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Abstract: The COVID-19 death predictions are helpful for the formulation of public policies, allowing the use 

of more effective social isolation strategies with less economic and social impact. This article evaluates a 

wide range of forecasting methods to identify the best models for predicting cumulative and daily deaths 

caused by COVID-19 in Brazil, considering a forecast for a seven-day horizon. With the seven-day horizon, 

the predictions have more accuracy. The dataset is from Oxford Covid-19 Government Response Tracker. 

The jackknife resampling technique was implemented, thus providing an accurate estimate for evaluating the 

predictive capacity of the models. Each model was fitted with 266 jackknife samples considering 30-day 

training bases. The comparison between predictions was made using the average results, considering R2, 

MAPE, RMSE, and MAE. Models from different classes were adopted: 1 ETS, 4 ARIMA, 18 regression 

models, and 7 machine learning algorithms. The cumulative death models produce better results than daily 

deaths, as the cumulative death models are less influenced by time series components: cycle and 

HIGHLIGHTS 
 

• Thirty statistical and machine learning models have been used to predict COVID-19 in Brazil. 

• Each model has been trained and tested 266 times. 

• The time series of accumulated deaths produces better estimates than daily deaths. 

• The Cubist nonlinear regression model provides better predictions of accumulated deaths. 
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seasonality. The best results for predicting daily deaths were attained by the Ridge regression method. The 

best results for predicting cumulative deaths were obtained by the Cubist regression method. 

Keywords: COVID-19 Deaths; Jackknife; Statistical models; Regression models; Machine learning. 

INTRODUCTION 

Several cases of pneumonia patients have been associated with new human coronavirus disease 

(SARS-CoV-2, COVID-19) starting in December 2019 [1]. The virus demonstrated a large capacity for inter-

human transmission spread rapidly worldwide, and became a pandemic with millions of deaths. Infected 

patients showed significantly varied symptoms, and their cases ranged from asymptomatic individuals to 

death. Studies and research on this new disease have become constant. Reports and articles with the 

prediction of cases and deaths emerged daily. 

Virus outbreak forecasts for different countries are helpful for effectively allocating health resources and 

acting as an early warning system for government policymakers. The forecasts improve epidemiological 

surveillance and help stakeholders make timely decisions, allowing more specific social isolation strategies 

with less economic and social impact. Such responses can lead to correct political decisions that generate 

action protocols to contain future pandemics. Thus, the objective of this article is to predict deaths from 

COVID-19 in Brazil without the influence of vaccinating people and to guide public policy agents for future 

decision-making in other possible epidemics or pandemics. 

Between 1927 and 1933, William Kermack and Anderson McKendrick created a model in which a fixed 

population (N) is considered with only three classes of individuals: Susceptible (S), Infected (I), and 

Recovered/Removed (R) [2-4]. Even though it was developed a long time ago, the SIR model is still widely 

used today in scientific articles, research, works, and studies in general about viruses and epidemics. 

Each outbreak of viral infectious diseases exhibits specific patterns that need to be identified based on 

transmission dynamics. Machine learning algorithms have emerged as a new paradigm in recent scientific 

research due to their flexibility with data specifics. The versatility of this approach allowed its application in 

different contexts, from the forecast of financial variables to the analysis of sentiment in texts and medical 

applications [5]. 

Due to the highly complex nature of COVID-19, machine learning emerges as an effective tool to predict 

the outbreak been an alternative to the SIR model. An absolute novelty in forecasting outbreaks can be 

achieved by integrating machine learning and the SIR model [6]. Within a short period since the outbreak of 

COVID-19, advanced machine learning techniques have been used in the taxonomic classification of 

genomes, virus detection assay, and survival prediction in critically ill patients [7]. Machine learning methods 

are fundamental in screening, prediction, contact tracking, and drug development for epidemics [8]. 

Predictive models for the propagation of COVID-19 were developed using different characteristics such 

as climatic conditions (temperature and humidity), demographic data, health center data, et al. The 

experimental results show that climate variables are more relevant in predicting the mortality rate when 

compared to other census variables such as population, age, and urbanization. Thus, it could be concluded 

that temperature and humidity are essential characteristics for predicting the virus mortality rate. Furthermore, 

it is indicated that the higher the temperature value, the lower the number of infectious cases [9]. 

