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Abstract
Dipteryx alata Vogel is a tree species widely found in Cerrado, settling preferentially in well drained soils. Studies 
related to ecophysiology of D. alata may contribute to the decision making about using seedlings of this species 
in projects aimed at the recovery of degraded areas where seasonal flooding happens. This study aimed to assess 
the effects of flooding on photosynthetic and antioxidant metabolism and quality of D. alata seedlings cultivated 
or not under flooding during four assessment periods (0, 20, 40, and 60 days), followed by 100 days after the 
end of each assessment period (0+100, 20+100, 40+100, and 60+100 days), allowing verifying the potential for 
post‑flooding recovery. Flooded plants showed lower photosynthetic efficiency than non-flooded plants, regardless 
of the periods of exposure. However, this efficiency was recovered in the post-flooding, with values similar to 
that of the non-flooded seedlings. Moreover, the damage to FV/FM was evidenced by an increase in the period of 
exposure to flooding, but recovery was also observed at this stage of the photosynthetic metabolism. Seedling 
quality decreased under flooding, not varying between periods of exposure, but remained lower although the 
increase observed in the post-flooding period, with no recovery after flooding. The occurrence of hypertrophied 
lenticels associated with physiological changes and an efficient antioxidant enzyme system might have contributed 
to the survival and recovery of these seedlings. Thus, this species is sensitive to flooding stress but capable of 
adjusting and recovering metabolic characteristics at 100 days after the suspension of the water stress, but with 
no recovery in seedling quality. Thus, we suggested plasticity under the cultivation condition and determined that 
the time of 100 days is not enough for the complete resumption of growth.
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Resumo
Dipteryx alata Vogel é uma arbórea de ampla ocorrência no Cerrado, se estabelecendo preferencialmente em 
solos bem drenados. Estudos referentes à ecofisiologia de D. alata em podem contribuir para a tomada de decisão 
sobre o uso de mudas dessa espécie em programas de recuperação de áreas degradadas sujeitas a alagamento 
temporário. Objetivamos com essa pesquisa avaliar os efeitos do alagamento no metabolismo fotossintético 
e antioxidante, além da qualidade de mudas dessa espécie, cultivadas ou não sob alagamento durante quatro 
períodos de avaliação (0, 20, 40 e 60 dias) seguidos de 100 dias após o término de cada período (0+100, 20+100, 
40+100, 60+100 dias), possibilitando verificar o potencial de recuperação pós-alagamento. Observamos que as 
plantas alagadas apresentaram menor eficiência fotossintética e danos em FV/FM entretanto houve recuperação 
dessas características no pós alagamento. A qualidade das mudas reduziu sob alagamento não variando entre os 
períodos de exposição e embora tenha aumentado no pós-alagamento manteve-se menor não se recuperando. 
A ocorrência de lenticelas hipertrofiadas associadas a alterações fisiológicas e um eficiente sistema enzimático 
antioxidante devem ter contribuído para a sobrevivência e recuperação metabólica dessas mudas. Diante disso, 
sugerimos que a espécie é sensível ao estresse por alagamento, mas capaz de se ajustar e recuperar as características 
metabólicas 100 dias após a suspensão deste estresse hídrico, no entanto a qualidade da mudas não apresentou 
recuperação, assim, sugerimos plasticidade diante da condição de cultivo e ressaltamos que o tempo de 100 dias 
não é suficiente para a completa retomada do crescimento.

Palavras-chave: baru, estresse hídrico, trocas gasosas, espécies reativas de oxigênio, plasticidade, tolerância.
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recovery of degraded areas (Sano et al., 2016). Its occurrence 
and distribution occur mainly in the Brazilian Cerrado, 
composing a global biodiversity hotspot (Bonanomi et al., 
2019) where seasonal floods and long periods of drought 
are common (Vourlitis et al., 2017) typical of the Cerrado 
and Pantanal region (Ratter et al., 1996; Salis et al., 2006).

Seeing that Nabout et al. (2010) in their review and 
Sano et al. (2016) found that this species preferably has 
its establishment in well-drained soils as in dense savanna 
formations and in dry forests, and we did not find in the 
literature any record of the species in flooded regions of 
the species’ occurring biomes, we hypothesize that excess 
water may limit its development. We also hypothesize that 
this species does not tolerate long periods of flooding, but 
adjustments in photosynthetic and antioxidant metabolism 
may contribute to recovering seedlings after flooding 
suspension. Therefore, we aimed to assess the effect of 
different times of exposure to flooding and the potential 
for recovery of D. alata seedlings.

