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1. Introduction

The structure and composition of fish assemblages of 
Amazon basin are influenced by the characteristics of the 
waters, which were determined by the geological processes 
of basin formation (Siqueira-Souza et al., 2021). However, 
fish assemblages are also influenced by the flood pulse 
(Junk et al., 1989), which cyclically alters the landscape 
of the aquatic environments of the plains adjacent to the 
large rivers and promotes changes in habitat availability, 
connectivity patterns between biotopes, food availability 
and the physicochemical characteristics of the water 

(Affonso et al., 2015; Correa et al., 2008; Hurd et al., 
2016; Silva et al., 2021; Siqueira-Souza et al., 2016, 2021). 
It is, therefore, home to a high diversity of fish, with 
more than 2,700 described species, of which 1,696 are 
endemic (Dagosta and De Pinna, 2019; Reis et al., 2016). 
The floodplains adjacent to the large Amazonian rivers has 
a wide variety of aquatic habitats which environmental 
conditions and connectivity patterns are influenced by 
the annual variation of the river level (Hurd et al., 2016; 
Junk et al., 1989).
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diversity. Thus, if spatial effects are influential to the 
fish diversity patterns, they should be considered in 
plans for the conservation of aquatic biodiversity. 
In view of this, we tested the hypotheses that seasonal and 
spatial factors, or their interaction are determinants for 
structuring fish assemblages in aquatic environments with 
distinct limnological characteristics in a sub-basin of the 
middle Negro River (Amazon basin). We also considered 
that the existence of environmental filters, determined 
by the spatial factor, would favor a greater component of 
species substitution (turnover) in beta diversity, which 
might be magnified by seasonal dynamics.

2. Methods

2.1. Study area

The study was carried out in a sub-basin of the Middle 
Negro River that is formed by two main tributaries: the 
Demeni and Aracá Rivers (Figure 1). They are an environment 
that has high fish diversity (Beltrão et al., 2019) since they 
are formed by different habitats such as small streams, 
tributary rivers, seasonal beaches, lakes, and seasonally 
flooded forests (Noveras et al., 2012). The Demeni River 
has limnological characteristics that are distinct from other 
rivers of the Negro River basin, and presents clear water, 
with a higher suspended sediment load when compared 
to the blackwater rivers of the same watershed basin. 
In the rainy season, its waters can become cloudy due to 
increased suspended material in the water column. Clear 
rivers have low conductivity (~ 10.0 μS/cm) and pH values 
that are slightly acid (De Oliveira et al., 2011; Sioli, 1984). 
The Aracá River is a typical blackwater river, with a low 
concentration of nutrients, acidic pH and high concentrations 
of humic and organic acids (Goulding et al., 1988; 
Ríos-Villamizar et al., 2022).

In the low-water period, due to the retraction of the 
waters, there is an increase in the density of individuals 
that results in an increase in the intensity of predation 
(Freitas and Garcez, 2004). In this phase of the cycle, the fish 
take refuge in the main channel of the river or are isolated 
in lakes with low water volume until the beginning of the 
rising-water period (Freitas and Garcez, 2004), at which 
time the renewal of water and the entry of nutrients into 
the habitats of the plain occurs, thus benefiting aquatic 
organisms (Freitas et al., 2010). Oppositely, in the high-water 
period, the flooding process occurs from the main channel 
of the river in the direction of the adjacent floodplain, which 
increases the connectivity between the diverse habitats 
that make up these flooded areas. With the increase in the 
river level, the fish assemblages have a greater dispersion 
area for feeding, reproduction, and refuge against predators 
(Freitas et al., 2010; Röpke et al., 2015; Silva et al., 2021). This 
dynamic promotes biotic homogenization (Petsch, 2016) 
and reduces alpha diversity, however, depending on the 
degree of connectivity between habitats there is a greater 
difference in species composition, thus influencing the 
structure of the metacommunity (Virgilio et al., 2022).

Local factors act in different ways. During the low 
water period, the water temperature and transparency 
are higher. However, in the high-water period, the water 
becomes less transparent and experiences a higher 
concentration of phosphorus. These environmental 
modifications influenced by the hydrological cycle change 
altering the physical and chemical characteristics of the 
habitats (Thomaz et al., 2007) and the fish composition 
between months of low water levels and months of high 
water (Röpke et al., 2015; Silva et al., 2013). The flood pulse 
influences the environmental heterogeneity by distinct 
ways along the hydrological cycle (Junk et al., 1989).

