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1. Introduction

Human respiratory syncytial virus (hRSV) or human 
orthopneumovirus is a member of the Pneumoviridae 
family of negative-sense single-stranded RNA viruses. 
Human infection with hRSV causes Acute Lower Respiratory 
Tract Infections (ALRTI) in newborns and children and 
is considered a public health problem worldwide, due 
to high mortality and hospitalization rates and the high 
treatment costs. hRSV infections affect approximately 70% 
of newborns in their first year of life and 95% of children 
up to 2 years of age, resulting in more than 3 million 
hospitalizations and approximately 200,000 deaths per 
year (Noor and Krilov 2018).

Currently, there is no vaccine available that can prevent 
hRSV infection. Only two drugs for the treatment of 
hRSV have been approved for human use: Palivizumab 
(a neutralizing monoclonal antibody) and Ribavirin 
(a broad-spectrum antiviral). Treatment costs limit 
Palivizumab therapy in high-risk patients. However, the low 
cost of Ribavirin does not outweigh its limited efficacy and 
risk of severe side effects (Anderson et al., 1990). Recently, two 
small-molecule anti-RSV therapeutics have been investigated 
in phase II clinical trials: GS-5806 or Presatovir, an allosteric 
entry inhibitor and ALS-8176 or Lumicitabine, a ribonucleoside 
analog (DeVincenzo  et  al. 2014; Wang  et  al. 2015). 
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Experimental conditions in which the flavonoid inhibited ≥ 50% 
of the viral infection were classified as effective (active 
flavonoid). Values below 50% were considered ineffective 
(inactive flavonoids). Experimental data was referred to 
as “Empirical data” Experimental data obtained by linear 
regression from the results were referred to as “Theoretical 
data”. When the two data sources were combined, the data 
was referred to as “Total data” When it was not possible 
to extract all necessary data, the article was excluded 
from our research. All flavonoids included in this study 
are listed in Table 1.

2.3. Physicochemical flavonoids variables

The physicochemical properties of each flavonoid 
was determined and calculated using two public tools: 
PubChem and Open Babel software (O’Boyle et al., 2011). 
From PubChem, we extracted CID identification (or 
compound identifier number) and SDF files containing the 
three-dimensional coordinates of the atoms that make up 
each flavonoid (atom_block and bond_block). From Open 
Babel, we obtained standard molecular properties such as 
molecular weight, number of atoms, bonds and rings, molar 
refractive power, octanol-water position, and topological 
polar surface area. In addition, we calculated the energetic 
properties of each flavonoid (bond stretching, angular 
bending, stretch bending, torsional energy, out-of-plane 
bending, Van der Waals energy, electrostatic energy, and 
total energy). All data is listed in Table 2.

2.4. Input dataset

The biological and physicochemical variables were 
divided into three distinct sets: Empirical, Theoretical, and 
Total data. Each set was further divided subdivided into two 
sub-datasets: one referring to training, validation, and testing, 
the other referring to simulation. In the first sub-dataset 
(training), the Empirical, Theoretical, and Total data presented 
was 1106, 3649 and 4755 variables from the input dataset, 
respectively. In the second sub-dataset (validation), the 
Empirical, Theoretical, and Total data presented was 200, 
650 and 850 variables of the input dataset, respectively, 
representing 15% of the total of each database.

2.5. Artificial Intelligence

The application of the AI technique consists of an 
association between artificial neural network techniques 
and genetic algorithms. The ANN technique was responsible 
for modeling the ANN architectures and the GA technique 
for ANN optimization. Artificial neural networks are 
inspired by early models of sensory processing in the 
brain. Using algorithms that mimic the processes of real 
neurons, it is possible to have the network learn to solve 
many types of problems. Here, we used a Multilayer 
Perceptron ANN, that has one or more hidden layers, 
in addition to the input and output layers (Pagel and 
Kirshtein, 2017). Each layer consists of nodes (artificial 
neurons), and for each node, a weighted sum, an input 
“value x corresponding weights”, and an activation 
function is performed to produce an output (Figure  1, 
Artificial Neuron). The resulting value of this equation 
will or will not, activate the node (Fernandez et al., 2020). 