2. Material and Methods

2.1. Plant material and implementation of the experiment

D. alata seeds were collected from matrices which 
were distributed in remaining areas of the Cerrado, in 
the regions of Dourados and Nova Alvorada do Sul, in 
Mato Grosso do Sul, Brazil and later they were taken to 
the Federal University of Grande Dourados, where they 
were selected according to their uniformity. A voucher 
specimen is deposited in the herbarium of Dourados city 
under the voucher number 5993.

Based on pre-tests, seedlings were produced in nurseries 
with a Sombrite® screen with 30% shade where they were 
kept until the end of the experiment. Sowing was carried 
out in expanded polystyrene trays containing Distroferric 
Red Latosol (sieved) soil and sand at a proportion of 2:1 
under daily irrigation. Seedlings with 54 days after sowing 
were transplanted into pots with eight liters capacity with 
soil, sand and adding Carolina® commercial substrate 
(2:1:1 v:v:v). The experimental unit consisted of a pot 
with two seedlings.

The first phase of the experiment consisted of two water 
regimes and four assessment periods. The water regimes 
were represented by non-flooded plants, which were 
used as controls and irrigated with a sufficient amount 
of water to reach 75% of the soil water capacity (SWC) 
(Souza et al., 2000). The other group consisted of flooded 
seedlings, which were placed in a pool (pot + seedlings) 
and a water depth of approximately 5 cm was maintained 
above the substrate surface. The pool was cleaned weekly 
using a hose to prevent the proliferation of insect larvae.

The four assessment periods (0, 20, 40, and 60 days) 
represented the periods of exposure of seedlings to flooding 
compared to the non-flooded seedlings (control). The 
time of 0 days was characterized by seedling assessments 
under the same conditions before flooding begins, that 
it is initial time. Twelve flooded seedlings were taken at 
each assessment period, and part of them was destined 
for the flooding effect assessment and the other part 

1. Introduction

The impacts of climate change on plants are alarming 
and cause effects capable of altering the characterization 
of biomes. Physiological, morphological, and biochemical 
changes emerge as responses of adaptation and 
acclimatization to abiotic stresses, which can be defined as 
any growth alteration within the natural habitat of plants 
that disturbs its metabolic homeostasis (Redman et al., 
2011; Harfouche et al., 2014; Kosová et al., 2018). Global 
climate change is associated with variations in precipitation 
and flooding events, that is why it is important to study 
how they affect plant growth and distribution under this 
stressful condition.

The waterlogging of the soil generates different 
impacts on trees, with some species dying rapidly whereas 
others are able to adapt and survive in such conditions 
(Silva  et  al., 2010). Flooding stress reduces the oxygen 
supply to submerged plant tissues so that plants have 
strategies to compensate for anaerobic soil conditions 
(Wittmann et al., 2013). Tree species demonstrate a variety 
of morphophysiological responses to deal with prolonged 
periods of flooding, such as the development of adventitious 
roots, aerenchyma, and hypertrophied lenticels, in addition 
to reducing gas exchange and increasing carbohydrate 
reserves in the roots (Pimentel et al., 2014; Argus et al., 
2015; Marcílio et al., 2019).

High production of reactive oxygen species (ROS), 
such as hydrogen peroxide and superoxide and hydroxyl 
radicals, which promote oxidative damage to lipids and 
proteins in membranes and nucleic acids (Irfan  et  al., 
2010; Delmastro and Piganelli, 2011), is also common 
under these conditions. However, the elimination of excess 
ROS and prevention of its formation are possible through 
an antioxidant enzyme system (Pradedova et al., 2011; 
Contin et al., 2014; Voesenek and Bailey-Serres, 2015).

Several enzymes are involved in ROS detoxification, 
such as superoxide dismutase, peroxidase, catalase, and 
ascorbate peroxidase, and plants with higher activities 
of this antioxidant system are possibly more resistant 
to oxidative damage (Hernandez et al., 2010; Alves et al. 
2013; Souza et al., 2013; Larré et al., 2016), favoring their 
recovery potential after stress.

