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Abstract: Ocotea porosa (Nees & Mart.) Barroso, commonly known as “imbuia”, “canela-imbuia” or “imbuia-

amarela” in Brazil, is a tree of the Southern Atlantic Forest. The present study investigates the anatomy of 

leaf and stem, volatile oil chemistry, as well as cytotoxicity and insecticidal activities of the essential oil of O. 

porosa. Species identification was achieved by anatomy features, mainly due to paracytic and anomocytic 

stomata; non-glandular trichomes; biconvex midrib and petiole with a collateral open arc vascular bundle; 

presence of a sclerenchymatous layer, starch grains and crystal sand in the stem; and the presence of 

HIGHLIGHTS 
 

 The anatomy features were useful for identification of Ocotea porosa. 

 The major volatile compounds were α-pinene, β-pinene and bicyclogermacrene. 

 Essential oil of O. porosa was cytotoxic against McCoy, B16F10 and MCF7cell lines.  

 The cytotoxic mechanism might be related to apoptotic events. 
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phenolic compounds in the epidermis, phloem and xylem of the midrib, petiole and stem. The main volatile 

components of the essential oil were α-pinene (19.71%), β-pinene (13.86%) and bicyclogermacrene 

(24.62%). Cytotoxicity against human cancer cell (MCF-7), mouse cancer cell (B16F10) and mouse non-

tumoral cell (McCoy) was observed as well as insecticidal activity of the essential oil against susceptible ‘Ft. 

Dix’ bed bugs (Cimex lectularius L.) by topical application. 

Keywords: anticancer; bed bugs; Cimex lectularius; cytotoxic effect; imbuia; light and scanning electron 

microscopy. 

INTRODUCTION 

Ocotea Aubl. is one of the most representative genus of Lauraceae comprising 428 species [1], with 168 
of these species occurring in Brazil [2]. Ocotea porosa (Nees & Mart.) Barroso and O. odorifera (Vell.) Rohwer 
are the most important Brazilian representatives of this genus [3]. The taxonomy and delimitation of Ocotea 
are problematic due to similar features with Cinnamomum Schaeff. and Nectandra Rol. ex Rottb. [4].  

Several species of Ocotea have been reported to have important biological activities, such as 
antiherpetic [5], antimycobacterial [6], antibacterial [7], antinociceptive [8], antiplatelet and antithrombotic [9], 
acaricidal [10,11], anti-inflammatory [12], antiprotozoal activity against Trypanosoma cruzi and Leishmania 
[13], cytotoxic [14], antioxidant and antimutagenic activities [15]. The essential oils of Ocotea species have 
also exhibited promising antimicrobial activities against Escherichia coli and showed cytotoxicity against 
MCF-7 cells [9].  

Monoterpenoids, sesquiterpenoids and phenylpropanoids were found in their essential oils [16,17]. Other 
metabolites such as benzylisoquinolinic and aporphinic alkaloids [18,19], lignans [20] were also described 
from the genus.  

Ocotea porosa, usually called “imbuia”, “imbuia-amarela”, “imbuia-zebrina” in Brazil, is a typical tree 
species from Southern Atlantic Forest that reaches up to 15 m high. In spite of legal instruments that prevent 
the species exploitation, its wood is still considered as one of the most valuable for furniture and construction 
industry due to its moderately density and resistance to fungal infection [21]. This species is in danger of 
extinction due to overexploitation for wood extraction [2].  

Considering the wide number of biological activities for essential oils from Ocotea, and the fact that no 
previous work was devoted to investigate the chemical composition of leaf essential oil and the anatomy of 
O. porosa, the present study aims to investigate the chemical profile of the volatile oil and its cytotoxic and 
insecticidal activities, as well as the anatomy of the leaf and stem of this species in order to provide accurate 
information to support the identification of plant materials. 

MATERIAL AND METHODS  

Plant Material 

Fresh samples of leaves and stems of Ocotea porosa were collected from plants growing in open and 

sunny areas of União da Vitória, Paraná, Brazil (26º13’48’’ S and 51º05’11” W) in July 2017. The voucher 

specimen was identified and deposited in the herbarium of State University of Ponta Grossa under number 

HUPG 22243. The access to botanical materials was authorized and licensed by the Genetic Heritage 

Administration Council (CGEN/SISGEN) according to code AD3F256.  

