
Brazilian Journal of Animal Science
e-ISSN 1806-9290
www.rbz.org.br

R. Bras. Zootec., 49:e20190039, 2020
https://doi.org/10.37496/rbz4920190039

Aquaculture
Full-length research article

Utilization of rice byproducts as 
carbon sources in high-density 
culture of the Pacific white shrimp, 
Litopenaeus vannamei

ABSTRACT - This study was conducted to evaluate the effect of rice byproducts on  
water quality, microbial community, and growth performance of L. vannamei juveniles. 
Shrimp of 0.98±0.10 g body weight (BW) were reared in 49 tanks of 1.5 m3 under 
127 animals m−2 for 77 days. Rice bran, rice grits, and rice hulls were mixed into  
five different fertilizers varying their fiber content (90, 110, 150, 200, and 250 g kg−1) 
and compared against sugarcane molasses (MO) and unfertilized tanks (UNF). Rice 
byproducts and MO were applied in water three times a week at a fixed rate of 4.5 g m−3. 
Water salinity, pH, temperature, and dissolved oxygen reached 43±2 g L−1, 8.03±0.32, 
30.2±0.90 °C, and 5.03±0.53 mg L−1, respectively. Settleable solids (SS) were higher 
in tanks fertilized with rice byproducts (from 2.5±1.0 to 3.1±1.1 mL L−1) and MO 
(3.4±1.0 mL L−1). Total ammonia nitrogen (0.19±0.09 mg L−1), nitrite (5.97±2.04 mg L−1), 
and nitrate (1.29±0.48 mg L−1) were kept low without any significant differences among 
treatments. The concentration of heterotrophic bacteria and fungi was significantly 
higher in rice byproducts compared with MO. Water fertilization had no effect on final 
shrimp survival (85.5±9.5%), weekly growth (0.72±0.11 g), and feed conversion ratio 
(1.59±0.10). Tanks treated with rice byproducts, except with 90 g kg−1 fiber, resulted 
in a higher final shrimp BW (from 9.04±1.56 to 9.52±1.89 g) compared with MO 
(8.75±2.14 g) and UNF (7.74±1.48 g). Gained yield and feed intake were significantly 
higher for tanks treated with rice byproducts than with UNF. A mix of rice byproducts 
can be equally or more effective as carbon sources to shrimp culture than MO.

Keywords: microbial community, organic fertilization, shrimp growth performance

Introduction

Marine shrimp aquaculture requires new technologies to eliminate and control water exchange, 
discharge of effluents, disease outbreaks, and overuse of feeds (Lara et al., 2012). In recent years, 
high-density shrimp farming under limited water exchange has been possible through manipulation of 
microbial communities in water (Azim and Little, 2008; Samocha et al., 2010; Krummenauer et al., 2011; 
Audelo-Naranjo et al., 2012). The principle of minimum water exchange crops is based on the addition 
of carbon sources to balance the C:N ratio in water. This promotes the growth of microorganisms that 
consume organic matter, improve nutrient utilization, and convert dissolved nitrogen into less toxic 
compounds (Avnimelech, 2007; Emerenciano et al., 2013). 

Several sources of carbon have been used for this purpose, including sugarcane molasses, glycerol, 
vegetable sugar, soybean meal, wheat flour, wheat bran, maize bran, rice bran, and tapioca flour 
(Hari et al., 2004; Wang et al., 2016; Ekasari et al., 2014; Romano et al., 2018). They are chosen 
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according to cost, local availability, biodegradability, and assimilation efficiency by microorganisms 
(Emerenciano et al., 2013).

World rice production in 2018 was estimated at 773 million MT, of which 513 million MT were 
processed (FAO, 2018). Rice is commonly produced by removing the hull and bran layers of the rough 
rice kernel in hulling and milling processes, respectively (Saman et al., 2019). Rice bran, rice grits, and 
rice hulls are the main rice byproducts (Lorenzett et al., 2012). They can contain 40% carbohydrates 
and moderate levels of crude protein (12%) and lipids (21%) (Lima et al., 2000; Vilani et al., 2016). 