In this scenario, phenotypic plasticity can be determined 
as the advantage a species has in response to a changing 
environment, i.e., a new climate condition, being 
adaptive when it reaches similar or higher values for a 
given physiological characteristic compared to its initial 
environment with no abiotic stresses (Becklin et al., 2016).

Forests are important to mitigate the effects caused by 
climate change and the use of plant species selected for 
extreme environmental conditions is essential in projects 
aimed at the recovery of degraded areas (Contin et al., 
2014). Thus, the knowledge of their ecophysiological 
responses is required, considering that tolerance or 
susceptibility to stress, i.e., the ability to survive or not 
under an unfavorable condition, respectively, can directly 
imply the success of these programs (Contin et al., 2014; 
Bozinovic and Pörtner, 2015).

Baru (Dipteryx alata Vogel, Fabaceae) is a tree species 
that has gained prominence for its potential use in the 
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was drained naturally and maintained at 75% SWC to be 
assessed in the next phase (second phase), called post-
flooding recovery periods.

The recovery period, that is, the second part of the 
study, consisted of assessing the seedlings at 100 days after 
interrupting each flooding period, being characterized as 
0+100, 20+100, 40+100, and 60+100 days, as well as non-
flooded seedlings (control), which were also assessed in 
the same periods.

Temperature and relative humidity data during all 
experimental periods were obtained from the Weather 
Station of Embrapa Western Agriculture, Dourados, MS, 
Brazil (Figure 1).

2.2. Analysis and sampling

2.2.1. Survival of seedlings, Lenticels and Adventitious 
Roots

Morphological changes were detected visually, 
consisting of the development of lenticels and adventitious 
roots. Survival was assessed based on seedling dryness 
and mortality.

2.2.2. Gas exchanges

Using an infrared gas analyzer (IRGA), brand ADC 
and model LCi PRO (Analytical Development Co. Ltda, 
Hoddesdon, UK), plants were evaluated with regard to 
the leaf net photosynthesis – A (µmol m-1 s-1), stomatal 
conductance – gs (mol m-2 s-1) and instantaneous Rubisco 
carboxylation efficiency –A/Ci (µmol µmol mol-1). The 
evaluations were carried out by the average reading of two 
leaves of each repetition (totaling eight readings and four 
averages) in the morning from 8 to11 am on completely 
expanded and previously marked leaves, which means 

all measurements were always taken from these marked 
leaves, considering data measured under photosynthetic 
photon flux equal to 1500 µmol m-2 s-1.

2.2.3. The potential quantum efficiency of photosystem 
II – FV/FM

It was obtained using a portable fluorometer model 
OS-30p (Opti-SciencesChlorophyllFluorometer, Hudson, 
USA) from 8 to 11 am on the same leaves used to evaluate 
gas exchanges, which were submitted to a 30 min dark 
adaptation period using leaf-clip holders, so that all reaction 
centers in that foliar region acquired the “open” condition, 
indicating the complete oxidation of the photosynthetic 
electron transport system.

2.2.4. Seedling growth

The growth was evaluated in four seedlings, and root 
length (cm) was measured by the largest root with a 
ruler graduated in millimeters and the Dickson’s Quality 
Index (DQI) according to the mathematical expression of 
Dickson et al. (1960) in which:

height/diameter ratio + 
DQI = total dry matter/ 

shoot dry matter/ root dry matter ratio
  
  

  
	(1)

2.2.5. Total proteins in leaves (mg)

Total proteins were quantified according to the 
methodology from Bradford (1976) using fresh leaves from 
four seedlings consisting in four repetitions. Absorbance 
readings were performed in triplicates at the wavelength 
of 595 nm using a spectrophotometer (Metash Visible 
Spectrophotometer - model V5000).

Figure 1. Relative humidity and relative temperature during the periods of flooding (T0, T20, T40 and T60) and recovery (T0 + 100, 
T20 + 100, T40 + 100 and T60 + 100). RH max = maximum relative humidity (%), UR min = minimum relative humidity (%), T max = 
maximum temperature (°C), T min = minimum temperature (°C).
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2.2.6. Enzymes activity in leaves (mg protein-1)

The peroxidase (POD) activity (mg protein-1) was 
obtained by preparing the extract with fresh leaves 
from four seedlings, the activity was determined by the 
direct spectrophotometric method, converting guaicol 
to tetraguaiacol at 470 nm (Hammerschmidt et al., 1982) 
using an ELISA microplate reader (Expert Plus model).