At least six samples of mature leaves (cut from median, intercostal and margin regions) were obtained 

from the sixth node and below, as well as stem fragments 5 to 10 cm from the shoot were collected for 

anatomical analysis.  

For the extraction of essential oil, the plant material was selected and standardized in order to acquire 

leaves and stems in the same pattern. The plant material was then dried in shade and cut into small pieces 

(~1 cm). 

Microscopic procedure 

Freshly collected leaves and stems of O. porosa were fixed in formalin–acetic acid–alcohol (FAA) 

solution [22], for three days, washed in distilled water and then stored in 70% ethanol (v/v) [23] until use. 

Cross and longitudinal sections were freehand prepared using razor blades, placed on glass slides, hydrated, 

and stained with toluidine blue [24] or Astra blue and basic fuchsine combination [25]. Kraus and Arduin [26] 

methods were used to analyze epidermal features.  
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Quantitative studies of stomata were performed by taking ten measurements from multiple leaf 

specimens. The length and width of stomata were measured from ten stomata at different places on the leaf 

blade for each species to determine the average stomatal size.  

For the analysis by field emission scanning electron microscopy (FEG-SEM), the samples fixed in FAA 

were passed through a series of ethanol solutions of increasing concentrations and then dried in a critical 

point dryer (Balzers CPD-030) using liquid CO2. The dried samples were mounted on aluminum stubs using 

glued carbon tapes and then coated with gold using a Quorum SC7620 sputter coater [27]. Photomicrographs 

were prepared and examined using a Mira 3 Tescan FEG-SEM equipment located at the State University of 

Ponta Grossa (UEPG).  

For histochemical tests, the following standard solutions were used: potassium dichromate (10%) [28] 

and ferric chloride (2%) [22] for phenolic compounds, phloroglucinol/HCl for lignin [29], Sudan III for lipophilic 

components [30], and iodine (1%) for starch [23]. Controls were prepared in parallel with the tests and were 

carried out as described above. Photomicrographs were prepared using digital camera (C7070) attached to 

the light microscope (Olympus CX 31) at UEPG. 

Extraction of essential oil (EO) and GC-MS analysis 

Dried plant material (300 g) was subjected to hydrodistillation for 4 h in triplicate using a modified 

Clevenger-type apparatus for EO extraction. The obtained oil was dried using anhydrous Na2SO4 and kept 

in glass vials with Teflon-sealed caps at 4 ± 0.5ºC in absence of light.  

The EO was analyzed using a Shimadzu GC-2010 Plus GC-MS/MS apparatus coupled to a TQ8040 

triple quadrupole type tandem mass detector and AOC-5000 Plus automatic injector for analysis of liquid 

samples (headspace) and solid phase microextraction (SPME). The samples were diluted at 1% (v/v) in 

methylene chloride and characterized using the following analytical conditions: Rtx-5MS fused silica capillary 

column (5% diphenyl + 95% dimethylpolysiloxane (30 m x 0.25 mm x 0.25 μm). The carrier gas used was 

helium at a flow rate of 1.02 mL/min, in 1:90 split mode. The injector was set at 250°C and the ionization 

system at 70 eV. 1 μL of sample was injected into the following heating ramp: initial temperature 60 °C to 

250 °C with heating rate at 3 °C/min. 

A homologous series of linear saturated hydrocarbons, C8 to C19 was used to calculate the retention 

index. The experimental retention index was obtained using the following Van den Dool and Kratz equation: 

 

                        Retention index = 100 x (Cn – Cn-1) x (Tx – Tn-1/ Tn – Tn-1) + 100 x Cn-1 

        

In the above equation, Cn is the number of carbon atoms of the n-alkane whose retention time is 

immediately greater than the retention time of the analyte; Cn-1 is the number of carbon atoms of the n-alkane 

whose retention time is immediately less than the retention time of the analyte; Tx is the retention time of the 

analyte; Tn is the retention time of the Cn alkane;Tn-1 is the retention time of the Cn-1 alkane. 

The EO volatile components were identified by comparing retention indices and mass spectra with 

literature [31] and mass spectra were also compared with the NIST 02 mass library (NIST, Gaithersburg, MD, 

USA). The relative quantification was determined from the normalization of each peak area with the total 

chromatogram, with no use of any correction factor. This experimental was carried out at the Federal 

University of Paraná. 