A COVID-19 outbreak prediction model was developed in Canada using state-of-the-art deep learning 

based on public datasets provided by the John Hopkins University and the Canadian Health Authority. Data 

patterns reveal that prompt and effective approaches taken by Canadian public health authorities to minimize 

human exposure have shown a positive impact compared to other countries. Based on the results, provinces 

that implemented social distancing guidelines before the pandemic had fewer confirmed cases [10]. 

Prediction models based on genetic algorithms have been developed for confirmed cases and deaths in 

India's three most affected states and across the country. The proposed models were developed from 

COVID-19 daily case reports published by the Government of India since the first lockdown in the country, 

which took place on March 24, 2020. The results found that the proposed genetic algorithm-based models 

are highly reliable for predicting COVID-19 time series in India. Models satisfy all external validation 

requirements and, therefore, can be used to predict future cases. Another relevant feature of genetic 

algorithm modeling is that it can work with less time series data and still provide reliable results [11]. 

The published works use a fixed training set and a fixed test set in a specific period in time series [11-

13]. However, for a better assessment of the predictive capacity of the models, it is necessary to use many 

training and test sets. Thus, this work has as its differential the use of multiple sets of training and testing. 
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The jackknife method was programmed, generating a total of 266 training and test sets for each model, thus 

providing a more accurate estimate of the predictive capacity of the models. 
Furthermore, the other works published for the time series prediction of COVID-19 use a minimal scope 

of predictive methods [6,9-13]. This work has a differential in using a broad scope of forecasting methods, a 
total of 30 methods, making it possible to identify the methods that produce better predictions of daily and 
accumulated deaths. This work also differs from the others by using, in addition to the time series, the 
exogenous variables: cases; restriction index; government response index; health index; and economic 
index. 

MATERIAL AND METHODS  

In addition to non-pharmacological measures, containment measures were very used to contain the 
spread of the virus. Most countries recommended their population stay at home. Other measures used were: 
to do extra investments in the health and the economy, closed schools, airports, workplaces, etc. The 
database used was Oxford COVID-19 Government Response Tracker (OxCGRT) [14]. This database 
systematically collects daily information on various public policies that governments have adopted to respond 
to the pandemic, such as lockdown, travel restrictions, etc. This work was done with nine variables (one 
dependent and eight independent): 

• Dependent variable (Y): deaths. 
• Independent variables: cases (X1); restriction index (X2); government response index (X3); health 

index (X4); economic index (X5); lag 7, Y values at prior time steps (X6 = Y(t-7)); lag 8, Y values at prior time 
steps (X7 = Y(t-8)); and lag 9, Y values at prior time steps (X8 = Y(t-9)). 

The restriction index is the restriction adopted by the region, such as closing airports and other places. 
The government index is the response of the government to the pandemic of COVID-19. The health index is 
the investment done by the government in health policies. The economic index is the financial support that 
the government made during the pandemic, such as financial aid to people who have lost their jobs or cannot 
work. All variables are completely described in a global panel of the pandemic policies [14]. 

These variables were chosen because they are measures used by Oxford to analyze countries worldwide 
concerning the level of restriction against COVID-19. The lags of variables were selected according to the 
seven-day horizon, which offers greater precision. Furthermore, in an application of a time series study, it is 
interesting to initially use the period to 7 days forecast because of the small number of observations. 

The period analyzed was from March 17, 2020, to January 20, 2021. It is because the first death by 
COVID-19 in Brazil was notified on March 17, 2020, and the vaccination started on January 17, 2021. All 
data analysis, modeling, and programming were conducted using the R [15] program, with the packages: 
stats [15], ggcorrplot [16], forecast [17], and caret [18]. 

Time series 

The primary purpose of time series analysis is forecasting. This methodology allows forecasting future 
values through the present and past values [19]. Therefore, models are essential to provide the necessary 
support for statistical inference [20]. A time series can have four components: trend, cycle, seasonality, and 
residual. The trend describes the behavior of the variable over time. The cycle is a periodic fluctuation 
concerning the trend. Seasonality is a change that occurs in specific periods of a time series. The residual is 
represented by random fluctuations resulting from unexpected facts [19]. 