The superoxide dismutase (SOD) activity (mg protein-1) 
was measured according to Giannopolitis and Ries (1977), 
using fresh leaves from four seedlings to prepare the extract. 
The absorbance readings were performed in triplicates 
at the wavelength of 560 nm using a spectrophotometer 
(Metash Visible Spectrophotometer - model V5000).

2.3. Statistical analysis

At each phase the experiment was conducted in a 
completely randomised design with four replications, 
in a 2x4 factorial scheme (two water regimes and four 
periods) for evaluation periods and recovery periods. The 
data collected were submitted to analysis of variance with 
5% significance, when detected differences, the averages 
relating to water regimes in each evaluation period were 
compared by the Bonferroni T test (5%) and the periods 
were adjusted by regression equations, using the statistical 
program SISVAR 5.6 (Ferreira, 2019). In the absence of 
interaction between the factors, we present the single 
effect of each significant treatment. The two phases of 
the experiment, being independent, were not compared 
with each other.

3. Results

3.1. Survival of seedlings, Lenticels, Adventitious Roots

We verified that even with flooding sensitivity, D. 
alata seedlings showed 100% survival during both periods 
of exposure to flooding and post-flooding. Lenticel 
development was evident at the base of stems submerged 
in flooded D. alata seedlings during all assessment periods 
and initially detected at 14 days after flooding (Figure 2). 
These structures remained evident at 100 days after 
flooding, presenting a dehydrated aspect.

Adventitious roots were not formed during the periods 
of assessment and recovery. Also, the seedlings showed 
100% survival during the periods of exposure to flooding 
and post-flooding even with sensitivity to flooding.

3.2. Gas exchanges

The leaf net photosynthesis (A) (Figure  3A) and 
instantaneous Rubisco carboxylation efficiency (A/Ci) 
(Figure 3C) of flooded plants remained reduced compared 
to the control seedlings in the assessment periods with 
values that did not vary during 60 days of flooding. On 
the other hand, no significant difference was observed 
between the previously flooded seedlings and the control 
for these physiological characteristics in the recovery 
periods (Fig. 3BD).

The flooded seedlings also maintained low gs values, 
which showed no variation between assessment periods. 
However, control seedlings had a maximum value of 0.069 

Figure 2. Presence of hypertrophied lenticels in the bases of D. alata flooded seedlings stems during the evaluation periods of 20 days 
(A), 40 days (B) and 60 days (C) in flooded plants. Photos: Autores.
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mol m−2 s−1 at 35 days, with subsequent reduction, but still 
higher than flooded seedlings (Figure 3E). This reduction 
is related to the low relative humidity during the period, 

characterized by the assessment days from 11/23/2018 to 
12/17/2018 (Figure 1). Plants previously flooded for up to 
60 days in the recovery periods showed values similar to 

Figure 3. Gas exchange in D. alata seedlings. Photosynthetic rate - A (μmol m-2 s-1) in seedlings under flooding and control for up to 60 
evaluation days (A) and depending on the recovery periods for this characteristic, 100 days after each evaluation (B); Instant efficiency 
of the Rubisco –A / Ci (μmol m-2 s-1) carboxylation under flooding and control seedlings for up to 60 evaluation days (C) and depending 
on the recovery periods for this characteristic, 100 days after each evaluation (D); Stomatal conductance - gs (mol m-2 s-1) in seedlings 
grown under flooding and control for up to 60 evaluation days (E) and depending on the recovery periods for this characteristic, 100 days 
after each evaluation (F). Same lower case letters do not differ by Bonferroni t test (p ≥ 0.05) for water regimes. NS = not significant.
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those of the control plants, with a minimum gs of 0.055 
mol m−2 s−1 (Figure 3F).

3.3. The potential quantum efficiency of photosystem II – 
FV/FM

Flooded plants had the lowest FV/FM values and we found 
that the reductions were accentuated due to the time of 
exposure to this stress condition (Figure 4). No significant 
difference was found between previously flooded plants 
and control plants during the recovery periods, in which 
we observed a general average for FV/FM of 0.679.