Cell culture 

The human cancer cell (MCF-7, breast cancer, Rio de Janeiro cell bank n. 0162), mouse cancer cell 

(B16F10, melanoma, Rio de Janeiro cell bank n. 0342) and mouse non-tumoral cell (McCoy, fibroblast, Rio 

de Janeiro cell bank n. 0160) were maintained in RPMI 1640 medium (pH 7.4) supplemented with 10% fetal 

bovine serum (FBS), 24 mmol/L of sodium bicarbonate and 1% penicillin and streptomycin under controlled 

temperature (37 °C) and humidified atmosphere (5% CO2). To cell and subcultures expansion, the same 

conditions were used. 

Cytotoxic assay 

This assay relies on the ability of viable cells to metabolically reduce a yellow tetrazolium salt (MTT) to 

a purple formazan product. This reaction takes place when mitochondrial reductases are active [32]. Cells 

were placed in 96 wells plates (4 ×103 cell/well). After 24 h, aliquots of O. porosa EO ranging from 0.77 µg/mL 

to 77 mg/mL dissolved in RPMI were added upon each cell and incubated for 72 h. The medium was 
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removed, replaced with 100 µL of MTT solution (0.5 mg/mL) and incubated at 37 °C for 2 h. After this period 

of incubation, the resulting formazan crystals were solubilized in isopropyl alcohol acid and the optical density 

was red at 550 nm using an Elisa plate reader. The negative control was prepared as described above, but 

each cell was only incubated using RPMI medium. Tests were performed in quadruplicate and repeated three 

times. 

IC50 and selectivity index 

IC50 were determined using logarithmic dose-response sigmoidal curves based on nonlinear regression 

(using GraphPad Prism software). The selectivity index (SI) was calculated as the ratio IC50 (control cells – 

McCoy)/IC50 (tumor cell lines – B6F10 or MCF-7). A selectivity index > 1 indicates that the cytotoxicity on 

cancer cells surpassed the one on the healthy non-tumor cells. 

Morphological study 

Cells (3 ×103 cell/well) were seeded in 24-well plates containing a coverslip on the bottom, and incubated 

at 37 °C and 5% CO2 for 24 h. After this time, the cells were treated with O. porosa EO (77 µg/mL), and 

incubated for 24 h. After that the culture medium was removed, washed with PBS, fixed with 2% formaldehyde 

for 2 min and stained with May-Grünwald stain. Coverslips were mounted and observed under a microscope 

coupled to a digital camera. 

Insecticidal activity studies 

Strains of Cimex lectularius, Bayonne (insecticide resistant) and Ft. Dix (susceptible) were provided by 

Dr. Changlu Wang, Department of Entomology, Rutgers University, New Brunswick, NJ, and their colony was 

raised using blood feeders (CG-1836-75 ChemGlass). The insecticidal activity of O. porosa EO against bed 

bugs was assessed by fumigation, topical application, and residual studies.  

For fumigation study, bed bugs were exposed to vapor toxicity in 125 mL clear glass jars. A small piece 

of paper was placed in the jar's bottom to deliver a substrate for the bed bugs to rest during the tests. Bed 

bugs were introduced in the jars 2–4 h before treatment to acclimatize. A treatment solution or acetone aliquot 

of 2 μL was located directly onto the internal surface of the bottle side wall ∼4 cm from bottle bottom using a 

50 μL gas-tight syringe (Hamilton Company, Reno, NV) attached to a PB600 (Hamilton Company, Reno, NV) 

repeating dispense. Five concentrations viz., 15.6, 31.25, 62.5, 125 and 250 μg EO/125 sq.cm were tested 

against the bed bugs. The jars were placed in the growth chamber and data for mortality were verified 24 h 

after the treatment. The 2,2-diclorovinil-dimetylphosphate (DDVP) was used as the standard. 

Studies using O. porosa EO in topical application were carried out with adult insects, which were 

separated in the Petri dishes and anesthetized with CO2. 1 µL of treatment solution (50 µg/bug) in acetone 

was carried onto the dorsal surface of the abdomen, using a hand-held repeating dispenser. Control bugs 

received 1 μL of acetone alone. Data for the mortality of the bed bugs were verified for seven days after 

treatment. There were three replicates with ten bugs (mixed sex)/replicate. The standard was deltamethrin 

(2.4 ng/bug). 