Therefore, new therapeutic options against hRSV disease are 
urgently needed to address this unmet clinical need. In this 
context, flavonoids could be an interesting option. Flavonoids 
are natural, heterogeneous, and numerous (more than 6,000) 
compounds synthesized in plants in response to stress 
conditions and play an important role in the defense of 
plant cells against pathogens and insects (Nabavi et al. 2020). 
In vitro and in vivo studies have shown that flavonoids have 
low toxicity and have a synergistic effect with other drugs.

Chemically, flavonoids are hydroxylated phenolic 
molecules that have shown positive results in studies against 
variety of DNA and RNA viruses (Lalani and Poh 2020). Given 
the thousands of flavonoids that have been described, a 
small number of these compounds have been evaluated for 
their anti-hRSV activity. Some of them have shown positive 
results (Lopes et al. 2020; Ma et al. 2002; Wang et al. 2012; 
Chung et al. 2013). Investigating the anti-hRSV activity of 
this large number of molecules requires a large investment 
of time and money (Wouters et al., 2020). To address these 
obstacles, we propose the use of Artificial Intelligence (AI) 
techniques by combining artificial neural networks (ANN’s) 
and genetic algorithms (GAs) techniques.

Currently, AI techniques are widely used in complex 
problems of classification, clustering, pattern recognition, 
and prediction. The applications are diverse, including 
face and voice recognition, medicine for disease diagnosis, 
weather prediction, and classification of reproductive data 
(Abiodun et al. 2018; Fernandez et al. 2020). They are also 
used to increase the efficiency and speed of therapeutic 
drug discovery (Mandlik et al., 2016; Sutariya et al., 2014).

In this study, various artificial intelligences were fed 
with experimental information from anti-hRSV assays and 
biological, structural, and physicochemical parameters of 
flavonoids known to be active or inactive for anti-hRSV 
activity. Nine artificial intelligences were selected to evaluate 
489 untested flavonoids from the existing literature for their 
anti-hRSV activity. In this blind test, the AIs were able to 
classify the compounds as active and inactive for future 
testing in vitro and/or in vivo.

2. Materials and Methods

2.1. Definitions for the AI variables

Considering the correlation between molecular 
structure, biological activity, and physicochemical 
properties, we selected variables related to these 
characteristics, to be used as input data for AI. The variables 
are described as follows:

2.2. Biological variables from in vitro assays

The PubMed online platform was searched for articles 
testing the antiviral activity of flavonoids in vitro against 
hRSV using HEp-2 cells (Gamble, 2017). Various information 
was extracted from the articles, such as the viral strain 
tested (Long, A or B), the PFU (plaque forming unit), the 
concentration (μg/mL) of flavonoids, their effectiveness 
as anti-hRSV agents, and the type of test conducted 
(screening, virucidal, pre- and post-treatment). If necessary, 
the multiplicity of infection (MOI) was converted to PFU. 
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Source Abbr. Definition Type Unit ANN Structure
DOI CID Identification in PubChem String None Not Input

SDF file AB Cartesian 3D Position (R) Number Å Input
SDF file BB Connections Between Atoms (N) Number Covalent Bond Input

Open Babel MW Molecular Mass (R) Number g/mol Input
Open Babel NA Total N. Atoms (N) Number Atoms Input
Open Babel NB Total N. Bonds (N) Number Covalent Bond Input
Open Babel NR N. of Chemical Rings (W) Number None Input
Open Babel LP Log(10) of Partition Coefficient (R) Number None Input
Open Babel PSA Polar Surface Area (R) Number Å^2 Input
Open Babel BS Energy of Bonds Stretching (R) Number Kcal/mol Input
Open Babel AB Energy in Angle Between Atoms Bonded (R) Number Kcal/mol Input
Open Babel SB Energy of Stretch Bending (R) Number Kcal/mol Input
Open Babel TE Energy of Torsional Rotation Between Atoms (R) Number Kcal/mol Input
Open Babel OPB Energy of Bending Outside of the Plan (R) Number Kcal/mol Input
Open Babel VDWE Van der Waals Energy (R) Number Kcal/mol Input
Open Babel EE Molecular Surface Charge (R) Number Kcal/mol Input
Open Babel TE Sum of all OBprop Energy in F.F. (R) Number Kcal/mol Input

DOI S hRSV Strain (N) Number None Input
DOI PFU Particle Forming Units (R) Number N. particles/mL Input
DOI T Type of Assay (N) Number None Input
DOI C Concentration of Assay (R) Number μg/ml Input
ARN E Have Effect (W) Number None Output
ARN NE Don’t Have Effect (W) Number None Output

Table 2. Biological and Physicochemical variables used to develop and train the ANN.

