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ABSTRACT 

This study presents Genetic Programming models for the formulation of barreling of aluminum solid cylin-

ders during cold upsetting based on experimental results. The maximum and minimum radii of the barreled 

cylinders having different aspect ratio (d/h= 0.5, 1.0 and 2.0) were measured for various frictional conditions 

(m=0.1-0.4). The change in radii with respect to height reduction showed different trends before and after 

folding, therefore, the corresponding reduction ratios of folding were also determined by using incremental 

upsetting. Genetic programming models were prepared using the experimental results with the input variables 

of the aspect ratio, the friction coefficient, and the reduction in height. The minimum and maximum barreling 

radii were formulated as output taking the folding into consideration. The performance of proposed GP mod-

els are quite satisfactory (R
2
 = 0.908-0.998).  

Keywords: Upset, forging, barreling, bulging, axisymmetric compression. 

1. INTRODUCTION 

Deformation modes of bulk forming processes are mainly upsetting, extrusion or both. Due to its versatility 

in metal forming applications, upsetting has been considered as an important subject of many researches. In 

upsetting of a cylinder, the existence of friction between the die and workpiece interface causes non-

homogeneous deformation. The interface friction opposes the free expansion of the end faces with two 

consequences: formation of barreling and friction hill. While barreling changes the deformation patterns, and 

so the magnitudes of the strain components, friction hill increases the interface pressure to a value higher 

than the flow stress of the material. 

Kulkarni and Kalpakjian [1] have carried out a series of tests in which specimens were upset in 

different lubrication conditions and they examined the shape of the barrel. A comprehensive literature review 

has been published by Johnson and Mellor [2]. Avitzur [3] has developed an upper bound solution for disc 

forging. An incremental elasto-plastic finite element method has been used to study the influence of the 

friction on the deformation of solid cylinders [4]. Schey et al [5] conducted upsetting tests to evaluate the 

factors that affect the shape of the barrel. The upset forging of cylindrical billets having unequal interfacial 

friction conditions have been studied by different workers [6-8]. Folding has also been treated in many 

studies [3,8]. Saluja et al [9] suggested a method for flow stress determination introducing a bulge correction 

factor which depends on maximum and minimum radii of the compressed cylinder.  

In recent studies [10-11], barreling phenomenon was investigated experimentally at various friction 

and geometrical conditions. The radius of curvature of the barrel was expressed as a function of height 

reduction depending on the maximum and minimum radii of the billet which can only be obtained by 

measuring compressed cylinder. 

            Estimation of the amount of barreling beforehand is of  great importance for industrial applications as 

it facilitates the determination of the appropriate die design and the press capacity needed to design the re-

spective die. Therefore, this study focused on present a mathematical formulation for determination of barrel-

ing (minimum and maximum radii) of solid aluminum cylinders during cold upsetting. For this purpose, a 
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series of billets having different aspect ratio were cold upset with various friction conditions. A genetic pro-

gramming model for the formulation is prepared using the experimentally predicted data.  

 

2. MATERIALS AND METHODS 

2.1 Material  

Cylindrical billets of 20 mm in diameter and different heights corresponding to a set of aspect ratio (d/h=0.5, 

1.0, 2.0) were prepared by machining from 30 mm rods of annealed aluminum 1100 (99.42 wt% Al, 0.111 

wt% Si, 0.066 wt% Mn, 0.333 wt% Fe, 0.014 wt% Cr, 0.031 wt% other) were used as the billets. The billets 

were upset at room temperature on a hydraulic press having 600 kN capacity. Top and bottom platens were 

prepared from AISI 4340 steel and their working surfaces were hardened and ground. To obtain the proper 

deformation pattern, care was taken to perpendicularity and concentricity between platens and the billets. The 

schematic views of strains and billet are illustrated in Figures 1 and 2, respectively.  

 

Figure 1: Schematic view of strains after deformation 

 

 

Figure 2: Schematic view of billet before and after deformation. 