Rice hulls account for approximately 20% by weight of the seeds, generating millions of MT of waste 
every year (Stracke et al., 2018). These residues, if not disposed properly, are sources of environmental 
pollution as they are difficult to degrade (Saidelles et al., 2012). Studies have shown that rice residues 
can be used to improve shrimp and fish culture. Serra et al. (2015) found that L. vannamei performs 
better when water is fertilized with rice bran compared with dextrose. Similarly, Vilani et al. (2016) 
reported that in tanks fertilized with rice bran, juvenile L. vannamei achieves an increased yield and 
lower feed conversion ratio (FCR) compared with tanks treated with sugarcane molasses. Romano et al. 
(2018) used rice bran for the rearing of African catfish juveniles (Clarias gariepinus) and observed a 
significant increase in fish growth and feed efficiency.

This study evaluated the effect of using different combinations of rice byproducts (rice bran, rice grits, 
and rice hulls) as carbon sources on water quality, microbial community, and growth performance of 
juveniles of the whiteleg shrimp (Litopenaeus vannamei) reared under limited water exchange. 

Material and Methods

Rice byproducts (rice bran, rice grits, and rice hulls) were obtained from a rice processing industry 
(Sucesso Agroindústria Ltda., Eusébio, Brazil), cultivars IRGA 424 and PUITÁ INTA-CL. Their proximate 
composition was determined according to the Brazilian compendium of animal feeding (Table 1, 
SINDIRAÇÕES, 2013). 

Five fertilizer mixtures with different concentrations of rice bran, rice grits, and rice hulls were designed 
(Table 2). Fertilizers were formulated to present a nearly similar value of total carbon with a gradual 
increase in their crude fiber content. This maximized the use of rice hulls, which have the lowest 
economic value among these byproducts. Fertilizers were identified according to their crude fiber 
concentration (F90, F110, F150, F200, and F250). The F90 mixture was composed of 50% rice grits, 
40% rice bran, and 10% rice hulls (as is basis). The progressive increase in crude fiber was achieved by 
consecutive replacements of rice bran for rice hulls at 25% each. 

Table 1 - Chemical composition (g kg−1, dry matter) of rice byproducts used in the preparation of fertilizers
Composition (g kg−1) Rice bran Rice grits Rice hulls

Dry matter 901.2 871.3 897.5

Crude protein 150.8 92.4 23.1

Lipids 147.9 13.7 11.3

Crude fiber 85.1 6.7 568.1

Nitrogen 24.1 14.8 3.7

Calcium 0.7 0.2 1.0

Phosphorous 15.0 2.6 0.1

Potassium 11.3 2.0 2.2

Ash 87.7 12.6 88.0

Insoluble residues 26.1 2.8 81.2

Total carbohydrates 528.5 874.7 309.5

Total carbon 418 405 370
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To prepare the fertilizers, byproducts were first ground through a 500-μm mesh in a hammer mill 
(MCS 280, Moinhos Vieira, Tatuí, Brazil) and then mixed for 10 min with a planetary mixer (AR 25, G. 
Paniz, Caxias do Sul, Brazil). More than 85% of the total composition of the fertilizers was less than  
300 μm, therefore, physically characterized as powder (Brasil, 2016). The processed fertilizers showed 
a concentration of insoluble residues directly proportional to their crude fiber content (Table 2).

Dried sugarcane molasses (Indumel - Industria e Comércio de Melaço Ltda., Sertãozinho, Brazil) were 
used as a positive control (MO) as it has been shown to act as an efficient carbon source for shrimp 
culture (Samocha et al., 2007; Krummenauer et al., 2011; Schveitzer et al., 2013; Arantes et al., 2017; 
Espírito Santo et al., 2017). Seven tanks without any direct application of carbon sources acted as a 
negative control (UNF). 

The study was carried out in 49 independent outdoor tanks of 1.5 m3 (1.61 m2 of bottom area, 0.83 m 
height, with 1.43 and 1.75 m of bottom and surface diameter, respectively). Each tank was equipped 
with an individual water inlet and outlet. Supplemental aeration was carried out with one 7.5-hp 
blower connected to a flexible 0.50-m micro-perforated hose kept individually in each tank bottom. 