For residual studies, an aliquot of 100 µL of treatment (diluted in acetone) was applied on 20 cm2 

Whatman #1 filter paper achieving 100 μg/cm2 of residues. The treated filter papers were then placed in the 

Petri dish. Only acetone was used in control tests. Ten adult bed bugs were released on the filter paper and 

mortality was recorded as mentioned in topical application. Deltamethrin was used as standard insecticide. 

Statistical analysis 

Cytotoxicity assays were analyzed by the difference of experimental statistical significance using analysis 

of variance (ANOVA) followed by Tukey's test. The experimental values were expressed as the mean ± 

standard error of the mean. The data were analyzed using Graph Pad Prism 7.0 software. The level of p<0.05 

was used to determine statistical significance.  

Treatment means of vapor toxicity were compared using two factor analysis of variance (ANOVA) and 

separated by Tukey’s honestly significant difference (HSD). Analysis were performed in SAS® 9.3 and 

JMP®10.0. 
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RESULTS AND DISCUSSION 

Microscopical analysis 

Ocotea porosa (Figure 1 A, B) leaves have domatia in the nerve axils beneath (Figure 1 D). This feature 
has also been observed in other species, such as O. urbaniana Mez, O. pulchella (Nees & Mart.) Mez, O. 

tristis (Nees & Mart.) Mez and O. catharinensis Mez [33]. 

From the surface view, the leaf possesses straight anticlinal cell walls on adaxial side and wavy on 

abaxial epidermis (Figure 1 C, E). This feature is also found in O. puberula (Rich.) Nees [34]. However, O. 

indecora (Schott) Mez had sinuous anticlinal walls on both sides [35] whereas O. gardneri (Meisn.) Mez had 

both epidermises with straight anticlinal cell walls [36]. This is a significant feature in distinguishing various 

species of Ocotea. 

Epicuticular waxes are found on the epidermis, especially on the stomata (Figure 1 G, H). This 

characteristic was not mentioned for other species of Ocotea. The stomata are of paracytic or anomocytic 

types (Figure 1 E) and the leaves are hipostomatic as also reported for several other Ocotea species [7,35–

39]. The average size of stomata is 29 × 23 µm. The stomatal index calculated for O. porosa is 16.43 per unit 

area (1 sq. mm) on the abaxial side. 

Ocotea porosa evidences simple unicellular non-glandular trichomes on both surfaces although rarely 

on the adaxial side (Figure 1 F, G). Similar trichomes have also been reported for O. puberula [34] and O. 

indecora [35]. Even though this feature is common in the taxa of Lauraceae [35], O. gardneri had glabrous 

leaves [36]. 

 

 
Figure 1. Morpho-anatomy of Ocotea porosa [c, e: Light microscopy; d, f, g, h: FEG-SEM]. a- Plant in habit. b- Leaves. 

c-h- Leaf in surface view (c- adaxial, e-h- abaxial). [gl-domatia of glands, st- stomata, nt- non-glandular trichome, wa- 

waxes]. Scale bar: a = 70 cm; b = 4 cm; d = 1 mm; f = 100 µm; c, e = 50 µm; g = 20 µm; h= 5µm. 

In transverse section (TS) of the leaf, the epidermis is uniseriate (Figure 2 A, B) and the cells contain 

phenolic compounds that reacted positively for histochemical tests. Epidermis is covered by a thin cuticle that 

reacted for Sudan III. The leaf is dorsiventral and is formed by two layers of palisade and 5-6 layers of spongy 

parenchyma (Figure 2 B, C). The veinlets traversing the mesophyll region are represented by small collateral 
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vascular bundles surrounded by sclerenchymatous sheath with extensions that reach both faces of the 

epidermis (Figure 2 B). Dorsiventral mesophyll is frequent in the family Lauraceae [40]. However, O. gardneri 

evidenced isobilateral mesophyll [36]. 

The edge of the lamina is slightly curved downwards. The epidermis possesses cells with irregular shape 

and covered by thick cuticle. Underneath the epidermis many layers of sclerenchyma cells are found (Figure 

2 A). These characteristics have also been observed in O. gardneri [36]. 

Secretory cells with spherical to oblong shape (Figure 2 B) and with light yellow lipophilic contents 

reacted with Sudan III in the histochemical test (Figure 3 A) are found in the lamina, especially in the adaxial 

side as well as in the midrib regions. Secretory cells are widely reported in the species of Ocotea [34–39]. 