The Negro River is the second largest tributary of the 
Amazon River, and its basin has a high richness of fish 
species that inhabit various bodies of water, including 
rivers, lakes, streams, and floodplains (Beltrão et al., 2019; 
Goulding et al., 1988). Among the many rivers that make 
up the Negro River basin, the Aracá-Demeni sub-basin, 
located on the left bank of the middle stretch of the Negro 
River, stands out. This sub-basin consists of two rivers 
with distinct physicochemical characteristics, the Aracá 
River, with typically black waters, and the Demeni River, 
with clear waters.

The existence of two rivers with distinct limnological 
characteristics, which are located within the same 
sub-basin, provides the opportunity to compare the 
influence of flooding and receding comparison and 
spatial factors on the composition and structure of 
fish assemblages at this spatial scale. In this situation, 
we addressed the following question: Is it possible 
that connectivity between habitats in the same sub-
basin reduces heterogeneity among those habitats 
and has no effect on fish species composition between 
sub-basins? If the answer is yes, the effects of the flood 
pulse would still be predominant in the structuring of 
the fish assemblages of the rivers of the sub-basin. It is 
recognized that the factors that act on the diversity of 
Amazonian fish act at different scales (Freitas et al., 2014), 
with the predominance of different processes on regional 

Figure 1. Location of the sampling sites in the middle Negro 
River, municipality of Barcelos, Amazonas, Brazil. PT01, PT02 = 
confluence of the Aracá River and the Demeni River (mixed water), 
PT03, PT04 = Aracá River (blackwater), PT05, PT06 = Demeni River 
(clearwater).
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2.2. Data collection

The sampling was carried out in the periods of falling 
water (November 2018) and rising water (April 2019), at six 
collection points: two points on the Demeni River, two on 
the Aracá River and two points below the confluence of both 
rivers. The total effort corresponds to 12 collections (Figure 1).

The sampling consisted of experimental fisheries carried 
out with gillnets 2 meters high and 15 meters long, and 
mesh sizes with 30, 40, 50, 60, 70, 80, 90, 100, 110 and 
120 mm between opposite knots in all the collections 
points. The gillnets were installed at dawn (05:00 to 09:00) 
and at early evening to night (17:00 to 21:00), making a 
standardized total time of eight hours per day in each 
fishery. The fish caught were sorted and identified in the 
field with the help of ichthyological keys and supporting 
literature (van der Sleeg and Albert, 2017).

The measurement of environmental variables measured 
out once before the end of the fisheries at all sampling sites. 
Temperature, dissolved oxygen and pH were measured 
with a multiparameter probe (Hanna YSI, 55/12FT). 
Transparency was measured using a Secchi disk in the 
period of highest solar incidence.

2.3. Data analysis

The following ecological descriptors of fish assemblages 
were estimated: richness (S), numerical abundance (N), the 
Shannon-Wiener diversity index (H’) (Krebs, 1999), equitability 
by the Pielou index (J’) (Magurran, 1988) and dominance by 
the Berger-Parker index (d) (Magurran, 1988). The potential 
species richness was estimated using the jackknife index 
(Magurran, 1988), which has the purpose of correcting the bias 
in the estimates and permits the comparison among the sites 
via the standard error (Magurran, 1988). To test the hypothesis 
of seasonal differences in ecological descriptors, Student’s t-test 
was used. The assumptions of normality and homoscedasticity 
were tested using the Shapiro-Wilk and Levene tests, respectively.

The number of common and unique species among 
the three sampling sites and between the two periods 
were identified in Venn diagrams. The species abundance 
matrix per sampling was standardized using Hellinger’s 
distance, which is a Euclidean distance between sites 
where the abundance values are first divided by the site 
total abundance, and the result is square root transformed 
(Borcard et al., 2011). Data was then tested for homogeneity 
of covariance matrices using the Betadisper function in the 
Vegan package (Anderson, 2006; Oksanen et al., 2020). Then, 
a distance matrix was constructed from the standardized 
abundance matrix using the Bray-Curtis coefficient. 
A permutational analysis of variance (PERMANOVA) two-way, 
considering 5,000 permutations (Anderson, 2001), was 
used to test the hypotheses of seasonal and spatial effects 
on the composition of fish assemblages. The response 
variable was the distance matrix, and the factors were: 
the period, with two levels related to falling and rising 
water; and the sampling site, with three levels: Aracá 
River, Demeni River, and the section below these, named 
the confluence. Subsequently, a redundancy analysis (RDA) 
was used in order to identify which environmental variables 
(temperature, pH, dissolved oxygen, and conductivity) 
influence the differences observed in the PERMANOVA.