The system operated in a static condition, with limited water exchange. Seawater was supplied 
biweekly to compensate for evaporative losses and increase in water salinity. Levels of settleable solids 
(SS) and total suspended solids (TSS) were kept at 10-14 mL L−1 and between 250 and 350 mg L−1 
(Samocha et al., 2017), respectively. Water exchange was only carried out twice during culture, at 5% of 

Table 2 - Chemical composition (g kg−1, dry matter) and texture of rice byproduct fertilizers and sugarcane 
molasses (MO)

Item
Fertilizer

F90 F110 F150 F200 F250 MO

Composition1 (g kg−1)

Dry matter 888.5 896.2 896.7 897.0 898.1 930.3

Crude protein 105.1 115.7 96.2 80.8 70.0 36.3

Lipids 64.0 85.5 49.2 32.3 17.3 14.0

Crude fiber 92.2 110.2 147.0 203.3 248.9 1.3

Nitrogen 16.9 18.5 15.4 12.9 11.2 5.8

Calcium 1.0 1.3 1.3 0.6 0.6 62.1

Phosphorous 0.7 0.9 0.6 0.4 0.3 0.5

Potassium 5.5 7.1 5.1 4.2 3.6 29.2

Ash 50.8 62.7 47.8 46.9 50.8 210.9

Insoluble residues 17.6 23.8 25.1 26.8 36.5 9.7

Total carbohydrates 687.9 625.9 659.8 636.6 613.1 737.5

Total carbon 405 408 401 396 389 322

C:N ratio 24 22 26 31 35 55

Mesh (µm) % Retained2

1.000 0.02 0.09 0.01 0.01 0.08 -

850 0.05 0.13 0.05 0.05 0.07 -

600 0.84 1.74 1.44 1.90 2.49 -

425 3.28 6.90 7.01 7.64 8.38 -

300 38.62 49.29 31.95 18.42 18.38 -

250 33.90 29.45 37.50 35.29 21.77 -

< 250 23.30 12.41 22.04 36.69 48.77 -
1	 Analysis according to the standards of the Brazilian compendium of animal feeding (SINDIRAÇÕES, 2013).
2	 Determined on a sieve shaker (MA750, Marconi Equipamentos para Laboratórios Ltda, Piracicaba, São Paulo, Brazil). 
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total water volume, when SS and TSS ranges were exceeded. Thus, nitrogen accumulation was reduced 
through water exchange in both fertilized and unfertilized tanks.

To prepare culture water, rearing tanks were initially filled with filtered seawater (salinity 32 g L−1) 
and inoculated with 100 L of water obtained from a shrimp nursery tank. For initial water fertilization, 
10 g m−3 of ground shrimp feed (Camanutri 35, Neovia Nutrição e Saúde Animal Ltda., São Lourenço da 
Mata, Brazil) and 4.5 g m−3 of each fertilizer were applied daily to each tank at a carbon to nitrogen (C:N) 
ratio near 10:1 (Avnimelech, 1999). This application occurred for five consecutive days. To sustain the 
medium during shrimp culture, rice byproducts and molasses were applied in water three times a week 
during the complete rearing period. Fertilizers were applied at the same fixed rate (4.5 g m−3) provided 
that the SS did not exceed the limit of 14 mL L−1 as established by Samocha et al. (2017). 

Shrimp of 0.98±0.10 g (mean ± standard deviation; n = 9,996) were stocked under 127 animals m−2 
(204 shrimp tank−1). They were fed daily, 10 times a day with an automatic feeder (described in 
Nunes et al., 2019) that operated between 07.00 and 17.00 h. Animals were fed a grower commercial 
shrimp feed containing a minimum of 38% crude protein (Density 38, Neovia Saúde e Nutrição Animal 
Ltda., São Lourenço da Mata, Brazil). Meals were adjusted daily following an estimated weight gain of 
100 mg day shrimp−1 and an estimated 0.5% weekly drop in shrimp survival. Biweekly (days 15, 30, 
45, and 60 of rearing), meals were adjusted by individually weighing ten animals per tank. Feeding 
rates were calculated based on the maximum amount of feed (MM, g) that can be eaten daily by one 
individual of a specific body weight (BW), in accordance with the formula MM = 0.0931BW0.6200 (Nunes 
and Parsons 2000; Nunes et al., 2006; Façanha et al., 2018). To avoid excess feeding and a high FCR, 
feeding rates were reduced by 30% across all diets (Nunes et al., 2006). All rearing procedures were 
performed in compliance with relevant laws and institutional guidelines, including those related to 
animal welfare.