 
Figure 2. Anatomy of Ocotea porosa leaves and stems [a-i: Light microscopy; j, k: FEG-SEM]. a. TS through leaf margin; 

b. TS of lamina; c. TS of midrib and lamina; d and e. TS of petiole; f-k. TS of stem. [co- collenchyma, cr- crystals, cs- 

subepidermal layer, ct- cuticle, cx- cortex, ep- epidermis, fi- fibers, nt- non-glandular trichome, pc- phenolic compounds, 

sc- secretory cell, sg- starch grains, ph- phloem, pp- palisade parenchyma, pi- pith, sp- spongy parenchyma, vb- 

vascular bundle, xy- xylem]. Scale bar: a, b, e, g, h, i = 50 μm; c, d, f = 200 μm; k =10 μm; j = 5 μm. 

In transverse section, the midrib is biconvex in outline (Figure 2 C). This characteristic has also been 

observed in O. odorifera (Vell.) Rohwer [37], O. puberula [34], O. indecora [35] and O. gardneri [36]. The 

uniseriate epidermis is formed by cells with different shapes and sizes containing phenolic compounds which 

reacted with ferric chloride (Figure 3 D). The epidermis is covered by a thick cuticle evidenced by Sudan III 

in the histochemical tests (Figure 3 A). Beneath the epidermis several layers of annular collenchyma are 

found. Annular collenchyma was also found in O. odorifera [37] whereas the angular type was observed in 

O. puberula [34].    

The vascular system of the midrib is represented by one collateral vascular bundle in open arc that is 

surrounded by a continuous sheath of sclerenchymatous fibers (Figures 2 C, 3 A-D) which reacted with 

phloroglucinol/HCl (Figure 3 B). Phenolic compounds are found in some cells of xylem and in several cells 

of phloem. These compounds are evidenced in the histochemical tests using potassium dichromate 10% 

(Figure 3 C). Idioblasts containing phenolic compounds were also found in the midrib of O. odorifera [37] and 

O. puberula [34]. 

The petiole, in cross-section, varies from biconvex shape with two lateral extensions in the distal region 

(Figure 2 D), flat-convex in the medial region (Figure 3 E) to cylindrical in the proximal region. This pattern 

has also been observed in O. diospyrifolia (Meisn.) Mez, O. pulchella (Nees & Mart.) Mezand, O. tristis (Ness 

& Mart.) Mez in the proximal region. However, biconvex shape with two lateral extensions occurred in the 

median and distal regions of O. pulchella, whereas flat-convex shape was found in the same regions in O. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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tristis [33]. The petiole shape can help the Ocotea species identification as observed in Passiflora L. [41] and 

Mikania Willd. [42]. 

The epidermis is unilayered and covered by thick cuticle (Figure 3 E) and has numerous non-glandular 

trichomes. Underneath the epidermis, several layers of annular collenchyma are observed on both sides 

(Figure 3 E). Some secretory cells are distributed in the petiole (Figure 3 F). Ocotea gardneri showed similar 

non-glandular trichomes only in the petiole [36]. 

 
Figure 3. Histochemistry of Ocotea porosa [a, e, f, j: Sudan III; b, g, k: phloroglucinol/HCl; d, i, m, n: ferric chloride (2%); 

c, h, l: potassium dichromate solution (10%). Transverse sections. a–d: midrib; e-i: petiole; j-n: stem [ct, cuticle; cx, 

cortex; en, endodermis; ep, epidermis; fi: fibers, gp, ground parenchyma; pc, phenolic compounds; ph, phloem; pi, pith; 

sc, secretory cavity; sl, sclerenchymatous layer; xy, xylem]. Scale bars: a–d, f-k = 50 μm, e = 200 μm, l, m = 100 μm. 

In an incipient secondary structure, the stem is circular in shape (Figure 2 F). The epidermis is uniseriate 

and covered by a thin cuticle. Beneath the epidermis, a layer of sclerenchymatous cells (Figure 2 G) and a 

layer of cells containing phenolic compounds are found (Figure 2 G, H). The cortical parenchyma presents 

10-12 layers (Figure 2 G, H). Secretory idioblasts are also present in the cortex (Figure 2 H). The vascular 

system has phloem towards the periphery, and xylem facing the pith, separated by a cambium (Figure 2 I). 