Flavones** Flavans**
CID* Name CID* Name

14005 Quercetin pentaacetate1 932 Naringenin3

64982 Baicalin2 9064 Cianidanol3

72344 Nobiletin2 10621 Hesperidin3

114776 Isoorientin2 65084 Gallocatechin3

124034 Swertisin2 68071 Pinocembrin3

155692 Spinosin2 161557 Ampelopsin3

162350 Isovitexin2 165506 4’-Hydroxyflavanone3

188323 Cirsimaritin2 442428 Naringin3

261859 Gardenin A2 503737 Liquiritin4

442659 Swertiajaponin3 11669392 7-O-Galloyltricetiflavan5

3084961 Oroxindin3 11999968 7,4’-Di-O-galloyltricetiflavan5

5271991 Ganhuangenin3 12309904 Isookanin6

5280343 Quercetin1

5280443 Apigenin3

5280445 Luteolin3 Isoflavonoids**
5280862 Isokaempferide3 CID* Name
5281600 Amentoflavone3 124052 Glabridin7

5281605 Baicalein3 187808 Glycitin7

5281607 Chrysin3 480783 6,8-Diprenylgenistein7

5281616 Galangin3 5280373 Biochanin8

5281628 Hispidulin3 5280448 Calycosin8

5281672 Myricetin3 5280961 Genistein8

5281697 Scutellarein3 5281704 Afrormosin5

5281703 Wogonin3 5281708 Daidzein5

5281954 Tectochrysin3 5281812 Texasin9

5318997 Icariin3 5282074 Hydroxygenistein9

5320315 Oroxylin A3 5481948 Semilicoisoflavone B9

5320438 Pectolinarigenin3

5481982 Baohuoside II3

10005544 10-O-Methylquercetin tetraacetate3

11726019 Isothymonin3 Aurone**
16681753 10’,5’,6,7-tetramethoxyflavone3 CID* Name
44144321 Quercetin-10-rham(4)-gluc3 5281295 Sulfuretin4

*CID = compound identification from PubChem site. **classification flavonoids classes. References: 1 Lopes et al. (2020) 2 Wang et al. (2012) 
3 Chung et al. (2013) 4 Ma et al. (2001) 5 Li et al. (2006) 6 Song et al. (2016) 7 Kaul et al. (1985) 8 Ma et al. (2002) 9 Shi et al. (2016)

Table 1. Flavonoids previously investigated in the literature on their anti-hRSV activity.
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The backpropagation algorithm was used. Thus, the results 
were compared with the real results of antiviral activity, 
and the weights were changed to obtain fewer errors. 
Each architecture consists of input, output, and hidden 
layers (between 1 and 3) with a random number of 
neurons ranging between (10-600), transfer functions 
(logsig, purelin, tansig, hardlim, tribas, radbas, and satlin), 
and training functions (trainrp, trainscg, traincgb, traincgf, 
traincgp, traingdm, and traingd) (Beale  et  al., 2017). 
The data processed by ANN was divided into three 
sets: training (70%), validation (15%), and testing (15%). 
Each set was randomly generated for each training session 
(Benzer and Benzer, 2015). At the end of the process, the 
percentage of success and failure of the network during 
learning was determined. To obtain the best ANN for 
determining the antiviral activity of flavonoids, the genetic 
algorithm technique was added to select the best network 
architectures (Linden et al., 2012).

2.6. Genetic Algorithm

The Genetic Algorithm (GA) technique was inspired by 
C. Darwin’s theory. According to this theory, the principle 
of selection privileges the stronger individuals in terms of 
longevity and reproduction. Individuals who have more 
offspring have more chances to pass on their genetic codes 
to the next generation. These genetic codes represent 
the identity of each individual and are represented by 
chromosomes (Linden et al., 2012). In GAs, a chromosome 
undergoes an evolution process consisting of training, 
selection, recombination, and mutation. At the end of several 
evolutionary cycles, stronger individuals must be contained 
(Rosa and Luz, 2009). The aim of applying of the GA technique 
was to obtain ANN which represents the fewest errors in the 
flavonoids classification into “active” or “inactive” for the viral 
activity of the hRSV virus. Thus, the first step was to randomly 
create an initial population of different ANN’s, ranging from 