Water salinity, pH, temperature, and dissolved oxygen (DO) were measured daily in each tank, reaching 
a mean (± standard deviation) of 43±2 g L−1 (n = 3,067), 8.03±0.32 (n = 3,066), 30.2±0.90 °C (n = 3,066), 
and 5.03±0.53 mg L−1 (n = 3,036), respectively. These parameters fell within the limits tolerated by L. 
vannamei juveniles (Wyk, 1999), including water salinity (Castro et al., 2018). No statistical differences 
were observed in these parameters between treatments (P>0.05).

Total ammonia nitrogen (TAN), nitrite (NO2
−), and nitrate (NO3

−) concentrations were determined 
weekly in two pools of water sampled from each treatment (n = 140) using a mass spectrophotometer 
(DR 2800 Spectrophotometer, Hach Company, Loveland, USA). Alkalinity and TSS determinations were 
performed biweekly (APHA, 2012). Settleable solids were measured every two days with Imhoff cones 
(APHA, 2012).

Shrimp were harvested after 77 days of culture. All animals were counted and weighed individually 
to determine final survival (%), body weight (g), weekly growth (g), and gained yield (g m−2). Feed 
conversion ratio and apparent feed intake (AFI, g of feed delivered divided by the number of stocked 
shrimp) were calculated in an as is basis.

Microbiological analyzes were performed on fertilizers. These analyses followed the standard plate 
count (SPC) for determination of the concentration of heterotrophic bacteria (HB), Bacillus spp., fungi, 
and Vibrio spp. present in each fertilizer. For these analyzes, 10 g of each fertilizer were diluted in 90 mL 
of 10 g L−1 saline solution with serial dilutions of 10−2 to 10−5. For the quantification of HB, an aliquot of 
0.01 mL was used by the plating method in depth using Plate Count Agar medium (7157A, Acumedia, 
Neogen, Indaiatuba, Brazil). Isolation of Bacillus spp was performed by carrying out a water bath at 
70 °C for 1 h – 30 min longer than recommended by the method (Pandey et al., 2013). A heat shock 
until sporulation, for the quantification an aliquot of 0.01 mL, was used by the plating method in depth 
using Plate Count Agar medium (7157A, Acumedia, Neogen, Indaiatuba, Brazil). Plates were read after 
48 h of incubation at 35 °C.

To quantify the fungi, the spread plate technique was used, in which an aliquot of 100 μL of the 
respective dilutions (10−2 to 10−5) were added in Petri dishes containing the solidified medium of Potato 
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Dextrose Agar (Himedia, Mumbai, India), plus 10 μL mL−1 ampicillin and 1.8% tartaric acid solution. 
Subsequently, the plates were incubated at 28 °C for up to seven days. For the analysis of Vibrio spp., 
the medium used was Thiosulfate Citrate Bile Saccharose Agar (7210, Acumedia, Neogen, Indaiatuba, 
Brazil) with the spread plate technique and incubation at 35 °C for 18 h.

After the incubation period of all analyzes, plaques between 25 and 250 colonies were counted. 
Plates outside this interval were estimated. For the calculation of SPC, the following equation was 
applied: SPC = cfu (colony forming unit) × the inverse of the dilution factor × correction factor 
(Downes and Ito, 2001).

The effect of organic fertilizers on water quality (TAN, NO2
−, NO3

−, SS, TSS, and alkalinity) and shrimp 
growth performance parameters (final survival, final body weight, growth, gained yield, FCR, and AFI) 
were analyzed using One-Way ANOVA. The following mathematical model was adopted:

Yij = μ + τi + ϵij,                                                                             (1)

in which Yij is the j-th observation of fertilizer i; μ is the general mean response; τi is the non-random 
effect of fertilizers, in which ∑k

i=1 τi = 0; and ϵij is the random fertilizer error. When significant differences 
were detected, they were compared two-by-two with Tukey’s HSD. The significance level of 5% was 
applied in all statistical analyses. Statistical package SPSS 15.0 for Windows was used (SPSS Inc., 
Chicago, Illinois, United States).

Results

Shrimp reached mean (± SD) final survival, weekly growth, and FCR of 85.5±9.5%, 0.72±0.11 g, and 
1.59±0.10, respectively (Table 3). No significant responses on these variables could be associated with 
the organic carbon sources (P>0.05). However, gained yield (g m−2) was significantly higher in treatments 
fertilized with rice byproducts (F110, F150, F200, and F250) compared with the unfertilized treatment 
(UNF) (P<0.05). Likewise, a higher AFI was observed in tanks treated with fertilizers produced with 
rice byproducts compared with the UNF. There was no difference in AFI between MO and UNF (P>0.05).