Perivascular fiber patches are adjoined to the phloem (Figure 2G-I). The fibers and xylem are reacted with 

phloroglucinol/HCl and stained pink evidencing lignification in the walls (Figure 3 K). The pith is made up of 

thin-walled parenchymatous cells. Starch grains (Figure 2 J) and sand crystals are found (Figure 2 K) in the 

pith region. 

Yield and chemical composition of essential oil (EO) 

The EO of O. porosa presents a light-yellow color and a strong and characteristic aroma. The light-yellow 

coloration is common to several Ocotea species [17]. The yield of O. porosa EO is 1.03%. The species O. 

caudata (Nees) Mez, O. cujumary Mart. and O. canaliculata (Rich.) Mez, which were collected in the National 

Forest of Caxiuanã, Amazonas, Brazil, presented an average yield of 0.8% [7]. In the present study, leaves 

were used for EO extraction. The anatomical study evidenced several secretory cavities (Figures. 2 B, 3 A, 

D, F) that store EO in the leaf blade and petiole. 

The chemical composition of the EO extracted from O. porosa leaves was analyzed by GC-MS and is 

summarized in Table 1. Comparing the groups, O. porosa EO has 38.19% of monoterpenoid hydrocarbons, 

1.02% of oxygenated monoterpenoids, 35.21% of sesquiterpenoid hydrocarbons and 18.20% of oxygenated 
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sesquiterpenoids. High concentrations of sesquiterpenoids were also found in other species of Ocotea, such 

as O. gomezii W.C. Burger and O. morae Gómez-Laur [43]. 

Table 1. Chemical composition of Ocotea porosa essential oil. 

# Rt Al1 Al2 Chemical compound % 

1 6.080 933 932 α-Pinene 19.71 
2 6.544 947 946 Camphene 0.48 
3 7.354 973 969 Sabinene 0.60 
4 7.464 976 974 β-Pinene 13.86 
5 7.954 991 988 Mircene 2.07 
6 8.908 1017 1014 α-Terpinene 0.25 
7 9.368 1028 1024 Limonene 0.78 
8 9.459 1031 1026 1,8-Cineole 0.24 
9 10.581 1059 1054 γ-Terpinene 0.36 
10 15.640 1177 1174 Terpinen-4-ol 0.43 
11 16.248 1191 1186 α-Terpineol 0.35 
12 24.286 1376 1374 α-Copaene 0.34 
13 24.661 1385 1387 β-Bourbolene 0.53 
14 24.994 1392 1389 β-Elemene 0,51 
15 26.100 1419 1417 (E)-Caryophyllene 1.70 
16 26.905 1439 1440 Aromadendrene 0.86 
17 27.491 1453 1452 α-Humulene 0.57 
18 27.799 1461 1458 Allo-aromadendrene 1.98 
19 28.626 1481 1484 Germacrene D 1.88 
20 29.266 1497 1500 Biciclogermacrene 24.62 
21 29.959 1515 1513 γ-Cadinene 1,17 
22 30.346 1525 1522 δ-Cadinene 0.66 
23 31.331 1550 1548 Elemol 0.74 
24 31.620 1558 1559 Germacrene B 0.39 
25 32.415 1578 1577 Spathulenol 5.34 
26 32.650 1584 1590 Globulol 2.09 
27 32.951 1592 1592 Viridiflorol 0.99 
28 33.207 1599 1600 Guaiol 1.95 
29 33.846 1616 1618 1,10-di-epi-cubenol 0.95 
30 34.470 1633 1630 γ-Eudesmol 0.42 
31 34.716 1640 1639 alloaromadendrene epoxide 0.72 
32 35.136 1651 1649 β-Eudesmol 1.77 
33 35.251 1654 1652 α-Eudesmol 1.09 
34 35.418 1659 1656 Valerianol 1.40 
35 35.797 1669 1670 Bulnesol 0.75 

Classes of compounds % 
Monoterpenoids hydrocarbons 38.12 
Oxygenated Monoterpenoids  1.02 

Sesquiterpenoids hydrocarbons 35.21 
Oxygenated Sesquiterpenoids  18.20 

Total 92.54 

Rt: Retention time of calculated compounds compared to n-alkanes in HP-5MS column. %: abundance of essential oil 

components. ¹ Calculated retention index. ² Literature retention index [31]. Compounds of concentration > 0.2% were 

identified. The major compounds are highlighted in bold. 

