); and the 
respective estimates of spectral density in zero frequency 
were obtained through SPECTRA procedure of SAS 
(Statistical Analysis System, version 9.2), for the first nA  
and the last nB cycles of the MCMC chain of length m. 
Extreme absolute values of the Zi score for a two-tailed test 
indicate rejection of the convergence test.

The following criteria were used to verify the 
best fit model: Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002); Deviance based on Conditional 
Predictive Ordinate (CPO) as described by Gelfand (1996) 
and Deviance based on Bayes Factors (BF), described as 
the deviance based on the Monte Carlo estimator proposed 
by Newton and Raftery (1994). These deviations represent 
the degree of separation of the evaluated model in relation 
to a hypothetically perfectly adjusted model, and lower 
values indicate better adjustment.

Results and Discussion

The mean and standard deviation observed for W550 
was 316±68 kg. Convergence was obtained through 
Geweke’s test at 5% (P>0.05) for all variance component 
parameters of all models within an interval from 55,000 to 
220,000 cycles. Cardoso et al. (2011) used Geweke’s test 
and found medium convergence for the standard animal 
model (Z = 1.08; P = 0.2788); for RNHM2SHm (Z = 2.15; 
P = 0.0310); for RNHM1SHm (Z = –1.68; P = 0.0913); for 
RNHM2SHe (Z = –2.25; P = 0.0238); and for RNHM1SHe 
(Z = –0.92; P = 0.3545).

The proposed model choice criteria agreed to point 
out that RN models provided better adjustment to the data 
when compared with AM (Table 1). However, there was 
some divergence among the criteria to indicate the best 
model within the RN specifications. Overall, it seems that
the RNHM1SHm offered superior adjustment, being the 
best model for BF and obtaining second classification for
the other two criteria (DIC and CPO). Moreover, among 
RNHM the assumption of residual variance homogeneity 
tends to provide a better fit than heterogeneity.

For model RNHM1SHm, the environmental gradient 
solutions varied from −135 to 153 kg, characterizing 

Figure 1 - Illustrative flowchart showing the necessary steps for
the analyses in the INTERGEN program.
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the lowest and highest environmental levels. The 
environmentally constant estimate of heritability under the 
AM was 0.22±0.03 (Figure 2). When comparing results via 
the animal model in the present study with those obtained 
by Souza, et al. (2011) for W550 of Polled Nellore in Brazil, 
lower values are observed for inheritability (0.09±0.02).

This value is the same as the RNHM1SHm estimate 
in lowest environmental level, and it is higher than that 
found by Cardoso et al. (2004), Corrêa et al. (2009), and 
Cardoso et al. (2011) for standardized post-weaning gain 
for 345 days (0.19±0.02, 0.13±0.017, and 0.10±0.001, 
respectively). Differently from the present work, which 
was carried out with Brazilian Northeast Zebu data, these 
studies used European animals bred in the South of Brazil.

Increasing differences among the genetic values of 
animals were observed in better-management environments 
characterized with a GEI scale effect on W550 (Figure 2).

Complex GEI was also observed with changes in the 
animal genetic values classification in the low, medium
and high environmental levels. Animals with higher 
overall genetic values responded better to environmental 
improvement, being the genotypes with highest plasticity 
and response. 

The slopes of the animals reaction norms varied from 
0.88 to 0.74 degrees, which demonstrates the occurrence 
of sires with plastic genotypes; however, there was a 
higher incidence of robust and intermediate genotypes 
corresponding to 81.04% of the animals (6,852 animals) 
which had slopes between −0.20 and 0.20 degrees. Plastic 
genotypes (−0.88 to −0.21 degrees and 0.21 to 0.74 degrees) 
were observed in 18.96% of the animals (1,603 animals). It 
was also observed that the genetic differences among animals 
increased in better environmental conditions, probably due 
to the fact that the animals had an environment that allowed 
the expression of their genetic potential (Figure 3). 

Spearman’s correlations among the genetic values of 
sires obtained by the different models according to the 
environmental level varied from 0 to 0.93, when only 
the top 5% of sires for higher genetic values were chosen 
(above the diagonal) and from 0 to 0.98, when the top 10% 
sires (below the diagonal) were used, respectively (Table 2). 
Most correlations were from low to high, confirming the
presence of GEI. As expected, an increased difference was 
observed when 5% of the best sires were considered in 
relation to 10% of the best sires (Table 2).

The greatest ranking differences were obtained between 
the AM and the low level of RNHM (Spearman correlation 
0%) for 5% and 10% of breeding sires with higher genetic 
value. No correlations were observed between the low 
level of RNHM and the medium and high levels of RNHM, 
which demonstrates that the selection of breeding sires 
for a low-level production environment will not result in 
genetic gain in a medium- and high-level environment. 
When comparing the correlations between the AM for the 
5% and 10% of breeding sires, and the medium and high 
levels of RNHM, the correlations were low and medium 
(0.28% and 0.30%; 0.71% and 0.72%, respectively). This 
indicates that by applying higher selection intensity (5% of 
breeding sires) the changes in the classification of the AM

Table 1 - Deviance criterion based on Bayes factors (BF), deviance 
information criterion (DIC) and deviance based on 
condition predictive ordinate (CPO) in the animal 
standard model (AM) and of the hierarchical reaction 
norm models: homoscedastic two-step (RNHM2SHm), 
one-step (RNHM1SHm) and heteroscedastic two-step 
(RNHM1SHe) and one step (RNHM1SHe)

Model DIC CPO BF

AM 85664.73(5th) 86026.83(5th) 84401.13(5th)
RNHM2SHm 84674.64(3rd) 85600.42(1st) 82631.65(3rd)
RNHM1SHm 83243.20(2nd) 85667.42(2nd)) 82175.05(1st)
RNHM2SHe 85109.88(4th) 85696.22(3rd)  83573.59(4th)
RNHM1SHe 83084.69(1st) 85773.87(4th) 82454.08(2nd)
1st, 2nd, 3rd, 4th and 5th indicate best adjustment rank.