Exploratory data analysis 

The first analysis of time series is visual. Some inferences and hypotheses can be suggested. The 
boxplot is a standardized way of displaying data distribution based on the five values: minimum, first quartile, 
median, third quartile, and maximum. Outliers can be displayed as individual points. This technique makes 
no assumptions about the statistical distribution involved in the data. The spaces between the different parts 
of the box indicate the degree of dispersion, the asymmetry in the data, and the outliers [21]. Scatter plots 
are used to observe relationships between two variables. Pearson's correlation measures the degree of linear 
association between variables [22]. 

Many statistical methods make assumptions that the data are from a population with a specific probability 
distribution. The characteristic of this distribution can be one of the purposes of the analysis. There are 
statistical tests responsible for determining the theoretical distribution of data. The following tests were used 
in this work: Shapiro-Wilk, Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, Lilliefors, Pearson, 
and Shapiro-Francia to test whether the data follow the Gaussian distribution. In these tests, the null 
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hypothesis (H0) is that data follow a normal distribution. The alternative hypothesis (H1) is that data do not 
follow a normal distribution [23]. 

ETS and Box-Jenkins models 

The ETS model is a "special" class of exponential smoothing. The point forecasts produced by the 
models are identical if they use the same smoothing parameter values [24]. The characterization of the model 
following the terminology of [25] and [26] is done using a three-character string. The first letter indicates the 
type of error (A or M); the second letter indicates the type of trend (N, A, or M); and the third letter indicates 
the type of seasonality (N, A, or M). In all cases, N = none, A = additive and M = multiplicative. 

The Box-Jenkins methodology consists of adjusting Autoregressive Integrated Moving Averages 
(ARIMA) models. The strategy for building the model is based on an iterative cycle. The stages of the 
interactive cycle are specification, identification, estimation, and diagnosis. In general, the postulated models 
are parsimonious, as they contain a small number of parameters, and the predictions obtained are pretty 
accurate [15]. The ARIMA models assume that the values of a time series have a dependency relationship 
where each value can be explained by the previous value of the series data [20]. The purpose of the Box-
Jenkins methodology is to determine the three components that make up the structure: p (autoregressive 
parameters), d (differentiation processes), and q (moving average parameters), thus forming the ARIMA 
(p,d,q) [19]. 

Autocorrelation is the correlation of the variable X(t) with itself at the last instant X(t-k), which is called 
the time lag k. The Autocorrelation Function (ACF) measures the dynamics of the correlation between a 
variable and its lags. The Partial Autocorrelation Function (PACF) is a measure of the correlation between 
observations of a time series that are separated by k time units (X(t) and X(t-k)) [19,20]. 

Regression models 

Seek to identify the relationship between the dependent and independent variables. This relationship 
can be linear or nonlinear. In regression models with cross-sectional data, the order of observations is 
irrelevant for the analysis. In time series, the order of the data is fundamental. A significant feature of this 
type of data is that neighboring observations are generally dependent over time, so it is interesting to analyze 
and model this dependence [20]. 

Typically, the data sets have many independent variables, so it is necessary to know which are relevant 
to explain the dependent variable. In these cases, mechanisms are needed to choose the best subset of 
independent variables to explain the dependent variable. For this, Regularization Methods are 
recommended. These methods incorporate a constraint into the model, limiting the model's coefficients and 
therefore selecting the most important independent variables [27]. 

Dynamic regression models are also called ARIMA models with exogenous variables (ARIMAX). In linear 
regression models, it is assumed that noise has zero mean, constant variance, normal distribution, and 
independence, thus having no serial correlation [20]. ARIMAX combines the dynamics of time series and the 
effect of explanatory variables. The dependent variable is explained by its lagged values and current and 
past values of exogenous variables. 

In addition to ARIMAX, the following linear regression models were used in this work: Multiple (MLR), 
Stepwise, Stepwise with lower Akaike value (Stepwise AIC), Lasso, Ridge, Elastic Net, Boosted, Boosted 
Tree, and Robust. The nonlinear models were: Cubist, Multivariate Adaptive Regression Splines (MARS), 
and MARS with cross-validation pruning (MARS gCV). 