Thirty-five volatile compounds (92.54%) of EO of O. porosa were identified. The major compounds were 

bicyclogermacrene (24.62%), α-pinene (19.71%) and β-pinene (13.86%). Weyerstahl and coworkers [44] 

verified a distinct chemical composition for the EO of O. porosa extracted from the wood. These authors 

found carquejila acetate (2.1%), α-copaene (5.6%), γ-copaene (3.5%), δ-cadinene (3.1%), cremoligenol 

(8.4%), β-eudesmol (8.4%), valerianol (5%), α-bisabolol (3.6%) and β-bisabolol (2.9%) as the major 

compounds of EO derived from the wood. Reynolds and coworkers [45] analyzed EO extracted from O. 

porosa stem barks and found as major components α-copaene (6.25%), δ-cadinene (3.28%), β-eudesmol 

(6.86%), valerianol (7.55%) and α-bisabolol (3.33%). 

In the present study, the differences found in the chemical composition of O. porosa in relation to the 

literature data occurred due to the fact that EO was obtained from leaves and not from wood or stem barks. 

In addition, not only the composition of EO, but also the concentrations of the compounds vary depending on 
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the age of the plant as well as other factors, such as circadian rhythms, seasonal conditions and 

environmental influences [46]. Takaku and coauthors [17] analyzed the volatile components of leaves of 

several Ocotea species from Costa Rica, namely O. floribunda (Sw.) Mez, O. holdridgeana W.C.Burger, O. 

meziana C.K.Allen, O. sinuata (Mez) Rohwer, O. tonduzii Standl, O. valerioana (Standl.) W.C.Burger, O. 

veraguensis (Meisn.) Mez, and O. whitei Woodson. The most common volatile compounds among these 

species were α-pinene, β-pinene, β-caryophyllene and germacrene D. In the present study, α-pinene and β-

pinene were present in high concentrations.  

Considering the biological activities, the chemical composition of EO is extremely important and should 

be evaluated [10]. In the present study, bicyclogermacrene, the most abundant compound in EO of O. porosa, 

showed a larvicidal action on the vectors of malaria, dengue, Japanese encephalitis [47] and fungicide 

activities [9]. 

The volatile compounds α-pinene and β-pinene were also found in high concentrations in the present 

study and have been evaluated for biological activities. Both compounds presented antibacterial, antiviral, 

antifungal and hypotensive activities [48], α-pinene presented anti-inflammatory, hypoglycemic [49], and 

gastroprotective activities [50] whereas β-pinene showed antidepressant [51] and antiviral [52] properties. 

Insecticidal activities 

Ocotea porosa EO was exposed to toxicity test against two strains of Cimex lectularius (Insecticide 

resistant ‘Bayonne’ and susceptible ‘Ft. Dix’) using three delivery methods i.e topical, residual and fumigation. 

The EO of O. porosa (100 µg/bug) produced 13.3% mortality in Ft. Dix strain that could reach to 23.3% 7 

days after treatment, whereas no mortality was recorded in Bayonne strain. EO of O. porosa was not toxic to 

bed bugs in fumigation (250 µg/125 mL of air) and residual (100 µg/cm.sq.) assays. Using the same methods, 

EO of Baccharis sphenophylla Dusén ex Malme produced 66.67 ± 3.33% mortality in the insecticide-resistant 

strain ‘Bayonne’, while producing 83.33 ± 3.33% mortality in the susceptible strain ‘Ft.Dix’, 24 h after 

treatment [53]. The EO of Schinus molle L. produced 100.0 ± 0.00% (Ft. Dix) and 90.0 ± 5.77% (Bayonne) 

of mortality 24 h after the treatment [54]. In that sense, O. porosa EO cannot be considered as an effective 

insecticide against bed bugs. 

Cytotoxicity activities 

There are no reports of the activities of O. porosa EO against melanoma and breast cancer cell lines or 

the possible mechanisms related to these activities. Thus, an initial evaluation of the cytotoxicity effect of O. 

porosa EO against MCF-7 and B16F10 cells lines was performed (Figure 4) by an MTT reduction assay, and 

the IC50 and SI (selectivity index) values are presented in Table 2. Ocotea porosa EO showed cytotoxic 

effects against all cell lines tested at different concentrations with the lowest IC50 value achieved after 72 h 

of treatment. 