 

 

Ring compression tests were carried out to determine the friction factor (m) for dry and various 

lubricating conditions. The rings were produced from the same material of the upsetting billets (annealed 
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aluminum 1100) with a ratio of 6:2:1 (OD:ID:H). The surfaces of the die platens were purposely textured 

with respect to various lubricants to obtain proper friction factors. The friction factors were determined from 

the chart presented by Lahoti G. D., et al [12]. The lubrication condition and the determined friction factors 

are given in Table 1. 

 

 

Table 1: Type of lubrication and corresponding friction factor 

Lubrication Friction factor (m) 

Palm oil 0.1 

MoS2 0.2 

Graphite 0.3 

Dry 0.4 

 

The heights, minimum and maximum radii of the billets were measured using a digital micrometer 

and the radius of curvature of the barrel was measured using a 3-D Coordinate Measuring Machine (CMM). 

 

2.2 Method 

The main focus of this study is to obtain three genetic programming models for the formulations of the 

minimum and maximum radii of cylindrical aluminum billets and their folding point (i.e., where a part of the 

initially free surface comes into contact with the die during upset forging) during cold upsetting based on 

experimental results. For this purpose, genetic programing was used to prepare mathematical model in the 

barreling processes. 

Genetic programming is an extension of genetic algorithms, first introduced by Koza [13] to be able to 

get automatically intelligible relationships in a system. It has been used successfully in many applications and 

areas [14,15]. While GA uses a string of numbers to represent the solution, GP automatically generates 

several computer programs (CP) with a sorting table to solve the problem considered [13]. The GP generates 

a population of computer programs with a sorting tree structure. Randomly generated programs, in terms of 

size and structure, are generic and hierarchic. GP‟s main goal is to solve a problem by searching optimal 

computer programs in the space of all possible solutions. Thus, it allows to achieve the optimum results [16].  

Gene Expression Programming (GEP) software, used in this study, is an extension of GP. It evolves 

computer programs of different sizes and shapes encoded in linear chromosomes of fixed length and it was 

introduced by Candida Ferreira [17]. Multiple genes, each gene encoding a smaller sub-programs, are created 

by chromosomes. Furthermore, the structural and functional organization of the linear chromosomes allows 

the unconstrained operation of important genetic operators such as mutation, transposition, and 

recombination. One of the strong points of the GEP approach is that the generation of genetic diversity is 

extremely simplified as genetic operators work at the chromosome level. In addition thanks to the multigenic 

nature it allows to the evolution of more complex programs. As a result of this, GEP exceeds, 100-1000 fold, 

the former GP system [17]. GEP was used in this study due to its unique properties. The fundamental 

difference between Genetic Algorithm (GA), GP and GEP is due to the nature of the individuals: in GAs the 

individuals are linear strings of fixed length (chromosomes); in GP the individuals are nonlinear entities of 

different sizes and shapes (parse trees); and in GEP the individuals are encoded as linear strings of fixed 

length which are afterwards expressed as nonlinear entities of different sizes and shapes. Therefore, the 

distinguishing parameters of GEP are chromosomes and expression trees (ETS). Translation, analysis of 

information from the chromosomes to the ETS, is depend on a specific set of rules. The genetic code is very 

simple where there exist one-to-one relationships between the symbols of the chromosome and the functions 

or terminals they represent. Spatial organization and terminals in the ETs and type of interaction between 

sub-ETs can be determined easily by rules [17,18]. That‟s why two languages are used in the GEP: the 

language of the genes and the language of ETs. A significant advantage of GEP is that it enables us to infer 

exactly the phenotype given the sequence of a gene, and vice versa which is termed as Kavra language.  

The details of the experimental database including the parameters and ranges of them are presented in 

Table 2. Parameters of the GEP models are presented in Table 3. The list of function is given in Table 4. 

Genetic programming models were prepared using the experimental results with the input variables of the 

aspect ratio, the friction coefficient, and the reduction in height. The minimum and maximum barreling radii 
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were formulated as output taking the folding into consideration. 