Machine learning 

Explores the study and construction of algorithms that can learn from data and make predictions [28]. 
Studies with Support Vector Machines (SVM) started to be developed in the 60s, in Russia, by Vapnik, Lemer, 
and Chervonenkis. However, it can be said that the SVM had its starting point along with the development of 
the theory of statistical learning by Vapnik in 1979. The current form was developed by Vapnik in the late 
1990s and aimed to find a hyperplane that maximizes the margin between classes. Support Vector 
Regression (SVR) maintains the same characteristics as SVM [29]. 

Random Forests (RF) are formed by several decision trees. All trees are used, each of which provides 
an estimate. The final classification is given by the most frequent result in all trees [27,28,30]. 

Artificial Neural Networks (ANN) are computational techniques that present a mathematical model 
inspired by the human brain [28]. The most crucial property of ANNs is their ability to learn from their 
environment and improve their performance. It is done through an iterative process of adjusting the weights 
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of the network [30]. The Autoregressive Neural Networks technique combines the autoregressive statistical 
model and neural networks, resulting in an AR-NN(p) model. In the AR-NNX model, exogenous variables are 
included, providing new data to improve prediction performance. In addition to the lagged values of the 
dependent variable, independent variables can be added that will also be used [31]. 

Boosting belongs to the machine learning category called an ensemble. Ensemble techniques involve 
groups of predictive models to achieve better model accuracy and stability. Boosting refers to a family of 
algorithms that convert weak learning into strong learning. The prediction of each learning is combined to 
convert it into strong learning [27,30]. The eXtreme Gradient Boosting (XGBoost) algorithm combines the 
Boosting and tree models. 

Assessment metrics 

The Jackknife resampling method was implemented, in which the entire database was used. The 
strategy removes a sample from the total observed set, recalculating the estimator from the remaining values. 
The use of this technique promotes the reduction of uncertainties, thus having an accurate estimate for 
evaluating the predictive capacity of the models. Cross-validation uses 30 values (days) for training, and the 
forecast is given considering a 7-day horizon, where forecast metrics are applied. Each model has been 
trained and tested 266 times. 

Forecast metrics are averaged to evaluate the models. In this work, the following figures of merit have 
used the Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), and Root Mean Square Error (RMSE). 

RESULTS 

Between March 17, 2020, and January 20, 2021, the average number of deaths from COVID-19 was 
687 ± 391. The mean of cases was 27,865 ± 18,461. The first death occurred when there were 51 reported 
cases (Table 1). 

                                                 Table 1. Statistics of deaths and daily cases. 

Statistics Deaths Cases 

Average 687 27,865 

Standard Deviation 391 18,461 

Minimum Value 1 51 

Q1 376 13,381 

Median 676 26,017 

Q3 1,018 42,144 

Maximum Value 1,595 87,843 

 

Both time series show a cycle, with trends of growth and reduction. The boxplot reveals no outliers for 

deaths and one outlier for cases (Figure 1). All p-values were below 0.05, indicating that the data are not 

normally distributed considering the seven tests performed (Table 2). 

 

 
Figure 1. (a) Time series of deaths COVID-19; (b) Time series of cases COVID-19; (c) Box-plot of deaths COVID-19; 
(d) Box-plot of cases COVID-19. 
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                                             Table 2. p-value of tests. 

Tests Deaths Cases 

Shapiro-Wilk 6.02e-6 2.06e-6 

Kolmogorov-Smirnov 2.2e-16 2.2e-16 

Anderson-Darling 2.30e-5 2.35e-5 

Cramer-von Mises 0.0009 0.0007 

Lilliefors 0.0022 0.0024 

Pearson 0.0014 1.809e-7 

Shapiro-Francia 4.54e-5 1.28e-5 

 

The scatter plot reveals that deaths and cases have a positive correlation - the greater the number of 

cases, the greater the number of deaths (Figure 2). Deaths and cases showed a coefficient of correlation 

equal to 0.78. 
 