The SS concentration varied during culture in all treatments (Figure 1). There was a progressive 
increase in SS up to the 27th day of culture when a water exchange was performed. Thereafter, the 
upward trend was maintained, controlled again on the 55th day by a new water exchange. There was 
no significant difference in TSS (485±74 mg L−1, n = 49) and alkalinity (172±27 mg CaCO3 L−1, n = 42) 
among the experimental treatments. 

The concentration of TAN (0.19±0.09 mg L−1), nitrite (5.97±2.04 mg L−1), and nitrate (1.29±0.48 mg L−1)  
was not different among treatments (P>0.05). However, there was a significant difference in the 
concentration of nitrogenous compounds (P<0.05) among the initial (1st-28th days), intermediate 
(29th-46th days), and final (47th-64th days) culture phases. In the final phase, TAN concentration 
was higher (0.27±0.09 mg L−1) compared with the initial (0.17±0.06 mg L−1) and intermediate 

Table 3 - Growth performance of L. vannamei (values refer to the mean ± standard deviation of seven culture tanks)

Fertilizer Final survival 
(%)

Growth 
(g week−1)

Final body weight 
(g)

Gained yield 
(g m−2) FCR AFI

(g shrimp−1)

F90 88.1±5.5a 0.71±0.06a 8.78±1.52d 810±69ab 1.55±0.10a 10.5±0.3a

F110 87.3±8.2a 0.75±0.13a 9.17±1.95bc 842±62a 1.55±0.06a 10.8±0.6a

F150 82.1±13.7a 0.77±0.13a 9.32±2.04ab 826±38a 1.56±0.03a 10.7±0.4a

F200 83.2±9.7a 0.79±0.11a 9.52±1.89a 821±51a 1.56±0.04a 10.7±0.6a

F250 88.1±3.9a 0.73±0.06a 9.04±1.56c 827±56a 1.55±0.07a 10.6±0.3a

MO 81.3±14.2a 0.73±0.16a 8.75±2.14d 736±76ab 1.67±0.15a 10.2±0.6ab

UNF 88.7±8.3a 0.62±0.06a 7.74±1.48e 706±63b 1.63±0.13a 9.6±0.4b

FCR - feed conversion ratio; AFI - apparent feed intake; MO - dried sugarcane molasses (positive control); UNF - unfertilized tanks (negative control). 
Different letters in the same column indicate statistical difference (P<0.05) according to Tukey’s HSD test.
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(0.06±0.14 mg L−1) phases. Comparatively, nitrite and nitrate showed statistically lower concentrations 
before shrimp harvest (5.36±2.34 and 1.24±0.37 mg L−1, respectively) compared with initial (6.91±1.70 and 
1.62±0.47 mg L−1, respectively) and intermediate (5.89±1.80 and 1.11±0.49 mg L−1, respectively) phases.

Fertilizers F90, F110, F150, and F250 showed a significantly higher concentration of HB compared 
with the MO and UNF treatments (Table 4). Bacillus spp. were more concentrated in the MO 
(9.30±1.10 × 104 cfu mL−1) than in other treatments (P<0.05). The concentration of fungi was higher 
under rice byproduct treatments with a higher fiber level (F200 and F250). The only fertilizer with 
Vibrio spp. was F110 (0.004 ± <0.001 × 104 cfu mL−1).

Discussion

Results demonstrated that a mix of rice byproducts can be equally or more effective as carbon sources 
to shrimp culture than sugarcane molasses. Shrimp final BW and gained yield, apparent feed intake, 
and water quality parameters were similar or higher under treatments subjected to fertilization with 

MO - dried sugarcane molasses (positive control); UNF - unfertilized tanks (negative control). 
Vertical lines indicate water exchange.
Different letters in the legend represent statistical difference in SS (P<0.05) between fertilizers according to the Tukey’s HSD test.

Figure 1 - Variation of settleable solids concentration in cultured water treated with different fertilizers over 77 days.
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Table 4 - Concentration (104 cfu mL−1) of heterotrophic bacteria (HB), Bacillus spp., fungi, and Vibrio spp. in  
carbon sources

Fertilizer
Standard plate count (104 cfu mL−1)

HB Bacillus spp. Fungi Vibrio spp.