 

 

Table 2: The variables used in models construction 

Model Code Input variable Range Code Output variable Range 

Folding d0 d/h 0.5-2 D.V hf/h 0.2-0.92 

d1 m 0-0.4 

 Rmin d0 d/h 0.5-2 D.V  Rmin 0.065-4.087 

d1 m 0-0.4 

d2 hf/h 0.2-0.92 

 Rmax d0 d/h 0.5-2 D.V  Rmax 0.017-0.916 

d1 m 0-0.4 

d2 hf/h 0.2-0.92 

 

Table 3: Parameter of the GEP models 

P1 Function Set +, -, *, /, √, ex, ln, log, tan, X2, X3 

P2 Number of Genes 1,2,3,4,5,6 

P3 Head Size 3, 5, 8, 10, 12, 15 

P4 Linking Function Addition (+), Multiplication (*) 

P5 Number of Generation 10000 and 20000 

P6 Chromosomes 30-45 

P7 Mutation Rate 0.044 

P8 Inversion Rate 0.1 

P9 One-point Recombination Rate 0.3 

P10 Two-point Recombination Rate 0.1 

P11 Gene Recombination Rate 0.1 

P12 Gene transposition Rate 0,1 

 
Table 4: List of function sets 

Code Function Set 

S1 +, -, *, / 

S2 +, -, *, /, √ 

S3 +, -, *, /, √, ex 

S4 +, -, *, /,√, ln 

S5 +, -, *, /, √, ex, X2, X3 

S6 +, -, *, /, √, ex, ln, X2, X3 

 
 

 

3. RESULTS AND DISCUSSIONS 

3.1 Experimental results 

Although unidirectional movement of the die (top die was descending while bottom die was stationary) was 

applied, radii of top and bottom surfaces of the billets are almost same because of the equal interface friction-

al conditions and the lower speed of compression. A symmetrical deformation from top to bottom was ob-

served on the billets, so that, top surface radii (Rmin) and barreling radii of the billets (Rmax) were measured. 

Strain paths at the barreling surface are shown in Figures 3 and 4 with respect to aspect ratio and fric-

tion factor. As expected, amount of barreling and hoop strain are increasing with friction factor [19]. The 

aspect ratio has a similar effect, however, the difference between d/h=1 and 2 is much smaller than d/h=0.5.  
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Figure 3: Strain path at the barreling surface with respect to aspect ratio, (a) d/h=0.5, (b) d/h=1.0, (c) d/h=2.0 

 

 
Figure 4: Strain path at the barreling surface with respect to. friction factor, m=0.1, (b) m=0.2, (c) m=0.3, (d) m=0.4. 
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Figure 5: The radius of curvatures of the barreling against reduction in height (hf/h); d/h=0.5, (b) d/h=1 and (c) d/h=2 

 

The radius of curvatures of the barreling obtained from the 3-D CMM measurements are plotted 

against reduction in height (hf/h) in Figure 5. Obviously, increasing amount of bulging reduces curvature 

dramatically.  

The deviation of Rmin and Rmax from the corresponding radii of homogeneous deformation (Ri) were 

determined and plotted with respect to reduction in height (hf/h) as shown in Figure 6. Both ΔRmin and ΔRmax 

values are increasing with increasing friction factor [20]. 
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Figure 6: The deviation of Rmin and Rmax from the corresponding radii of homogeneous deformation (Ri) were deter-

mined and plotted with respect to reduction in height (hf/h) for d/h=0.5; (a) Rmin and (b) Rmax 

 

The trend of ΔRmax is very similar for different aspect ratios and they have a maximum at a specific 

(hf/h) value. However, ΔRmin curves are uneven after some values of (hf/h). This is due to folding where a 

part of the initially free surface comes into contact with the die. 

In figure 7, corresponding (hf/h) values of folding for various friction and aspect ratio are given. It can 

be seen from the figure, rate of hf/h increased with the increase the friction coefficient and increasing in the 

rate of d/h caused to decrease in the hf/h rate in all experiments conditions. 
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Figure 7: Corresponding (hf/h) values of folding for various friction and aspect ratio. 