100 to 1000 individuals. For each ANN, the parameters that 
determine the architecture were defined. These parameters 
define the genes of the chromosomes that make up the GA 
populations. These parameters consisted of the number of 
neurons in the first, second, and third hidden layers, the 
transfer function for the first, second, and third hidden layers, 
the transfer function for the output layer, the training function 
used, and the number of hidden layers to be used. The data 
were ordered and classified according to the accuracy of 
the ANN. To select 20% of the best individuals for the next 
generation, a selection procedure known as elitism was used 
(Rosa and Luz, 2009). Moreover, 60% of the new generation 
is generated from the previous generation by crossing-over 
and mutation (this last generation is not more than 5%). 
The remaining 20% were provided by migration, that is, 
they were randomly generated according to the parameters 
needed in the initial population. After these stages, a new 
population was created using the best ANN. This cycle is 
called a generation. The maximum number of generations 
is 300 so, at the end of the generations the software shows 
the best ANN architecture to solve the problems of this study, 
the activity or inactivity of the virus.

2.7. Blind-test

As the three best AIs were determined for each 
dataset (Empirical, Theoretical, and Total) 489 flavonoids 
that had not yet been tested for anti-hRSV activity in 
the literature were analyzed using the nine better AIs 
(Supplementary Material Table 1). For this purpose, we 
set the following experimental conditions: the main 
three-dimensional flavonoid conformation available 
on the PubChem website, a hRSV strain, an inoculum 
of 100 PFU and four types of experimental treatment 
(screening, virucidal, pre- and post-treatment) in the 
presence of 16 μg/ml of the flavonoid. The values returned 
by AI were classified as “active” or “inactive” compounds. 
Agreement and disagreement between AIs were reviewed. 
A list of “most promising” compounds and “least promising” 
compounds was generated.

2.8. Further statistical analysis

Statistical analysis of the results was performed using the 
Receiver Operating Characteristic (ROC) and the corresponding 
Area Under the Curve (AUC). The AUC is defined as the area 
under the ROC curve and is calculated based on the sensitivity 
and specificity of the results obtained, which allows., an 
independent analysis of the results presented (Fawcett, 2006).

3. Results

Following the methodology described above, after the 
networks were trained, validated and tested, three better 
ANN architectures were selected using the GA technique. 
The parameters of these ANN’s are listed in Table 3 for 
each dataset (E1-E3 for the Empirical dataset; T1-T3 for 
the Theoretical dataset and TT1-TT3 Total dataset). The 
Table 3 shows the number of neurons (N) in each layer 
and the functions that were used by the software to 
generate the outputs and to update the weight values in 
the backpropagation algorithm (Transfer Function; TF).

Figure 1. Multilayer Perception ANN structure and Artificial 
neuron structure.



Brazilian Journal of Biology, 2023, vol. 83, e270776 5/14

Artificial Intelligence in the prediction of antivirals

The performances of the AIs created with the best 
ANN are shown in Table 4. It can be observed that the 
best AIs in Total databases have success rates for training 
and simulation (>83%). AIs trained with Empirical, 
Theoretical, and Total data can recognize active/inactive 
flavonoids at 91–87, 97–99 and 83–92%, respectively. 
Details of these three performances can be observed by 
analyzing the confusion matrices for the training and AI 
simulation (Figure 2), and for the other AIs can be found 
in the Supplementary Material, S1. For example, Figure 2 
shows the confusion matrices for training and simulation 
from the entire dataset (TT1). When considering the 
known active flavonoids (TP + FN), AI had an accuracy of 
81.7% and an error of 18.3% (c values in Figure 2). When 
considering known inactive flavonoids (FP + TN), AI had 
an accuracy of 93.1% and an error of 6.9% (d values). When 
we mixed known active and inactive flavonoids, AI was 
83% (a value) and 92.5% (b value) to predict active and 
inactive flavonoids, respectively. Overall, when trained 
with 4755 different entries, the AI was 89.8% correct and 
10.2% incorrect (e values) in predicting the anti-hRSV 
activity of flavonoids.

During simulation, the AI was 71.6% (h) and 90.3% (i) 
for the known active and inactive flavonoids, respectively. 
When the active and inactive conditions were mixed, the AI 
was 77.6% (f) and 87.2% (g), respectively. In the simulation 
phase, 194 data points were correctly classified as active 
and 523 as inactive, giving an accuracy of 84.4% from a total 

of 850 data points. The same analysis can be performed if 
we consider the confusion matrix for the data of E1 and T1 
(Figure 2). The confusion matrices for the other datasets 
(TT2, TT3, E2, E3, T2, and T3) are shown in Figure S1.