3.4. Seedling growth

The maximum root length was observed at 43 days 
(42.89 cm), with a subsequent decrease, being higher in 
the control plants (Figure 5A). The minimum root growth 
in the recovery periods was 51.83 cm and we observed a 
recovery trend from seedlings previously flooded for 40 
days (Figure 5B).

Control and flooded seedlings had no significant 
difference regarding the Dickson quality index (DQI) in 
the assessment periods for up to 40 days (Figure  5C). 
However, control seedlings showed higher quality at 60 
days. The same behavior was observed in the next phase, 
that is, the recovery periods (Figure 5D).

3.5. Total proteins in leaves (mg)

We verified a reduction in protein synthesis under 
both irrigation conditions, but more pronounced under 
flooding, in which seedling leaves presented lower total 
proteins, suggesting stress. Flooded seedlings had a 
minimum total protein value of 13.70 mg and control 
seedlings reached a value of 21.46 mg at 46 and 37 days, 
respectively. However, an increase in this value was 
observed from 40 days, suggesting a trend to adjust to 
growing conditions (Figure 6A), which can be confirmed 
by the values in the recovery periods when seedlings 
had no significant differences between water regimes 
(Figure 6B). The decrease in total proteins in control plants 
in the initial assessment periods can be associated with 
abiotic stresses (Figure 6A), such as low relative humidity 
during (Figure 1) and/ or post-transplant stress.

3.6. Enzymes activity in leaves (mg protein-1)

Flooded seedlings showed higher peroxidase (POD) 
enzyme activity in their leaves in the assessment periods at 
24 days, reaching the maximum value of 2.54 mg protein−1, 
while control seedlings presented the maximum activity 
of 1.50 mg protein−1 at 21 days (Figure  7A). However, 
the difference in activity decreased from 40 days and 
the reduced values presented no statistical difference 
from control seedlings at 60 days (Figure 7A). Moreover, 
seedlings previously flooded for 60 days did not differ 
from the control during the recovery period, but the data 
did not fit the tested mathematical models (Figure 7B).

We observed that the superoxide dismutase (SOD) 
activity in the leaves of flooded plants was higher than 
that found in control plants during the assessment periods, 
reaching a maximum value of 150.50 mg protein−1 at 56 
days (Figure 7C). However, we observed in the recovery 
periods that only seedlings previously flooded for 60 days 
reduced the activity of this enzyme and recovered values 
similar to those of control plants (Figure 7D).

4. Discussion

Our results disagree with the hypothesis that D. alata 
does not tolerate flooding and demonstrate that this 
species, although sensitive to flooding during 60 days 
of flooding, it has phenotypic plasticity that favors its 
survival and potential for post-flooding recovery. Thus, 
morphological adjustments in photosynthetic and 
antioxidant metabolism allowed recovering seedlings after 
flooding. We emphasize that the species is promising for 
projects aimed at recovering degraded areas subject to 
temporary flooding.

Based on the analyzed characteristics, we verified that 
D. alata seedlings are sensitive to flooding, with lenticel 
development, increased activity of the leaf antioxidant 
enzyme system, and adjustments in gas exchanges, which 
alleviated the stressful flooding effect and favored the 
recovery of seedlings, which showed 100% survival .

Stomatal and non-stomatal causes were attributed to 
reduced photosynthesis during flooding (Liu et al., 2014). 
Stomatal causes are associated with the possible closure 

Figure 4. Potential quantum efficiency of photosystem II- FV / FM 
in D. alata seedlings depending on water regimes and evaluation 
periods, in isolation. Lower case letters compare the means by the 
Bonferroni t test (p ≥ 0.05) for water regimes.
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Figure 5. Growth e quality of D. alata seedlings. Root length (cm) as a function of water regimes and assessment periods, alone, 
(A) and as a function of water regimes and recovery periods, 100 days after each assessment, alone (B); Dickson’s quality index (IQD) 
of seedlings grown under flooding and control for up to 60 evaluation days (C) and depending on the water regimes and recovery 
periods for this characteristic, 100 days after each evaluation (D). Same lower case letters do not differ by Bonferroni t test (p ≥ 0.05) 
for water regimes. NS = Not significant.