 
Figure 2. Scatter plot between cases/deaths. 

Concerning the correlogram, which shows the correlation between all the variables considered in this 
study. Only the health index and the government index have a coefficient of correlation greater than 0.9 
(Figure 3). 

 
Figure 3. Correlogram. 

ACF and PACF indicate a need to carry out at least one differentiation for the ARIMA model for the time 

series of daily and accumulated deaths (Figure 4). 
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Figure 4. (a) ACF of daily deaths COVID-19; (b) PACF of daily deaths COVID-19; (c) ACF of accumulated deaths 
COVID-19; (d) PACF of accumulated deaths COVID-19. 

 
 
After 266 training and test sets for each model, the averages of the prediction metrics of the test bases 

were calculated. Tables 3 and 4 show the evaluations for the regression models, Random Forest, Support 
Vector Regression, Artificial Neural Networks, and eXtreme Gradient Boosting. R2 shows that accumulated 
deaths produced better estimates because their values are more significant than daily. 

 
 

               Table 3. Results of regression models, RF, SVR, Neural Networks, and XGBoost, to predict daily deaths. 

Models - Daily Deaths R2 RMSE MAE 

Multiple Linear Regression 0.708 1,033.572 827.929 

Stepwise 0.750 153.575 127.229 

Stepwise AIC 0.738 330.231 263.424 

Lasso 0.790 149.178 126.194 

Ridge 0.772 136.081 112.700 

Elastic Net 0.752 149.289 123.593 

Boosted 0.715 185.547 157.310 

Boosted Tree 0.689 189.967 160.042 

Robust 0.796 145.080 119.805 

Cubist 0.745 151.647 122.799 

Multivariate Adaptive Regression Splines 0.731 151.048 121.064 

Multivariate Adaptive Regression Splines gCV 0.724 153.773 123.253 

Random Forest 0.669 157.836 126.500 

Support Vector Regression 0.287 305.573 260.210 

Artificial Neural Network 0.690 803.796 764.776 

Artificial Neural Network Average 0.580 803.796 764.776 

eXtreme Gradient Boosting 0.640 170.257 136.794 
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         Table 4. Results of regression models, RF, SVR, Neural Networks, and XGBoost, to predict accumulated deaths. 

Models - Accumulated Deaths R2 RMSE MAE 

Multiple Linear Regression 0.895 6,464.189 5,086.783 

Stepwise 0.986 1,230.472 1,100.752 

Stepwise AIC 0.970 1,918.301 1,615.088 

Lasso 0.989 717.445 652.330 

Ridge 0.987 1,104.163 1,036.507 

Elastic Net 0.983 898.344 833.856 

Boosted 0.873 9,810.700 9,741.453 

Boosted Tree 0.550 6,172.956 5,967.626 

Robust 0.986 789.590 717.162 

Cubist 0.993 467.774 408.664 

Multivariate Adaptive Regression Splines 0.995 523.655 468.949 

Multivariate Adaptive Regression Splines gCV 0.995 520.716 466.455 

Random Forest 0.575 4,621.139 4,327.940 

Support Vector Regression 0.735 13,823.770 13,675.770 

Artificial Neural Network 0.424 114,545.600 114,522.100 

Artificial Neural Network Average 0.541 114,545.600 114,522.100 

eXtreme Gradient Boosting 0.614 3,462.960 3,082.320 

 

 
Robust (considering R2) and Ridge (considering RMSE and MAE) regressions had the best fit to predict 

COVID-19 daily deaths (Table 3). Robust regression has a set of procedures that resist minor violations of a 
model's requirements, and Ridge regression has a penalty that decreases the complexity of a model. 

MARS (considering R2), and Cubist (considering RMSE and MAE) regressions had the best fit to predict 
COVID-19 accumulated deaths (Table 4). These methods use a rules-based approach, like decision trees. 

Tables 5 and 6 present the evaluations for the ARIMA, ETS, ARIMAX, AR-NN, and AR-NNX models. 
The ARIMA and ARIMAX models were fitted with different p and q components and were up to 5 each (i.e., 
at each one of fitted 266 training bases, the p and q values can be changed). The differences (d) were up to 
4 for ARIMA and up to 5 for ARIMAX. The MAPE shows that the accumulated deaths produced better 
estimates because their values are more significant than daily. 