To evaluate the results of training and simulation, the 
receiver operator characteristic (ROC) curve and area 
under the ROC curve were used in this study (Figure 3 
and Supplementary Material, S1). The ROC is a probability 
curve and has two evaluation parameters: the false 
positive rate (represented by the x-axis) and the true 
positive rate (represented by the y-axis). Therefore, the 
ROC curves were calculated to predict antiviral activity 
(active data or inactive data). In the three cases (Total, 
Empirical, and Theoretical data), the positioning of the 
curves in the northwestern region showed that the AI 
did not randomly select the exits, which would be the 
case if the curve of the results were close to the diagonal 
between the x-axis and y-axis, represented by the gray 
line in the ROC curve graph. Based on this result, it can be 
concluded that a learning process has taken place and the 
AI has shown satisfactory performance in predicting the 
viral effect of the flavonoid. Complementarily, the AUC 
(measures the two-dimensional area under the ROC curve), 
which summarizes the ROC curve into a unique value, 
showed the following results for the training Total 
(TT1), Empirical (E1), and Theoretical (T1) datasets, 
considering the antiviral activity or inactivity, 0.97 - 0.969, 
0.938 - 0.936, and 0.998- 0.999, respectively (Figure 3). 

Data set ANN

Hidden layer

Training Output1 2 3

N T.F. N T.F. N T.F.

Total TT1 189 purelin 371 radbas 78 satlin trainscg satlin

TT2 173 purelin 246 radbas 73 hardlim trainscg purelin

TT3 228 logsig 117 radbas 67 tansig trainrp logsig

Empirical E1 47 radbas 86 tansig 46 tribas trainrp tansig

E2 122 logsig 79 logsig 81 tribas trainrp logsig

E3 241 tansig 54 logsig 23 tansig trainrp tansig

Theoretical T1 139 logsig 79 tribas 56 logsig trainrp purelin

T2 389 purelin 166 radbas 45 satlin trainscg tansig

T3 332 purelin 173 radbas 38 satlin trainscg satlin

Where N = number of neurons; T.F. = transfer function.

Table 3. Parameters of the three best ANN architecture from each dataset.

Data set AIs
Training Simulation

Active Inactive Active Inactive

Total TT1 83.0 92.5 77.6 87.2

TT2 78.6 93.0 72.0 87.8

TT3 85.8 89.2 84.4 84.7

Empirical E1 91.4 87.6 84.4 84.5

E2 82.8 91.6 75.6 89.7

E3 79.3 94.0 71.1 92.9

Theoretical T1 97.2 99.3 99.0 97.6

T2 96.5 99.2 97.5 96.9

T3 97.7 96.6 95.5 93.6

Table 4. Anti-hRSV activity predictions (%) with best parameters from each dataset.
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Figure 2. Confusion Matrices in training and simulation from the Total (TT1), Empirical (E1) and Theoretical (T1) datasets. The diagonal 
cells (green cells) correspond to the correctly classified data and the cells outside the diagonal (red cells) correspond to misclassified data. 
TP: True Positive; TN: True Negative; FN: False Negative; FP: False Positive; a–j: percentage of correct and error.
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Figure 3. ROC curve and AUC values for training and simulation steps. The graphs show the ROC curves and the AUC values for the 
training and simulation steps of the Total (TT1), Empirical (E1) and Theoretical (T1) datasets. The AUC values provide information on 
the assertiveness of the AI’s assertiveness in predicting flavonoids activity or inactivity of against hRSV.
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For the compounds classified as inactive, 100% of AIs 
agreed in 61 cases. To compile the final list of compounds, 
we selected only those among the 61 where the platform 
ZINC15 indicated at least five suppliers, resulting in 
in the selection of 10 flavonoids, as shown in Table  6. 

Also, for the simulation data, we have the following results 
for the AUC: 0.946 - 0.945, 0.887 - 0.893 and 0.984 - 0.982, 
for the Total (TT1), Empirical (E1), and Theoretical (T1) 
datasets, respectively (Figure 3). In Figure 4, we show the 
performance of the AIs for Total (TT1), Empirical (E1), and 
Theoretical (T1) data, where we observe Mean Squared 
Errors (MSE) of the order of 10-2 for all ANN’s. The ROC 
curves, the AUC, and the performance values from the 
other AIs (TT2 - 3, E2 - 3, and T2 - 3) presented similar 
results, which are presented in Figure S1.