 

 

3.2   Results of numerical application and GEP formulations 

Three genetic programming models were used for the formulations of the minimum and maximum barreling 

radii of billets and their folding point during cold upset forging. All tried combinations obtained from the 

GEP results are presented in Table 5 for folding point, in Table 6 for  Rmin and in Table 7 for  Rmax, 

respectively. 

 

Table 5: The best and the worst results obtained from the GEP tests for folding point 

P2 P3 P4  R2 Error  R2 Error 

P1 P5 Training Test P1 P5 Training Test 

1 7  S1 12982 0.999 0.998 S4 10918 0.978 0.967 

2 8 + S1 13876 0.989 0.971 S4 14763 0.989 0.956 

2 8 * S1 17987 0.992 0.991 S4 12835 0.978 0.965 

1 7  S2 10982 0.937 0.912 S5 12982 0.919 0.927 

2 8 + S2 19276 0.945 0.938 S5 11022 0.978 0.987 

2 8 * S2 11287 0.992 0.987 S5 12023 0.996 0.991 

1 7  S3 10987 0.918 0.901 S6 17934 0.987 0.991 

2 8 + S3 10234 0.902 0.918 S6 12922 0.992 0.990 

2 8 * S3 12897 0.992 0.989 S6 17823 0.987 0.919 
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 Table 6: The best and the worst results obtained from the GEP tests for  Rmin 

    R2 Error 

P1 P2 P3 P4 Before Folding After Folding 

P5 Training  Test  P5 Training  Test  

S1 1 7  12789 0.972 0.961 11092 0.881 0.941 

S1 2 8 + 10987 0.957 0.920 12928 0.925 0.798 

S1 2 8 * 10098 0.952 0.966 13098 0.882 0.918 

S1 3 10 + 17345 0.946 0.956 12098 0.931 0.752 

S1 3 10 * 12674 0.961 0.957 17646 0.927 0.795 

S2 1 7  15897 0.868 0.895 13756 0.885 0.948 

S2 2 8 + 13980 0.927 0.929 12345 0.902 0.867 

S2 2 8 * 12453 0.918 0.891 12876 0.916 0.800 

S2 3 10 + 14098 0.927 0.952 14908 0.904 0.890 

S2 3 10 * 17908 0.976 0.944 15093 0.925 0.765 

S3 1 7  19037 0.874 0.912 10289 0.889 0.930 

S3 2 8 + 18905 0.919 0.916 17893 0.931 0.842 

S3 2 8 * 17457 0.950 0.962 13098 0.902 0.848 

S3 3 10 + 14098 0.953 0.933 14678 0.913 0.853 

S3 3 10 * 12098 0.952 0.911 16782 0.916 0.824 

S4 1 7  10982 0.928 0.947 17829 0.929 0.910 

S4 2 8 + 11902 0.937 0.885 17294 0.917 0.804 

S4 2 8 * 12098 0.969 0.959 19038 0.892 0.905 

S4 3 10 + 10928 0.944 0.948 18990 0.936 0.741 

S4 3 10 * 11098 0.974 0.945 12782 0.935 0.762 

S5 1 7  12346 0.837 0.889 18296 0.888 0.914 

S5 2 8 + 11093 0.952 0.953 12983 0.909 0.900 

S5 2 8 * 19022 0.951 0.961 13739 0.904 0.857 

S5 3 10 + 18902 0.939 0.964 11902 0.948 0.774 

S5 3 10 * 19025 0.956 0.965 11386 0.934 0.807 

S6 1 7  12987 0.819 0.897 11091 0.890 0.904 

S6 2 8 + 11238 0.937 0.938 10982 0.922 0.755 

S6 2 8 * 12092 0.974 0.951 18296 0.913 0.879 

S6 3 10 + 11092 0.938 0.935 17298 0.930 0.840 

S6 3 10 * 19029 0.960 0.961 12987 0.922 0.869 
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Table 7: The best and the worst results obtained from the GEP tests for  Rmax 