 

             Table 5. Results of the ARIMA, ETS, ARIMAX, AR-NN, and AR-NNX models for predicting daily deaths. 

Models - Daily Deaths 
 
 
 

MAPE (%) RMSE MAE 

ARIMA(p,1,q) 30.940 218.335 181.531 

ARIMA(p,2,q) 97.416 685.901 621.078 

ARIMA(p,3,q) 322.537 2,442.444 2,060.772 

ARIMA(p,4,q) 493.150 4,033.814 3,168.591 

ETS 42.142 293.087 247.299 

ARIMAX(p,0,q) 6,266.804 64,337.909 27,326.906 

ARIMAX(p,1,q) 234.694 1,976.351 854.554 

ARIMAX(p,2,q) 70.643 459.269 267.681 

ARIMAX(p,3,q) 687.674 3,709.207 2,219.037 

ARIMAX(p,4,q) 3,149.418 18,092.704 10,388.141 

ARIMAX(p,5,q) 104,905.200 480,294.400 240,536.700 

AR-NN(p) 37.656 285.724 229.528 

AR-NNX 37.627 286.041 229.761 
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       Table 6. Results of the ARIMA, ETS, ARIMAX, AR-NN, and AR-NNX models for predicting accumulated deaths. 

Models - Accumulated Deaths               MAPE (%)               RMSE                 MAE 

ARIMA(p,1,q) 1.105 619.431 541.510 

ARIMA(p,2,q) 0.961 551.289 486.093 

ARIMA(p,3,q) 3.172 2,732.814 2,272.388 

ARIMA(p,4,q) 5.858 6,245.084 4,808.998 

ETS 0.881 629.884 557.747 

ARIMAX(p,0,q) 23.201 1,787.892 1,440.029 

ARIMAX(p,1,q) 22.648 1,614.937 1,247.126 

ARIMAX(p,2,q) 21.834 1,559.284 1,202.490 

ARIMAX(p,3,q) 22.639 1,636.814 1,254.545 

ARIMAX(p,4,q) 14.621 1,041.308 805.586 

ARIMAX(p,5,q) 32.233 2,479.165 1,807.406 

AR-NN(p) 2.826 1,870.246 1,587.506 

AR-NNX 2.820 1,872.006 1,589.541 

 
ARIMA(p,1,q) (considering MAPE, RMSE, and MAE) had the best fit to predict COVID-19 daily deaths 

(Table 5). ARIMA modeling contains a small number of parameters, and predictions are pretty accurate. In 
this case, one differentiation was necessary to obtain the best model. 

ETS (considering MAPE) and ARIMA(p,2,q) (considering RMSE and MAE) had the best fit to predict 
COVID-19 daily deaths (Table 6). ETS modeling gives greater weight to past observations over recent ones. 
This model also considers elements such as trend and seasonality. In ARIMA(p,2,q), two differences were 
necessary to obtain the best model. 

 

DISCUSSION 

The COVID-19 pandemic has killed millions of people since the end of 2019. With the evolution of data 
systems and the high contagion, information began to be published daily on the number of cases and deaths 
caused by the virus [14]. Thus, it became essential to use forecasting techniques and models to project this 
count in regions and countries with high indexes [9-12]. In Brazil, there have already been more than 650,000 
deaths (it is about 0.3% of the population). Vaccination in Brazil began on January 17, 2021, but few 
individuals were vaccinated during this work. It strengthens the hypothesis that there was no external 
influence on the predictions and certifies the results obtained. The Jackknife methodology was applied to 
reduce possible temporal variations, with many training and test sets. 

Several prediction models were observed for daily and accumulated deaths. Time series do not have a 
normal distribution. The scatter plot and the correlogram show that cases and deaths have a positive 
correlation (0.78). Health and restriction (0.84) indices and government and restriction (0.75) indices also 
have a positive correlation. However, when these variables are tested with others, only health and 
government indices have a strong correlation (0.95). 