Since the data described so far indicates a high hit rate 
of AIs (> 83%), we submitted 489 flavonoids with unknown 
anti-hRSV activity to AI to predict them. For this purpose, 
a dataset was created that included physicochemical and 
biological variables of these flavonoids under different 
experimental conditions.

The following experimental conditions were set for this 
blind test: inoculum of 100 PFU of strain A, four types of 
treatment (screening, virucidal, pre and post-treatment) in 
the presence of 16 µg/ml of the flavonoid. The combination 
of the biological and physicochemical variables with the 
experimental conditions of the 489 flavonoids resulted in 
1956 input datasets that were submitted for AI analysis. For 
this purpose, the nine best AI previous described previously 
(E1-E3, T1-T3 and TT1-TT3) were used. At the end of the 
blind test, the results provided by the different AIs indicate 
the probability that the flavonoid is experimentally active 
or inactive. These results were compared to determine the 
agreement between the AIs (Table 5). Table 5 shows that of 
the 1956 input datasets, the three (E1-E3) AIs generated from 
the Empirical data concordantly classified 500 input datasets 
as inactive and another 348 as active. For the AIs generated 
from the Theoretical data (T1-T3), they agree in classifying 
471 input data as inactive and 132 as active. Finally, the AIs 
generated from the Total data (TT1-TT3) they agreed to 
classify 713 input data as inactive and another 31 as active.

Lastly, it was possible to list the compounds that were 
considered with more or less potential against hRSV by 
the AIs depending on the experimental conditions and the 
biological and physicochemical variables provided. For this 
purpose, we selected the 20 compounds for which a larger 
number of AIs, specifically nine, agreed to classify them 
as active or inactive. At least seven AIs agreed to classify 
10 compounds as active. These compounds are identified 
by CIDs: 71307295, 5379096, 10449654, 485522, 629964, 
5318869, 5320399, 5458461, 5746354 and 5321398 and 
belong to the flavan, flavone, and isoflavone class of 
flavonoids. The AIs were also evaluated for the type of 
antiviral assay in which each of these compounds would 
show promising results against hRSV. The most frequently 
reported type of antiviral assay was post-treatment, 
followed by screening, virucidal, and pre-treatment. 

Figure 4. Total performance of ANN for each dataset. The performance 
graphs relate the Mean Square Error (MSE) to the epochs of the AIs 
for the Total (TT1), Empirical (E1) and Theoretical (T1) datasets. 
The curves represent the performance of the different stages of 
AI tests (train, validation and test) and the green dot indicates the 
better number of epochs.

Data set AIs
Agreement

inactivity activity

Total TT1–3 713 31

Theoretical T1–3 471 132

Empirical E1–3 500 348

Table 5. Agreement among all AI’s.
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This parameter was included, considering that a better 
chance may exist in the future to test this compound in 
vitro and/or in vivo. The complete list of the 40 flavonoids 
unanimously ranked as inactive can be found in the 
Supplementary Material (Table S2). The CID of the 
compounds classified as inactive were: 11483087, 440735, 
73202, 5280681, 5318761, 71437113, 15382687, 5281617, 
56776173 and 5281801, belonging to the classes of 
flavanone, flavone, and isoflavone. The AIs further indicated 
that these flavonoids did not inhibit hRSV when tested in 
virucidal and screening assays.

4. Discussion

The hRSV is one of the most important causative 
etiological agents of infantile and senile bronchiolitis. 
Although hRSV infections result in thousands of cases 
worldwide each year, there are no vaccines. Treatments 
focus on supportive or preventive measures, such as the 
expensive monoclonal antibodies. The current scenario is 
forcing the scientific community to look for efficient and 
cost-effective drugs (Battles et al., 2016).