Statistically significant results were obtained for MCF-7 and B16F10 cells up to the concentration of 7 

μg/mL. McCoy cells presented cytotoxicity with statistical difference to the control until 77 μg/mL. Essential 

oils of O. caudata, O. cujumary and O. caniculata displayed promising cytotoxic activities against MCF-7 cells 

showing median inhibitory concentration (IC50) ∼= 65.0 μg·mL−1 [9]. The major compounds found in the 

present study, α-pinene, β-pinene and bicyclogermacrene also showed cytotoxic activities against MCF-7 

cells in a study by Grecco and coworkers [55]. Taking all these into account, EO of O. porosa can be further 

investigated regarding both selectivity and cytotoxic mechanisms.  

However, an ideal anticancer drug must produce a cytotoxic effect for cancer cells in low concentrations 

without affecting normal cells. Ashley and coworkers [56] suggested that for a compound to be considered 

of low toxicity and has good chances of became a new anticancer drug, it should present an SI higher than 

2. The results showed in Table 2 presented an SI of 1.05 and 0.05 for B16F10 and MCF-7 when compared 

to fibroblast normal cells (McCoyline), respectively. These data restrict possible use of EO from O. porosa as 

novel anticancer product. However, these values may be improved after EO fractionation and isolation of 

more suitable compounds. 
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Figure 4. Cell cytotoxicity was determined using MTT assay. A – MCF-7, B – B16F10 and C – McCoy cells. **p< 0.01 

and *** p < 0.001 compared to control. One-way ANOVA with Tukey’s post hoc test. Three independent experiments 

were performed. 

Table 2. IC50 values of O. porosa oil for different cell lines and selectivity index (SI). IC50 data were expressed as mean 

and ± standard error of the mean of three independent experiments. 

Cell lineage IC50 (mg/mL) SI 

McCoy 9.23 ± 7.04 - 
B16F10 8.82 ± 6.27 1.05 
MCF-7 185.4 ± 10.91 0.05 

 

The morphological features of MCF-7 and B16F10 cell lines were also investigated by studying the 

effects of O. porosa EO on cells (77 µg/mL, for 24 h). EO of O. porosa induced cell death with apoptotic 

characteristics as cell rounding, membrane blebbing and chromatin condensation (Figure 5). Apoptosis and 

necrosis are the two major processes leading to cell death. Apoptosis occurs under normal physiological 

conditions and the cell is an active participant in its own demise. Due to this efficient mechanism for the 

removal of apoptotic cells, no inflammatory response is elicited [57]. These results suggest that EO of O. 

porosa provides a more suitable cell death mechanism than other essential oils as EO of Baccharis milleflora 

(Less.) DC. [57] and Lavandula dentata L. [58] which promoted necrotic and apoptotic processes, 

simultaneously. 

Figure 5. Morphology of MCF-7and B16F10 cells after 24 h of treatment with O. porosa EO. A and C - Control cells 

incubated with RPMI only.  B and D - cells treated with 77 µg/mL of O. porosa EO. : cell rounding, : bleb formation, 

: chromatin condensation. Magnification = 1000x, bar = 20 μm. 

CONCLUSION 

In the present work, the chemical profiles of Ocotea porosa EO were analyzed. The volatile compositions 

of EO of the leaves were reported for the first time. The major volatile compounds were α-pinene, β-pinene 
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and bicyclogermacrene. EO of O. porosa demonstrated 13.3% mortality in Ft. Dix strain of bed bugs that 

could reach to 23.3% 7 days after treatment, while no mortality was recorded in Bayonne strain. EO of O. 

porosa was not toxic to bed bugs in fumigation and residual assays. The EO of O. porosa was cytotoxic to 

murine fibroblast cell lines (McCoy), murine melanoma (B16F10) and human breast adenocarcinoma (MCF7) 

probably by apoptosis. However, there was no evidence of selectivity against the tumor cells under study. 

The anatomical characteristics that were observed in this study may help in the correct identification of O. 

porosa. Noteworthy anatomical features include the hypostomatic leaves with paracytic and anomocytic 

stomata; epicuticular wax, especially on the stomata; non-glandular trichomes; biconvex midrib and petiole 

with a collateral open arc vascular bundle; presence of a sclerenchymatous layer, starch grains and crystal 

sand in the stem; and the presence of phenolic compounds in the epidermis, phloem and xylem of the midrib, 

petiole and stem. 
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