F90 245.0±7.1a 5.20±0.70c 0.96±0.33ab <0.001b

F110 161.5±61.5ab 7.40±0.71b 0.79±0.13ab 0.004±<0.001a

F150 227.0±28.3a 0.83±0.01d 0.52±0.04bc <0.0001b

F200 98.0±32.5b 0.84±0.02d 1.27±0.04a <0.0001b

F250 165.0±22.6ab 1.60±0.26d 1.10±<0.01a <0.0001b

MO 0.01±<0.01c 9.30±1.14a <0.01c <0.0001b

UNF 1.65±0.2c 0.34±0.06d <0.001±<0.01c <0.0001b

MO - dried sugarcane molasses (positive control); UNF - unfertilized tanks (negative control).
Different letters in the same column indicate statistical difference (P<0.05) according to Tukey’s HSD test.
Each value represents the reading (mean ± standard deviation) of two samples at five dilutions. 
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rice byproducts compared with molasses. It is likely that rice byproducts were also used as a food 
source by shrimp, either directly or indirectly. Rice byproducts contain higher levels of crude protein 
(70.0 to 115.7 g kg−1) and lipids (17.3 to 85.5 g kg−1) than molasses (36.3 and 14 g kg−1, respectively). 
Serra et al. (2015) working with L. vannamei post-larvae and juveniles reported a better growth 
performance in tanks fertilized with rice bran compared with molasses, because shrimp consumed 
the former directly. 

One of the possible deleterious effects associated with the use of rice byproducts is the presence of a 
relatively high crude fiber content (Romano et al., 2018). Fiber is considered to be difficult to metabolize 
by microorganisms and shrimp, and accumulation in the culture environment may take place. However, 
it was possible to demonstrate that the application of carbon sources using high concentrations of 
rice hulls, which are the most discarded rice byproduct, resulted in a higher final shrimp BW and 
an increased gained yield compared with UNF. This suggests that rice hulls may assist in microbial 
colonization, resulting in an improved shrimp performance. Therefore, crude fiber concentrations of up 
to 200 g kg−1 with three weekly application rates of 4.5 g m−3 did not generate negative effects on water 
quality and shrimp performance. 

These results corroborate the study by Ekasari et al. (2014). The authors compared the use of 
rice bran, tapioca flour, tapioca byproduct, and sugarcane molasses as fertilizers in the culture of 
L. vannamei juveniles. The crude fiber levels in rice bran and tapioca byproduct reached 133 and 
79 g kg−1, respectively. No negative effects were associated with these levels of fiber. In fact, authors 
reported a better shrimp survival and protein assimilation with rice bran and tapioca byproduct than 
with molasses.

The minimum water exchange and the high shrimp density increased the amount of organic matter 
in culture water, which favors the development of Vibrio spp. (Ferreira et al., 2011). Although Vibrio 
spp. is part of the natural microbiota of shrimp, some 70 strains of V. harveyi and V. parahaemolyticus 
have been known to cause serious shrimp outbreaks (Tran et al., 2013). However, the concentration 
of Vibrio spp. in fertilizers was below levels reported during vibriose outbreaks, i.e., >1 × 104 cfu mL−1 
(Soto-Rodriguez et al., 2015). It has been demonstrated that the bacterial community established in 
super-intensive culture systems with fertilizers can inhibit the proliferation of pathogens by competitive 
exclusion (Crab et al., 2010). 

It was observed that fertilizers made from rice byproducts showed a higher concentration of HB, 
Bacillus spp., and fungi compared with the UNF. This may have benefited shrimp performance 
through their direct ingestion. These microorganisms utilize a diverse range of carbon sources from 
agriculture for their growth (Thomsen, 2005). They are able to produce endogenous enzymes in the 
shrimp hepatopancreas (Anand et al., 2014; Panigrahi et al., 2019), likely resulting in a greater nutrient 
availability and improved shrimp performance. 