Beta diversity, which is assumed to be the variation in 
the species composition of the assemblages, was calculated 
for the sampled sites. Multi-site dissimilarity was calculated 
using the Sorensen index (ΒSOR) as a measure of total beta 
diversity. The turnover component (taxon substitution) 
was calculated using Simpson’s dissimilarity index (ΒSIM), 
and the nesting component (taxon loss) was calculated 
using the Sørensen dissimilarity (ΒSNE) (Baselga, 2010).

All analyses were performed using the statistical 
program R 4.0.2 (R Core Team, 2020), using the Vegan 
packages (Oksanen et al., 2020) for the ecological estimates, 
PERMANOVA and RDA, and Biodiversity and Betapart 
(Baselga and Orme, 2012) for beta diversity estimates.

3. Results

A total of 3,178 individuals were collected, which were 
distributed in 7 orders, 23 families, and 128 species. The 
order Characiformes presented the highest richness, with 
12 families and 68 species, followed by Siluriformes, with 
4 families and 37 species, and Cichliformes with 1 family and 
16 species. The richest families were Serrasalmidae (S = 21), 
Cichlidae (S = 16), and Pimelodidae (S = 15) (Table S2). The 
families with the highest abundance were Serrasalmidae 
(n = 441), Auchenipteridae (n = 382), Triportheidae (n = 333), 
and Hemiodontidae (n = 322). The ten most abundant 
species were Ageneiosus inermis (Linnaeus, 1766) (n = 242), 
Hemiodus unimaculatus (Bloch, 1794) (n = 182), Serrasalmus 
rhombeus (Linnaeus, 1766) (n = 174), Cyphocharax abramoides 
(Kner, 1858) (n = 162), Agoniates halecinus Müller and 
Troschel, 1845 (n = 158), Triportheus albus Cope, 1872 
(n = 147), Serrasalmus gouldingi Fink and Machado-Allison, 
1992 (n = 123), Acestrorhynchus falcirostris (Cuvier, 1819) 
(n = 101), Bryconops alburnoides Kner, 1858 (n = 98) and 
Cynodon gibbus (Agassiz, 1829) (n = 84).

The combined species richness for the two periods 
(rising and falling water) ranged from 19 to 58 species and 
the abundance ranged between 90 and 567 individuals, with 
no difference between the periods of the hydrological cycle 
(t = -1.0162, df = 9.868, P = 0.33 and t = -1.7741, df = 8.3217, 
P = 0.11), respectively (Table 1). In the rising-water period, 
the observed species richness was 89 and the estimated 
richness was 113 (standard error = 13) species. While in 
the falling-water season, the observed richness was 85 
and the estimated richness was 117 (standard error = 20). 
No seasonal differences were observed for Shannon 
diversity (t = -0.90832, df = 8.5723, P = 0.38), equitability 
(t = -0.48487, df = 5.4821, P = 0.64) and Berger-Parker 
dominance (t = 1.435, df = 6.6274, P = 0.19) (Table 1).

We collected 46 species that were common to the two 
periods of the hydrological cycle, 39 species occurring only in 
the rising-water period and 43 species only in the falling-water 
period (Figure 2A). In the falling-water period, 16 species that 
were common to the three environments were collected, 
19 were unique to the confluence region, 5 were unique to the 
Aracá River, and 12 were unique to the Demeni River (Figure 2B). 
During the rising-water period, there were 13 species that 
were common to the three environments, 13 were unique to 
the confluence region, 6 were unique to the Aracá River and 
24 were unique to the Demeni River (Figure 2C).
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The premise of multi-homogeneity of variances was 
met (F = 2.22, df = 2, 6, p = 0.168) for the PERMANOVA, 
and the effect of the seasonal factor (Pseudo-F = 5.288, 
df = 1, 6 p < 0.001), of the spatial factor (Pseudo-F = 2.279, 
df = 2, 6, p = 0.003) and of the interaction between both 
(Pseudo-F = 1.901, DF = 2, 6, p = 0.016) was observed on 
the composition of fish assemblages.