Externally, the hRSV virion has three structural proteins 
anchored in its membrane: F, G, and SH. Protein F has been 
the target of pharmacological strategies in the search for 
anti-hRSV compounds, as it has been shown to be important 
in the adhesion and internalization stages of the viral cycle 
(Battles  et  al., 2016). During these steps, the F protein 
trimer (F0) adopts an elongated structural conformation 
(F1) that facilitates the entry of the virion into the target 
cell (Krarup et al., 2015). Studies have shown that small 

molecules have great potential to inhibit the hRSV virus 
as they are able to interact in the central cavity of the 
F0 protein, preventing the conformational change of F1. 
Furthermore, hRSV-infected cells express the F protein in 
their plasma membrane, allowing the formation of large 
syncytia by cell fusion. Syncytia facilitates the spread of 
the virus in tissues (Battles et al., 2016).

Flavonoids are plant metabolites with a wide chemical 
and biological diversity, including antiviral activity. Since 
flavonoids are small molecules found in our daily diet, readily 
available, and relatively inexpensive, they have potential to 
be used as drugs to combat hRSV. Considering the hundreds 
of flavonoids that have been described, a small number of 
these compounds have been evaluated for their anti-hRSV 
activity. Several of them have been shown to have antiviral 
activity and others have yet to be analyzed (Lopes et al., 2020; 
Wang et al., 2012; Chung et al., 2013; Ma et al., 2001). These 
studies have also shown that the anti-hRSV activity of 
flavonoids is related to the inhibition of the first phases of 
the viral infection cycle, adhesion, and internalization, as well 
as to their chemical structural compounds (Li et al., 2006; 
Song et al., 2016; Kaul et al., 1985; Shi et al. 2016). Lopes et al., 
2020 proposed that the anti-hRSV mechanism of action of 
flavonoids is related to the interaction of these compounds in 
the central cavity of the F0 protein, preventing its transition 
to the F1 conformation (Lopes et al., 2020).

Thus, the search for other flavonoids that may exhibit 
anti-hRSV activity is warranted. There are hundreds of 
them deposited in databases such as PubChem. When 
one considers the possibility of chemically altering these 
compounds through synthetic modifications, the number 
of compounds to be tested could number in the thousands.

Prediction CID Class Treatment* AI agreement (%) ZINC ID Antiviral activity in literature

ACTIVE 71307295 Flavan 3 88.8 14642741

5379096 Flavone 2 88.8 14779854 Papilomavirus1

10449654 Flavone 3 88.8 14762971

485522 Flavone 4 77.7 6483423

629964 Flavone 4 77.7 2585767

5318869 Flavone 3 77.7 5732364 Sars-Cov-22, Picornavirus2

5320399 Flavone 1 77.7 2392262

5458461 Flavone 4 77.7 1763468 Influenza3, Herpes simplex4

5746354 Isoflavone 3 88.8 14762971

5321398 Isoflavone 2 77.7 1792763 Influenza5, Sars-Cov6

INACTIVE 11483087 Flavanone 2 100 14728393 HIV7

440735 Flavanone 2 100 58116 Sars-Cov-28

73202 Flavanone 4 100 14806381

5280681 Flavone 4 100 5998596 Hepatitis B9, Poliovirus10

5318761 Flavone 4 100 49823026

71437113 Flavone 2 100 85867362

15382687 Flavone 4 100 15271731

5281617 Flavone 2 100 5732375 Sars-Cov-211, African swine fever virus12

56776173 Flavone 2 100 67903379

5281801 Isoflavone 2 100 6092209 HIV13, HCV14, Rhinovirus15

*The numbers for antiviral treatment indicate the kind of antiviral assay was predicted by the AI (1 for pre-treatment; 2 for virucidal; 3 for 
post-treatment and 4 for screening). Abbreviations: HIV, human immunodeficiency virus; HCV, hepatitis C virus. References: 1 Kumar et al. (2015) 2 
Leal et al. (2021) 3 Walther et al. (2016) 4 Likhitwitayawuid et al. (2006) 5 Liu et al. (2008) 6 Yu et al. (2012) 7 Esposito et al. (2013) 8 Deshpande et al. (2020) 9 
Lin et al. (2005) 10 Robin et al. (2001) 11 Nouadi et al. (2021) 12 Hakobyan et al. (2019) 13 Tewtrakul et al. (2007) 14 Lee et al. (2018) 15 Choi et al. (2010)

Table 6. Selection of flavonoids identified by AIs as active or inactive.
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In a recent article, the authors put the average cost of 
developing a new drug between $314 million to $2.8 billion 
over a decade or more (Wouters et al., 2020). Several research 
groups incorporated mathematical and/or computational 
approaches into their new drug studies to reduce the costs 
and time for drug development (Liu et al., 2008; Anusuya 
and Gromiha, 2017; Ganesan et al., 2017; Costa et al., 2016; 
Guimarães et al., 2018; Perilla et al., 2015; Scotti et al., 2015; 
Teixeira et al., 2017; Uriarte-Pueyo and Calvo, 2010).