Figure 6. Total leaf proteins (mg) of D. alata seedlings. Due to flooding and control for up to 60 evaluation days (A) and due to the 
recovery periods for this characteristic, 100 days after each evaluation (B). Same lower case letters do not differ by Bonferroni t test 
(p ≥ 0.05) for water regimes.
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metabolism in response to plant survival and protection, 
such as the formation of morphological and anatomical 
structures (e.g., lenticels and adventitious roots), (Dolferus, 
2014; Li et al., 2015; Junglos et al., 2018; Queiroz-Alves et al., 
2019) as verified in this work with D. alata seedlings.

These last structures were not found during the 
assessed period in D. alata seedlings, but the presence 
of lenticels, essential in gas exchange under hypoxia and 
anoxia conditions, favoring the increase in O2 uptake, is an 
indication of phenotypic plasticity. Not necessarily, all of 
these changes must occur at the same time for a plant to 
be considered tolerant or with high phenotypic plasticity 
(Sauter, 2013; Queiroz-Alves et al., 2019).

Under flooding, root respiration underwent an 
immediate drop due to oxygen deficiency, with reductions 
in ATP production, limiting the energy supply for root 
and shoot growth (Zanandrea et al., 2010). On the other 
hand, this growing interruption is related to metabolic 
changes during the flooding period, which shows an 
increased production of the ethylene hormone, considered 
an important signal of water stress, allowing energy 
reserves to be used for the formation of organs, tissues, or 

of stomata, which was not assessed in this study but is 
associated with a reduction in gs, which hindered the 
entry of CO2 and caused reductions in the ribulose-1,5-
bisphosphate carboxylase/oxygenate (Rubisco) activity 
(non-stomatal cause) (Dalmolin et al., 2013; Liu et al., 2014; 
Vidal et al., 2019), reducing photosynthetic metabolism, 
which was verified in this study.

Although low gs values right after flooding were found 
in the literature in both susceptible and tolerant species 
to stress, recovery often occurs in the latter. Therefore, the 
reduction in gs is a fundamental indicator of the survival 
of flooded plants, as it controls excess transpiration when 
water intake is affected (Kissmann et al., 2014). In this 
context, we verified that the survival of D. alata seedlings 
in this work was total.

Plants considered tolerant or adapted to stress can 
acclimatize even when their roots are under conditions 
of limited oxygen availability to maintain stomatal 
conductance and leaf net photosynthesis at stable levels to 
allow their survival. Thus, plant growth and development 
may be interrupted as an escape from stress because, under 
these conditions, the energy reserves are destined for 

Figure 7. Enzymatic activity in D. alata seedlings. Peroxidase (POD) due to flooding and control for up to 60 days of evaluation (A) and 
depending on water regimes and recovery periods for this characteristic, 100 days after each evaluation (B). Superoxide dismutase 
(SOD) due to flooding and control for up to 60 days of evaluation (C) and depending on water regimes and recovery periods for this 
characteristic (D). Same lower case letters do not differ by Bonferroni t test (p ≥ 0.05) for water regimes. Na = Not adjusted.
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such as catalase, could contribute to this protection, but 
we were unable to obtain data on this enzyme activity.

The enzyme SOD is considered as the first barrier 
against stress since it performs the function of removing 
the superoxide ion (O2•-) and catalyzing its dismutation to 
oxygen and hydrogen peroxide, which can be decomposed 
by several pathways, such as catalase and peroxidase 
(Liu and Jiang, 2015). The increase in the activity of 
antioxidant enzymes observed during flooding reinforces 
ROS production and the activity of these enzymes in the 
fight against ROS, which we believe contributed to the 
recovery of FV/FM in the post-flooding.

In this study, we did not quantify the products of the 
activity of these antioxidant enzymes, which could be 
evaluated in future studies, as well as the activity of the 
catalase enzyme to complement the understanding of 
the physiological behavior of this species under flooding.

We also suggest that further studies should be carried 
out to test recovery periods higher than 100 days after 
flooding, considering the high recovery potential of 
seedlings under flooding although with the compromised 
quality and length of roots.

5. Conclusion

The occurrence of hypertrophied lenticels associated 
with physiological changes and an efficient antioxidant 
enzyme system must have contributed to the survival 
and recovery of seedlings. We suggest that the species 
is sensitive to flooding stress but capable of adjusting 
and recovering metabolic characteristics at 100 days 
after flooding suspension. However, seedling quality is 
compromised, with no recovery. Therefore, we suggested 
plasticity under this condition of cultivation and determined 
that 100 days is not enough for the complete resumption 
of growth.
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