Among the species with greater abundance in the 
period of the rising water, Chalceus epakros Zanata and 
Toledo-Piza, 2004, Chalceus erythrurus (Cope, 1870), 
Doras phlyzakion Sabaj Pérez and Birindelli, 2008, 
Geophagus surinamensis (Bloch, 1791), Hemiodus microlepis 
Kner, 1858, Platydoras costatus (Linnaeus, 1758) and 
Pterigoplichthys gibbiceps (Kner, 1854) stand out. In the 
low water period, Ageneiosus inermis (Linnaeus, 1766), 
Ageneiosus lineatus Ribeiro, Rapp Py-Daniel and Walsh 
2017, Acarichthys heckelli (Müller and Troschel, 1849), 
Chalceus macrolepidotus Cuvier, 1818, Leptodoras praelongus 
(Myers and Weitzman, 1956), Potamorhina altamazonica 
(Cope, 1878) and Tetragonopterus argenteus Cuvier, 1816 
stand out. All species had more than 20 individuals 
sampled, except for A. inermis and A. lineatus, which 
had 242 and 59 individuals, respectively. The total of 
52 unique species were found in the study, eight in the 

Aracá River, 16 in the region of confluence between the 
rivers, and, in the Demeni River, the greatest wealth of 
unique fish was 28 species (Table S2).

The environmental variables measured for each 
river and its confluence during the falling and rising 
water are resumed in Table S1. Redundancy Analysis 
(RDA) indicated that conductivity (Pseudo-F = 1.8765, 
df = 1, 7, p = 0.024) was the determining environmental 
variable for the differences observed between fish 
assemblages, with dissolved oxygen having a slight 
influence (Pseudo-F = 1.5451, df = 1, 7, p = 0.067). While pH 
(Pseudo-F = 0.8858, df = 1, 7, p = 0.671) and temperature 
(Pseudo-F = 1.2504, df = 1, 7, p = 0.212) had no significant 
effect. The seasonal factor was predominant in the ordering 
of the sampling units; however, the interaction between 
seasonality and location was evident with the greater 
dispersion of the sampling units during the period of falling 
water, compared to the period of rising water (Figure 3).

The total beta diversity was estimated as ΒSOR = 0.65. 
The partitioning of total beta diversity shows that the 
spatial turnover is mainly responsible (ΒSIM = 0.53). While 
the nestedness of species process ΒSNE was 0.12. This result 
indicates a replacement of some species by others among 
sites and between seasons of the hydrological cycle.

Figure 2. Venn diagrams indicating the number of fish species shared between periods (A), collected in the period of falling water (B) 
and rising water (C).

Table 1. Ecological attributes of the fish assemblages of the Aracá-Demeni sub-basin in the periods of falling water (F) and rising water (R).

Confluence region Aracá River Demeni River

P1 P2 P3 P4 P5 P6

F R F R F R F R F R F R

Abundance (N) 473 90 567 271 124 97 155 118 236 392 550 105

Richness (S) 58 36 50 32 19 21 25 19 34 53 44 19

Shannon (H’) 3.38 3.37 3.26 2.90 2.50 2.48 2.61 2.00 2.80 3.21 3.10 2.20

Pielou (J) 0.83 0.94 0.83 0.84 0.85 0.81 0.81 0.68 0.79 0.81 0.82 0.75

Berger-Parker (d) 0.14 0.09 0.12 0.17 0.18 0.29 0.19 0.45 0.24 0.18 0.10 0.29

N = number of individuals; S = number of species; H’ = Shannon index; J = Pielou index; d = Berger-Parker dominance. Sample sites: 
P1, P2, P3, P4, P5, P6.
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4. Discussion

The fish assemblages in the Aracá-Demeni sub-basin are 
composed mainly of representatives of the Characiformes 
and Siluriformes orders, which corroborates with the 
results found by other authors for the Negro River Basin 
(Beltrão et al., 2019; Farias et al., 2017; Siqueira-Souza et al., 
2021; Yamamoto et al., 2014), and conform to the pattern 
reported for the Neotropical region (Lowe-McConnell, 
1999; Reis et al., 2003).

During the studied period, fish assemblages exhibited 
a diverse composition, with the presence of over 
30 unique species in each phase of the hydrological cycle, 
which corroborates the importance of the hydrological 
regime in the structuring of fish assemblages in the 
Negro River (Beltrão et al., 2019; Goulding et al., 1988; 
Noveras et al., 2012; Röpke et al., 2015; Saint-Paul et al., 
2000; Yamamoto et al., 2014). The rising-water period was 
represented by the highest abundance of Osteoglossum 
spp., Hemiodus spp., Chalceus spp., Hoplias malabaricus 
and Metynnis hypsauchen. Specimens of the Loricariidade 
family were also constant in this phase of the hydrological 
cycle. The arowanas (Osteoglossum spp.) and pacus 
(M. hypsauchen) exploit the flooded forest to feed mainly on 
fruits and insects that fall from the treetops (Goulding et al., 
1988; Noveras et al., 2012; Saint-Paul et al., 2000). The traíra 
(H. malabaricus) is a carnivore that captures prey by ambush 
and may well use the period to catch small fish and shrimp 
in regions of aquatic vegetation (Luz-Agostinho et al., 2008).