    R2 Error 

P1 P2 P3 P4 Before Folding After Folding 

P5 Training  Test  P5 Training  Test  

S1 1 7  18724 0.735 0.734 19028 0.831 0.727 

S1 2 8 + 18414 0.903 0.870 18290 0.887 0.615 

S1 2 8 * 10552 0.934 0.916 10234 0.896 0.665 

S1 3 10 + 11913 0.961 0.951 11098 0.931 0.813 

S1 3 10 * 19366 0.950 0.934 10926 0.899 0.907 

S2 1 7  19742 0.795 0.848 10922 0.759 0.543 

S2 2 8 + 17399 0.933 0.928 11098 0.868 0.637 

S2 2 8 * 15283 0.909 0.904 12456 0.618 0.747 

S2 3 10 + 14567 0.905 0.894 18654 0.899 0.824 

S2 3 10 * 14154 0.964 0.960 19546 0.898 0.764 

S3 1 7  13700 0.744 0.696 17546 0.826 0.474 

S3 2 8 + 13717 0.861 0.886 13893 0.895 0.735 

S3 2 8 * 17565 0.822 0.825 19296 0.881 0.805 

S3 3 10 + 19127 0.815 0.848 10289 0.943 0.873 

S3 3 10 * 18178 0.888 0.849 14628 0.908 0.751 

S4 1 7  19174 0.689 0.802 18021 0.772 0.703 

S4 2 8 + 18216 0.900 0.877 10012 0.901 0.720 

S4 2 8 * 15219 0.909 0.906 19012 0.910 0.901 

S4 3 10 + 17620 0.918 0.906 19037 0.930 0.861 

S4 3 10 * 17720 0.907 0.887 16345 0.908 0.745 

S5 1 7  15404 0.824 0.863 13752 0.735 0.632 

S5 2 8 + 19789 0.888 0.882 12903 0.844 0.561 

S5 2 8 * 17591 0.893 0.878 19820 0.904 0.861 

S5 3 10 + 18601 0.946 0.925 12903 0.904 0.881 

S5 3 10 * 19603 0.959 0.974 11098 0.940 0.838 

S6 1 7  18655 0.774 0.799 10283 0.737 0.815 

S6 2 8 + 17264 0.894 0.874 11902 0.910 0.816 

S6 2 8 * 18033 0.907 0.917 16830 8.892 0.844 

S6 3 10 + 18858 0.942 0.922 18936 0.904 0.759 

S6 3 10 * 17536 0.934 0.951 12903 0.874 0.922 

 

There are many different combinations of the GEP parameters, which mean as lots of GEP models. 

Running the GEP algorithm for all of these combinations requires a huge amount of computational time. 

Therefore, a subset of these combinations is selected intuitively to investigate the performance of the GEP 

algorithm in predicting the folding point,  Rmin and  Rmax. The optimal setting is demonstrated as bold in 

the tables. Therefore these optimal settings are used for the prediction of the folding point,  Rmin and  Rmax. 

Table 8 illustrates the training and test evaluation of the GEP method for the folding point prediction. Figure 

8-12 show expression trees for folding,  Rmin and  Rmax before and after folding point. 

 

Table 8: Statistical values of best result of GEP formulation. 

   Rmin  Rmax 

 Folding Point Before Folding After Folding  Before Folding After Folding  

 Train Test Train Test Train Test Train Test Train Test 

MSE 0,0003 0,0005 0,061 0,045 0,045 0,037 0,003 0,003 0,006 0,008 

MAE 0,0160 0,0205 0,172 0,158 0,165 0,172 0,044 0,046 0,071 0,073 

R 0,9995 0,9889 0,971 0,980 0,943 0,964 0,966 0,963 0,911 0,902 
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Figure 8: Expression tree for folding. 

 

 

Figure 9: Expression tree for  Rmin before folding. 

 

 
 

 Figure 10: Expression tree for  Rmin after folding. 

 

 
Figure 11: Expression tree for  Rmax before folding. 
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Figure 12: Expression tree for  Rmax after folding. 