The predicted numbers at the end of the epidemic are highly dependent on the length of the time series 
used in the predictive models [32]. Therefore, was used a 7-day prediction. The exogenous variables cases, 
restriction index, government response index, health index, and the economic index were used to get more 
precision. To get more accurate, the averages of the 266 prediction metrics of the test bases revealed the 
best fit of the models.  The forecast for accumulated deaths produced better estimates than the daily ones 
(this result corroborates with [33]), as seen by R2 and MAPE. Possibly, this is because temporal elements 
such as cycle, seasonality, and randomness have less influence on accumulated deaths than on daily deaths. 

Considering R2 for the prediction of daily deaths, the best models were the Robust (0.796), Lasso (0.790), 
Ridge (0.772), and Elastic Net (0.752) regressions. For accumulated deaths, the best models were the MARS 
gCV (0.995), MARS (0.995), Cubist (0.993), and Lasso (0.989) regressions. Looking at the MAPE, the models 
that showed better results for daily deaths were ARIMA(p,1,q) (30.940), AR-NNX (37.627), AR-NN (37.656), 
and ETS (42.142). For accumulated deaths were ETS (0.881), ARIMA(p,2,q) (0.961), ARIMA(p,1,q) (1.105) 
and AR-NNX (2.820). Analyzing the RMSE, the best models for daily deaths were the Ridge (136.081), 
Robust (145.080), Lasso (149.178), and Elastic Net (149.289). For the accumulated deaths were the Cubist 
(467.774), MARS gCV (520.716), MARS (523.655) regressions, and ARIMA(p,2,q) (521.289). Looking at the 
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MAE, the best models for the daily deaths were the Ridge (112.700), Robust (119.805), MARS (121.064), 
and Cubist (122.799) regressions. For the accumulated deaths were the Cubist (408.664), MARS gCV 
(466.455), MARS (468.949) regressions, and ARIMA(p,2,q) (486.093). 

Considering deaths by COVID-19 in Brazil, as the time series does not have a normal distribution, there 
is no outlier, and the variables do not have a high correlation, nonlinear regressions had the best fit for 
predicting accumulated deaths. 

The proposed models were used for the COVID-19 pandemic. However, they can be used for other 
epidemic or pandemic situations with possible good results, because in epidemiology the historical context 
is extremely important [34]. The change in daily numbers of COVID-19 is affected by many factors, such as 
the population's adherence to prevention measures, vaccination, social isolation, and new variants of the 
virus. Analysis suggests that COVID-19 shows chaotic behavior, like in previous epidemics [35]. Government 
campaigns are very important to avoid the possible underreporting of cases and deaths. Delays in 
notifications can also bring biased results. 

Due to these reasons, to have better accuracy of the predictions, it is necessary to use many training 
and test bases. It is important to emphasize that this study was designed without the influence of vaccination 
of people. Therefore, these models may be interesting for use at the beginning of an epidemic or a pandemic. 
In practice, this work proposes that at the beginning of an epidemic, the forecast is made by the non-linear 
model. In addition, predictions can be made daily, as long as the data used is accumulated. 

The results presented in this study differ from some previously published works [36-39]. The Jackknife 
resampling method used here has better accuracy, because used 266 training and testing bases. So as data 
on the pandemic are published daily, the forecasts must also be updated periodically. For future works, it is 
recommended to include some other variables like the vaccination of people and the virus reproduction rate. 
In addition, to have the best fit of the models, it may be interesting to consider smaller regions such as some 
districts. 

 

CONCLUSION 

This work used multiple sets of training and testing to predict the number of deaths from COVID-19 in 
Brazil. Furthermore, exogenous variables were used. This procedure helps to produce a more accurate 
estimate of the predictive capacity of the models. A total of 30 forecasting methods were used, making it 
possible to identify the methods that produce better predictions of daily and accumulated deaths. Therefore, 
this work showed that the time series of accumulated deaths produced better estimates than daily deaths. 
The cubist regression had the best fit for cumulative deaths, and ridge regression had the best fit for daily 
deaths. The contribution of this work revealed that nonlinear regressions are the best methodology to predict 
the number of accumulated deaths from COVID-19 in Brazil. 
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