Conclusions

A mix of rice byproducts can effectively act as carbon sources in shrimp farming, promoting the 
development of bioflocs and improving shrimp performance. Crude fiber in rice byproducts as high 
as 200 g kg−1 has no detrimental effect to shrimp survival and growth and water quality when applied 
three times a week at 4.5 g m−3. Thus, it is possible to grow L. vannamei juveniles in intensive culture 
under minimum water using a mix of rice byproducts to maintain water quality standards and increase 
shrimp growth performance.
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Gestão Industrial 8:219-232. https://doi.org/10.3895/S1808-04482012000100011

Nunes, A. J. P. and Parsons, G. J. 2000. Size-related feeding and gastric evacuation measurements for the Southern brown 
shrimp Penaeus subtilis. Aquaculture 187:133-151. https://doi.org/10.1016/S0044-8486(99)00386-5

Nunes, A. J. P.; Sá, M. V. C.; Carvalho, E. A. and Sabry-Neto, H. 2006. Growth performance of the white shrimp  
Litopenaeus vannamei reared under time- and rate-restriction feeding regimes in a controlled culture system.  
Aquaculture 253:646-652. https://doi.org/10.1016/j.aquaculture.2005.09.023

Nunes, A. J. P.; Sabry-Neto, H.; Silva, F. H. P.; Oliveira-Neto, A. R. and Masagounder, K. 2019. Multiple feedings  
enhance the growth performance and feed efficiency of juvenile Litopenaeus vannamei when fed a low-fish meal amino 
acid-supplemented diet. Aquaculture International 27:337-347. https://doi.org/10.1007/s10499-018-0330-7

Panigrahi, A.; Esakkiraj, P.; Jayashree, S.; Saranya, C.; Das, R. R. and Sundaram, M. 2019. Colonization of enzymatic bacterial 
flora in biofloc grown shrimp  Penaeus vannamei  and evaluation of their beneficial effect. Aquaculture International  
27:1835-1846. https://doi.org/10.1007/s10499-019-00434-x

Pandey, R.; Beek, A. T.; Vischer, N. O. E.; Smelt, J. P. P. M.; Brul, S. and Manders, E. M. M. 2013. Live cell imaging of germination 
and outgrowth of individual Bacillus subtilis Spores; the effect of heat stress quantitatively analyzed with Spore Tracker. 
Plos One 8:e58972. https://doi.org/10.1371/journal.pone.0058972

Romano, N.; Dauda, A. B.; Ikhsan, N.; Karim, M. and Kamarudin, M. S. 2018. Fermenting rice bran as a carbon source 
for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African 
catfish Clarias gariepinus juveniles. Aquaculture Research 49:3691-3701. https://doi.org/10.1111/are.13837

Saidelles, A. P. F.; Senna, A. J. T.; Kirchner, R. and Bitencourt, G. 2012. Gestão de resíduos sólidos na indústria de 
beneficiamento de arroz. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 5:904-916.

Saman, P.; Fuciños, P.; Vázquez, J. A. and Pandiella, S. S. 2019. By-products of the rice processing obtained by  
controlled debranning as substrates for the production of probiotic bacteria. Innovative Food Science & Emerging 
Technologies 51:167-176. https://doi.org/10.1016/j.ifset.2018.05.009 

Samocha, T. M.; Patnaik, S.; Speed, M.; Ali, A.; Burger, J. M.; Almeida, R. V.; Ayub, Z.; Harisanto, M.; Horowitz, A. and  
Brock, D. L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus 
vannamei. Aquacultural Engineering 36:184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004

Samocha, T. M.; Wilkenfeld, J. S.; Morris, T. C.; Correia, E. S. and Hanson, T. 2010. Intensive raceways without water exchange 
analyzed for white shrimp culture. Global Aquaculture Advocate 13:22-24. 

Samocha, T. M.; Prangnell, D. I.; Hanson, T. R.; Treece, G. D.; Morris, T. C.; Castro, L. F. and Staresinic, N. 2017. Design 
and operation of super-intensive biofloc-dominated systems for the production of pacific white shrimp, Litopenaeus 
vannamei. 1st ed. The World Aquaculture Society, Louisiana, US.

Schveitzer, R.; Arantes, R.; Costódio, P. F. S.; Espírito Santo, C. M.; Arana, L. V.; Seiffert, W. Q. and Andreatta, E. R. 2013. Effect 
of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system 
operated with no water exchange. Aquacultural Engineering 56:59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Serra, F. P.; Gaona, C. A. P.; Furtado, P. S.; Poersch, L. H. and Wasielesky Jr., W. 2015. Use of different carbon sources for the 
biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International 
23:1325-1339. https://doi.org/10.1007/s10499-015-9887-6
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