 
To achieve generalization capability for the formulations, the experimental database is divided into 

two sets as training and test sets. The formulations are based on training sets and are further tested by test set 

values to measure their generalization capability. Statistical parameters of test and training sets of GP formu-

lations are presented in Table 8 where R; MSE and MAE corresponds to the coefficient of correlation, mean  

square error and the mean absolute error of proposed GEP model, respectively as seen in Table 8. In litera-

ture [18, 19], this type of studies includes test sets as 20%–30% of the train set. The patterns used in test and 

training sets are selected in systematic randomly. Regarding the  Rmin and  Rmax formulation, 90 training and 

30 tests were used as training and test sets in Table 9 and Table 10, respectively. It should be noted that the 

proposed GP formulation is valid for the ranges of training set given in Table 2. Figure 13 and Figure 14 

show the training and test evaluation of the GEP method for the Rmin and Rmax predictions. 

The obtained expression tree of the formulation is shown in Figure 8 – 12 which corresponds to the 

following equation: 
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Rmin=Ri- Rmin                                                       (7) 

Rmax=Ri+ Rmax                            (8) 

From geometry (see figure 2) the radius of curvature of barrel is: 
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Table 9: Results of GP formulation versus training results. 

    Rmin Rmin(T/GP) Rmax Rmax(T/GP) 