Studies addressing the anti-hRSV activity of flavonoids 
have mainly involved in vitro or in vivo analyzes before 
mathematical and/or computational approaches were used 
(Cichero et al., 2017; Hao et al., 2011; Jiménez-Somarribas et al., 
2017; Xia et al., 2016). The need to perform in-house tests 
beforehand does not lead to an optimal reduction in research 
time and cost. Other studies have evaluated the chemical 
or structural properties of flavonoids (González-Díaz et al., 
2005; Ji et al., 2015). They have not considered the biological 
and experimental properties in their analysis.

Here, we propose the use of an AI technique, by feeding the 
artificial neural networks associated with genetic algorithms, 
with real input parameters from the literature. The data 
were organized into matrices, containing biological and 
physicochemical properties of flavonoids and experimental 
antiviral parameters of hRSV. This strategy is expected to 
provide a more robust, complete analysis in less time and at 
a lower cost in predicting the anti-hRSV activity of thousands 
of flavonoids that have not yet been tested in the literature.

In short, the artificial neural network is an artificial 
intelligence technique whose architecture mimics the 
knowledge acquisition and organizational capabilities 
of the human brain (Goh, 1995). The unique features of 
this computational model include robust performance in 
dealing with noisy or incomplete input patterns, high fault 
tolerance, and the ability to generalize from training data 
(Bertolaccini et al., 2017). These properties are responsible for 
various applications of ANN’s, such as image processing, pattern 
recognition and prediction (Cristea, 2009; Choi et al., 2009). 
Once trained, the network becomes extremely fast, which 
is attractive for solving complex problems that require 
real-time processing. Combining this technique with genetic 
algorithms, a powerful optimization method based on the 
principles of genetics and natural selection, increases the 
efficiency of the network (Cristea, 2009).

The results generated by AI in this study can be divided 
into two parts. In the first part, nine AIs with a high percentage 
of reliable predictions were generated through training and 
simulation based on experimental parameters and biological 
and physicochemical data from the literature (> 83%). 
Next, the architecture of these AIs was used to evaluate 
flavonoids that have not yet been studied in the literature 
for their anti-hRSV activity. The input data included the 
structural and physicochemical parameters of 489 flavonoids 
under four different treatment conditions (pre, post, virucidal, 
and screening), always performed with 100 PFU of A strain 
and 16 μg/mL of flavonoid. Under these conditions, the 
AIs returned their active or inactive status. Evaluation of 
maximum agreement among AIs showed that at least seven 
AIs agreed in predicting 10 compounds as active.

Alternatively, at least nine AIs agreed in predicting 40 
compounds as inactive, of which we selected 10 to highlight. 

The selection considered the commercial availability of the 
compounds which will facilitate future in vitro and in vivo 
tests. Among the active compounds, seven are flavones, two 
isoflavones, and one flavan, of which jaceosidin, kumatakenin, 
sophoricoside, and artocarpin have already been studied for 
some viruses (Table 6). Among the 10 inactive compounds, six 
are flavones, three flavanones, and one isoflavone, including 
3-O-methylquercetin, orobol, and eriodictyol, which have 
already been studied for their antiviral activity against some 
viruses (Table 6).

In the future, these flavonoids could be tested in vitro 
and/or in vivo against hRSV. The results of these tests could 
indicate promising compounds to combat the hRSV virus, 
increase our knowledge about the activity of flavonoids 
against this virus and provide new data that could be 
incorporated into AI. Further studies may also indicate 
which input parameters are the most influential in AI’s 
decision making, and thus improve its predictive ability.

5. Conclusion

Here, we have developed an artificial intelligence capable 
of predicting the active or inactive status of antiviral flavonoid 
activity against the hRSV virus. This important tool could 
accelerate the studies to find new anti-hRSV drugs, and 
thus reduce the number of hospitalizations, deaths, and 
illnesses caused by this viral infection worldwide.
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Table S1 – The 489 compounds used to train the AI.

Table S2 – Flavonoids unanimously classified as inactive by ANN.

Figure S1 – Confusion Matrices in training and simulation.
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