In the falling-water period, the fish assemblages were 
composed mainly of species that are better adapted to 
the small-sized environment, especially carnivorous fish 

that can capture the prey that becomes more vulnerable, 
such as Cynodontidae (dogfish) and Serrasalmidae 
(piranhas). In addition, visually orientated predator 
species can successfully explore environments with high 
water transparency, such as the waters of the Negro River, 
which provide good visual acuity and capture orientation, 
especially for the Cynodontidae group (Melo et al., 2009). 
In this period, the efficiency of fisheries also increases, 
since fish are more vulnerable to fishing gear due to their 
concentrations caused by the retraction of the waters, which 
favors the capture of pelagic fish that live in schools, such as 
sardines (Triportheidae) and maparás (Hypophthalmus spp.) 
(Beltrão et al., 2019; Farias et al., 2017).

The similarity of the indices of diversity, dominance, 
and equitability in the two sampling periods demonstrates 
the process of species substitution that results in the 
maintenance of the general pattern of diversity, despite 
changes in species composition (Farias et al., 2017; 
Noveras et al., 2012; Yamamoto et al., 2014). According 
to Matthews (1998), this pattern is due to the greater 
number of species and reduced number of individuals, 
with few dominant species and many species with similar 
abundances. This characteristic favors the high diversity 
and the difference in the distribution pattern of the species 
in the two periods.

The complex system of waterbodies in the sub-basin, 
with distinct limnological characteristics, adds a 
diversification factor to the flood pulse effect, which is 
characterized by the interaction of these factors in the 
PERMANOVA and by the high value of beta diversity. In 
the Aracá-Demeni sub-basin, the variation in the species 
composition of the fish assemblages is caused by spatial 
substitution, thus reflecting the high proportion of endemic 
species in the Negro River basin (Beltrão et al., 2019; 
Reis et al., 2016). The species composition tends to 
replace along ecological gradients, which represents the 
effect of environmental differences between sampling 
units (Benone and Montag, 2021; Freitas et al., 2014; 
Siqueira-Souza et al., 2016). Other studies conducted in the 
Aracá-Demeni sub-basin found spatial differences in the 
trophic position of the predator Cichla temensis between the 
Aracá and Demeni Rivers, which could be related to their 
unique environmental characteristics and the type of prey 
available in each environment (Aguiar-Santos et al., 2018). 
Siqueira-Souza et al. (2016) detected the existence of 
differences in the fish species composition between three 
types of lakes in the floodplains of the Solimões River. 
The authors noticed that lakes located in a lowland area 
more distant from the river, with a constant presence of 
streams and greater transparency of water and dissolved 
oxygen levels, presented a different composition to 
lakes located on river islands and on the banks without 
connection to the drainage network.

Our results corroborate the assumption that the flood 
pulse acts as a structuring factor of the fish assemblages, 
with significant differences in the fish assemblages 
sampled in the two phases of the cycle, in addition to a 
dominance of the species turnover in beta diversity. The 
results indicate that the beta diversity, represented by the 
dissimilarity between the sampled environments, is higher 
in the period of falling water. Hurd et al. (2016) proposed 

Figure 3. Redundancy analysis biplot grouping sample units. 
AF = Aracá River in the falling-water period; AR = Aracá River in the 
rising-water period; DF = Demeni River in the falling-water period; 
DR = Demeni River in the rising-water period; CF = Confluence 
in the falling-water period; CR = Confluence in the rising-water 
period; C = conductivity; pH = hydrogen potential; t = temperature; 
OD = dissolved oxygen.
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that connectivity between the aquatic environments of 
the Amazon, determined by the geomorphology of the 
area and the intensity of the flood pulse, may result 
in metapopulational patterns. However, increased 
connectivity when the water level is higher promotes a 
homogenization of fish assemblages (Freitas et al., 2010). 
The homogenization effect of the flood increases similarity 
among fish assemblages minimizing biological interactions 
and inducing fish assemblages to begin a new process of 
structurization (Gomes et al., 2012). The identification of 
these patterns and of the responsible factors is fundamental 
for the definition of conservation strategies, especially 
in an ecosystem whose dynamics can be influenced by 
climate change through changes in the intensity of the 
flood pulse and connectivity.
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