No: m d/h hf/h Test GP Test GP 

1 0,1 0,5 0,84 13,48 13,50 0,9985 13,66 13,71 0,9961 

2 0,1 0,5 0,76 14,08 14,12 0,9967 14,39 14,45 0,9962 

3 0,1 0,5 0,68 14,77 14,85 0,9945 15,26 15,30 0,9972 

4 0,1 0,5 0,6 15,60 15,72 0,9921 16,28 16,30 0,9989 

5 0,1 0,5 0,52 16,62 16,79 0,9898 17,51 17,50 1,0005 

6 0,1 0,5 0,44 17,90 18,13 0,9869 19,04 19,01 1,0014 

7 0,1 0,5 0,2 26,52 26,49 1,0010 27,96 28,02 0,9981 

8 0,2 0,5 0,92 12,87 12,90 0,9975 13,06 13,04 1,0015 

9 0,2 0,5 0,76 13,87 13,91 0,9975 14,44 14,52 0,9948 

10 0,2 0,5 0,68 14,46 14,55 0,9942 15,34 15,40 0,9966 

11 0,2 0,5 0,6 15,16 15,31 0,9901 16,40 16,41 0,9994 

12 0,2 0,5 0,52 15,99 16,25 0,9842 17,67 17,63 1,0020 

13 0,2 0,5 0,44 16,96 17,43 0,9733 19,20 19,14 1,0031 

14 0,2 0,5 0,28 22,12 22,00 1,0053 23,92 23,83 1,0036 

15 0,3 0,5 0,92 12,81 12,84 0,9977 13,08 13,00 1,0056 

16 0,3 0,5 0,76 13,69 13,69 1,0001 14,48 14,56 0,9942 

17 0,3 0,5 0,68 14,19 14,24 0,9966 15,40 15,47 0,9956 

18 0,3 0,5 0,6 14,76 14,90 0,9908 16,49 16,51 0,9987 

19 0,3 0,5 0,52 15,39 15,70 0,9803 17,76 17,73 1,0013 

20 0,3 0,5 0,44 17,06 16,94 1,0067 19,30 19,26 1,0020 

21 0,3 0,5 0,28 21,85 21,87 0,9994 24,03 23,94 1,0036 

22 0,3 0,5 0,2 26,36 26,27 1,0034 28,18 28,14 1,0014 

23 0,4 0,5 0,92 12,76 12,77 0,9986 13,09 12,96 1,0102 

24 0,4 0,5 0,84 13,14 13,10 1,0031 13,72 13,75 0,9978 

25 0,4 0,5 0,76 13,53 13,48 1,0040 14,50 14,60 0,9934 

26 0,4 0,5 0,68 13,95 13,93 1,0011 15,44 15,54 0,9938 

27 0,4 0,5 0,52 15,42 15,19 1,0157 17,82 17,76 1,0032 

28 0,4 0,5 0,44 16,42 16,76 0,9793 19,38 19,40 0,9986 

29 0,4 0,5 0,36 18,50 18,82 0,9831 21,37 21,37 0,9999 

30 0,4 0,5 0,2 26,37 26,07 1,0114 28,23 28,21 1,0007 

31 0,1 1 0,92 25,91 25,98 0,9973 26,14 26,12 1,0009 

32 0,1 1 0,76 28,28 28,40 0,9957 28,82 28,81 1,0003 

33 0,1 1 0,68 29,76 29,92 0,9947 30,50 30,48 1,0006 

34 0,1 1 0,6 31,54 31,74 0,9936 32,49 32,46 1,0010 

35 0,1 1 0,44 36,39 36,77 0,9897 37,95 37,88 1,0016 

36 0,1 1 0,36 39,84 40,46 0,9848 41,89 41,85 1,0008 

37 0,1 1 0,2 53,83 53,94 0,9980 55,70 55,96 0,9955 



                            KANCA, E.; EYERCĠOĞLU, Ö.; GUNEN, A.; DEMĠR, M., revista Matéria, v. 24, n. 1, 2019. 

38 0,2 1 0,92 25,78 25,90 0,9956 26,21 26,17 1,0015 

39 0,2 1 0,84 26,78 26,93 0,9946 27,49 27,48 1,0005 

40 0,2 1 0,76 27,93 28,12 0,9932 28,97 28,95 1,0006 

41 0,2 1 0,6 30,86 31,21 0,9887 32,72 32,65 1,0022 

42 0,2 1 0,44 35,37 35,85 0,9866 38,19 38,08 1,0029 

 

 

Table 9: (continued): Results of GP formulation versus training results 

    Rmin Rmin(T/GP) Rmax Rmax(T/GP) 