AM - animal model; RNHM1SHm - one-step hierarchical reaction norms model.

Figure 2 - Heritability of weight adjusted to 550 days of age in the 
models proposed by the environmental gradient.

Figure 3 - Reaction norm along the environmental gradient for 
weight adjusted to 550 days of age obtained for the 10 
sires with the highest number of progeny.
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compared with RNHM will be greater and therefore some 
bulls will not lead to gains in certain environments. 

Comparing the medium level with the high level of 
RNHM, were no changes in classification (0.93% and 0.98%
to 5% and 10% of breeding sires, respectively). These results 
confirm that the selection in the medium environment leads
to gains in environments of better management and vice 
versa, showing low genotype-environment interaction (GEI) 
in this situation. 

The fact that classification changes are greater when
5% of the best sires are considered in relation to 10% is a 
matter of concern to the Brazilian livestock sector, because a 
very small number of sires is often selected and intensively 
used. This has been evidenced in various genetic structure 
population studies involving a number of breeds in Brazil 
(Marcondes et al., 2007; Oliveira et al., 2011) and indicates 
the need to consider GEI in genetic evaluations, to select 
animals to be used in herds under different production 
systems.

Corrêa et al (2010) obtained estimates of Spearman’s 
correlations higher than those in the present study, with 
values of 0.12 to 0.98 for 5% of the best sires and higher for 
10% of the sires, with values of 0.75 to 0.99 for post-weaning 
gain standardized at 365 days. According to these authors, 
moderate-to-high change was observed in the classification

of Devon breed sires. Kolmodin et al. (2002) observed 
change in the classification of dairy sires, demonstrating
that for low-performance records, the selection would have 
benefits if carried out in a specific environment.

Genetic correlations between genetic values and the 
environmental gradient (Figure 4) displayed high amplitude 
for RNHM1SHm (−0.85 to 1.00). For the two-step model - the 
second best model - the correlations also displayed greater 
variation (−0.79 to 1.00), which denotes GEI. The results 
obtained herein indicate that the genetic material necessary 
for production in various environmental levels must be 
different, even if partially, and differ only in magnitude 
from those presented by Corrêa et al. (2009), who observed 
the negative genetic correlations among environmental 
gradient levels for standardized post-weaning gain at 365 
days. Mattar et al. (2011) observed higher values than those 
in the present study (0.24 to 1.00). In both studies it was 
characterized that the animals were more sensitive to the 
different environmental gradient levels. The application of 
reaction norm models in GEI studies of Polled Nellore cattle 
from northeastern Brazil is new and allowed identifying 
GEI in this population. Scale effect was observed, with 
different responses of genotypes to environmental gradient 
and change in the classification of animals. Differences
were greater in superior production conditions, that is, as 

Table 2 - Spearman’s correlations among the classifications of Polled Nellore sires in Northeast Brazil with higher genetic values (5% above
the diagonal and 10% below the diagonal), obtained by the animal model and by the one-step hierarchical reaction norms model 
(RNHM1SHm) for different environmental levels

Models Animal model RNHM1SHm (Low) RNHM1SHm (Medium) RNHM1SHm (High)

Animal model   0 (0.0) 0.28 (0.3440) 0.30 (0.3156)
RNHM1SHm (Low) 0 (0.0)   0 (0.0) 0 (0.0)
RNHM1SHm (Medium) 0.71 (0.0001) 0 (0.0)   0.93 (0.0001)
RNHM1SHm (High) 0.72 (0.0001) 0 (0.0) 0.98 (0.0001)  

Figure 4 - Response surface graph of correlations between genetic values and the environmental gradient.
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the environment became more favorable, the variance of 
genetic values increased, since the individuals have full 
opportunity to express their genetic potential.

There is an increase in the number of studies that indicate 
the need to have specific genetic value predictions for each
environment (Bryant et al., 2006; Hammami et al., 2008; 
Corrêa et al., 2010; Pegolo et al., 2011; Cardoso et al., 2012). 
Thus, it is possible that GEI studies change the modeling 
traditionally used in the usual genetic evaluations. Higher 
genetic gains can be provided, since the genes would act 
in a more effective way, regulating physiological systems 
for lower management expenses and higher production in 
specific environments. This would be especially important
in countries and/or regions with extreme climate diversity, 
as is the case of Brazil and its Northeast Region.

Conclusions

The existence of genetic-environment interaction 
in the population of Polled Nellore cattle in Northeast 
Brazil is confirmed. Scale effect in genetic-environment
interaction and inversion in the classification of environment
gradient levels is observed, confirmed by the magnitude of
Spearman’s correlations among sires with higher genetic 
values, evidencing a change in sire classification from
moderate to high magnitude.
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