No: m d/h hf/h Test GP Test GP 

43 0,2 1 0,28 45,08 45,12 0,9990 47,54 47,46 1,0017 

44 0,2 1 0,2 53,71 53,86 0,9974 55,85 56,01 0,9971 

45 0,3 1 0,92 25,66 25,81 0,9942 26,28 26,22 1,0020 

46 0,3 1 0,76 27,59 27,84 0,9909 29,10 29,09 1,0005 

47 0,3 1 0,68 28,77 29,13 0,9877 30,86 30,82 1,0013 

48 0,3 1 0,6 30,13 30,67 0,9823 32,90 32,83 1,0021 

49 0,3 1 0,44 35,19 35,29 0,9973 38,38 38,30 1,0023 

50 0,3 1 0,28 45,10 44,99 1,0025 47,68 47,56 1,0026 

51 0,3 1 0,2 53,86 53,72 1,0027 55,97 56,06 0,9984 

52 0,4 1 0,92 25,57 25,73 0,9938 26,32 26,28 1,0015 

53 0,4 1 0,76 27,28 27,56 0,9897 29,20 29,23 0,9990 

54 0,4 1 0,68 28,30 28,73 0,9848 30,97 30,98 0,9995 

55 0,4 1 0,6 30,00 30,14 0,9953 33,02 33,02 0,9999 

56 0,4 1 0,52 31,83 32,02 0,9942 35,47 35,59 0,9967 

57 0,4 1 0,44 34,96 35,11 0,9958 38,49 38,50 0,9998 

58 0,4 1 0,36 38,91 39,15 0,9939 42,37 42,30 1,0018 

59 0,4 1 0,28 44,94 44,80 1,0030 47,72 47,67 1,0011 

60 0,1 2 0,92 51,99 52,01 0,9996 52,18 52,19 0,9998 

61 0,1 2 0,84 54,27 54,30 0,9995 54,64 54,66 0,9997 

62 0,1 2 0,76 56,91 56,95 0,9994 57,48 57,50 0,9996 

63 0,1 2 0,6 63,71 63,77 0,9991 64,72 64,74 0,9997 

64 0,1 2 0,52 68,23 68,32 0,9988 69,51 69,54 0,9996 

65 0,1 2 0,44 73,89 74,04 0,9980 75,52 75,58 0,9992 

66 0,1 2 0,28 91,93 92,09 0,9982 94,31 94,66 0,9963 

67 0,1 2 0,2 108,85 108,84 1,0001 111,06 111,82 0,9932 

68 0,2 2 0,92 51,87 51,89 0,9996 52,24 52,26 0,9996 

69 0,2 2 0,84 54,02 54,04 0,9996 54,76 54,78 0,9996 

70 0,2 2 0,76 56,53 56,54 0,9998 57,64 57,65 0,9998 

71 0,2 2 0,6 62,99 63,00 0,9998 64,98 64,95 1,0005 

72 0,2 2 0,52 67,23 67,29 0,9990 69,80 69,75 1,0006 

73 0,2 2 0,44 72,46 72,71 0,9966 75,81 75,79 1,0003 

74 0,2 2 0,28 91,51 91,37 1,0015 94,51 94,62 0,9988 

75 0,2 2 0,2 108,96 108,76 1,0019 111,12 111,84 0,9936 

76 0,3 2 0,92 51,74 51,76 0,9996 52,29 52,34 0,9992 

77 0,3 2 0,76 56,14 56,14 1,0001 57,79 57,81 0,9996 

78 0,3 2 0,68 58,92 58,91 1,0002 61,18 61,18 1,0000 

79 0,3 2 0,52 66,09 66,27 0,9973 70,00 69,97 1,0003 

80 0,3 2 0,36 80,61 80,00 1,0076 83,78 83,70 1,0009 
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81 0,3 2 0,28 91,43 91,23 1,0022 94,58 94,69 0,9988 

82 0,3 2 0,2 108,61 108,62 0,9999 111,13 111,86 0,9935 

83 0,4 2 0,92 51,62 51,64 0,9996 52,35 52,41 0,9987 

84 0,4 2 0,84 53,52 53,53 0,9997 54,96 55,02 0,9988 

85 0,4 2 0,76 55,74 55,73 1,0000 57,92 57,98 0,9991 

86 0,4 2 0,68 58,32 58,33 0,9998 61,34 61,37 0,9995 

87 0,4 2 0,52 66,05 65,25 1,0122 70,15 70,19 0,9995 

88 0,4 2 0,44 71,83 71,80 1,0005 76,13 76,11 1,0003 

89 0,4 2 0,36 79,66 79,82 0,9980 83,88 83,82 1,0007 

90 0,4 2 0,28 90,53 91,04 0,9943 94,61 94,75 0,9985 

 

 
Figure 13: Training evaluation of the GEP method for the Rmin and Rmax prediction 

 

 

 
Figure 14: Test evaluation of the GEP method for the Rmin and Rmax prediction. 

 

 

4. CONCLUSIONS 

A mathematical model was generated by using GEP to predict folding point, minimum and maximum barrel-

ing radii of solid aluminum cylinders during cold upsetting. Based on the results of the present experimental 

study, the following conclusions have been drawn: 
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 A good agreement between the predicted and experimental folding point, minimum and maximum 

barreling radii was observed. By using the proposed GEP model, the test result of any experiment 

related to folding point, minimum and maximum barreling radii can be accomplished easily without 

doing an experiment. 

 Amount of barreling and hoop strain are increasing with friction factor. Finally both ΔRmin and 

ΔRmax values are increasing with increasing friction factor. 

 The trend of ΔRmax is very similar for different aspect ratios and they have a maximum at a 

specific (hf/h) value. However, ΔRmin curves are uneven after some values of (hf/h). This is due to 

folding where a part of the initially free surface comes into contact with the die. 

 The change in radii with respect to height reduction showed different trends before and after folding 

processes. 

 In all experiments rate of hf/h increased with the increase the friction coefficient and increase in the 

rate of d/h caused to decrease in the hf/h rate in all experiments. 

 The performance of proposed GP models was determined as R
2
= 0.908-0.998. 
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