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Abstract

Anticarsia gemmatalis Hiinber, 1818 is one of the main defoliating species in the soybean crop. Bacillus thuringiensis
Berliner, 1915, is a bacterium used in the biological control of this pest species. Resistant populations and their
sublethal effects caused by the use of the bacteria have already been reported; however, there are no studies on
phenotypic plasticity in adulthood exposed to Bt-based bioinsecticide sub-doses. This study aimed to evaluate
the morphometry of A. gemmatalis adults under laboratory conditions submitted to the Bt-based bioinsecticide
Dipel® over the three generations. The body segments mensuread were width, length, and area of the anterior
and posterior wings, the weight of the integument, chest, abdomen, wings, and the whole adult of males and
females. Among the treatments, LC, in the first generation and LC  in the second generation were those with lower
thresholds in relation to the weight of the chest and abdomen, considering the proportions of the body smaller
than the females. The female’s weight adulthood was reduced by 10% about males, and, only in the first generation.
Males have larger body size and more pronounced phenotypic plasticity than females. Here, we demonstrate the
first study assessing the phenotypic plasticity of A. gemmatalis adults.

Keywords: allometry measure, morphometry, velvet bean caterpillar, Bacillus thuringiensis, phenotype.

Resumo

Anticarsia gemmatalis Hiinber, 1818 é uma das principais espécies desfolhadoras da cultura da soja. Bacillus
thuringiensis Berliner, 1915, é uma bactéria utilizada no controle biolégico dessa espécie de praga. Populagdes
resistentes e seus efeitos subletais causados pelo uso da bactéria ja foram relatados, no entanto, ndo ha estudos
sobre a plasticidade fenotipica na idade adulta exposta a subdoses de bioinseticida a base de Bt. Este trabalho
teve como objetivo avaliar a morfometria de adultos de A. gemmatalis em condigdes de laboratério submetidos ao
bioinseticida Dipel® ao longo de trés geragdes. Os segmentos corporais mensuraveis eram largura, comprimento e
area das asas anterior e posterior, o peso do tegumento, torax, abdomen, asas e todo o adulto de machos e fémeas.
Dentre os tratamentos, CL, na primeira geracdo e CL, na segunda geragdo foram aqueles com limiares mais baixos
em relacdo ao peso do térax e abdomen, considerando as propor¢des do corpo menores que as do sexo feminino.
O peso da fémea na idade adulta foi reduzido em 10% em relagdo aos machos e, apenas na primeira geragdo. Os
machos tém tamanho corporal maior e plasticidade fenotipica mais pronunciada do que as fémeas. Este estudo
demonstra o primeiro estudo avaliando a plasticidade fenotipica de adultos de A. gemmatalis.

Palavras-chave: medida de alometria, morfometria, lagarta da soja, Bacillus thuringiensis, fenétipo.

1. Introduction

Anticarsia gemmatalis Hiinber, 1818 is a polyphagous  1975; Pashley and Johnson, 1986; Haase et al., 2015;
species, and one of the main defoliating species of the  Fernandes et al., 2018). The insect pest’s permanence
soybean crop on the American continent (Ford et al.,  in tropical and subtropical environments is attributed
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to continuous cultivation throughout the year, which
favors the formation of green bridges (Oliveira et al., 2014;
Fernandes et al., 2020).

Among the existing control methods, Bacillus
thuringiensis Berliner, 1915, is a bacterium used in the
biological control of this pest species. In the form of Bt-
based bioinsecticides or biotechnology with the insertion
of Cry genes into plants to provide resistance to insects,
known as transgenic plants or Bt plants (Konecka et al.,
2018; Souza et al., 2021).

Resistant populations and their sub-lethal effects caused
by the use of the bacteria have already been reported
(Sedaratian et al., 2013; Janmaat et al., 2014; Souza et al.,
2019; Rabelo et al., 2020; Fernandes et al., 2021). However,
there are no studies on phenotypic plasticity in adulthood,
according to the exposure of the underdosage of Bt-based
bioinsecticides.

Phenotypic plasticity is the ability of an organism to
respond to environmental stresses with changes in form,
state, movement or activity (Brisson, 2010; West-Eberhard,
2003).In addition to being considered an important escape
tool for survival in unstable environments or disturbed by
human action (Gotthard and Nylin, 1995).

Studies demonstrate that these morphological
adaptations allow organisms to adapt better to disturbed
environments over short time scales, without changes
in genotype (West-Eberhard, 2003; Hayes et al., 2019).

However, due to the lack of studies on the phenotypic
plasticity of A. gemmatalis exposed to underdoses of
Bt-based bioinsecticides, this study aimed to evaluate
the phenotypic plasticity, based on the morphometry
of A. gemmatalis adults submitted to the Bt-based
bioinsecticides Dipel® in the laboratory over three
generations.

2. Material and Methods

2.1. Insect rearing

The population of A. gemmatalis used in the bioassays
was maintained on an artificial diet (Greene et al., 1976) at
the Laboratory of Microbial Control of Arthropod Pests of
the State University of Sdo Paulo “Jdlio de Mesquita Filho”
(UNESP - Jaboticabal). The insects were maintained at
25+1°C, 70 £ 10% RH, and 12 h photophase.

2.2. Sublethal concentrations

The formulation toxicity was evaluated using the
spore-crystal suspensions of the Bt-based bioinsecticide
(Dipel®). The suspensions were defined by plating on
nutrient agar to determine the CFU, which was evaluated
after seven days (Sedaratian et al., 2013). The curve response
was estimated using the Six Error Problems analysis (SAS
Institute Inc., 2014). 200 pL on the surface of the artificial
diet (4.8 cm?) were previously distributed in polyethylene
cups (3.5 cm @). A hundred insects were evaluaded to
estimate a response curve for each treatment, distributed
in 10 repetitions. Deionized water was applied in equal
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volume as a control. The bioassay evaluations were kept
after seven days.

2.3. Assessment of sublethal effects

The surviving caterpillars in each treatment/generation
were evaluated daily and were sexed when they reached
the pupal stage (Butt and Cantu, 1962). The newly emerged
adults were separated into couples, totaling 100 couples,
and placed in PVC cages (10 x 20 cm), lined with white
A4 sulfite paper (used as an oviposition substrate). At the
bottom, a Petri dish with filter paper was used and the
top was sealed with voile fabric.

The adults were fed with a 10% honey solution moistened
with cotton wool placed in a polyethylene petri dish (49 x
12 mm) at the cages (Fernandes et al., 2017). The papers
used as a laying substrate were removed, exchanged daily,
packed in plastic pots (14.0 cm @, 10 cm h), and with the
hatching of the larvae, these were used to originate the
subsequent generations (Kalvnadi et al., 2018).

2.4. Morphometry

The adults of A. gemmatalis exposed to the Bt-based
bioinsecticide sub-doses were weighted within 24 hours.
The different parts of the individuals were separated with
the aid of fine-tipped surgical scissors, and then weighed
on an analytical balance (Belmark — 210A). The weighing
was performed with the tegument, thorax, abdomen,
wings and whole adult.

After mounting on the lamina, coverslip and sealed
with a thin layer of colorless nail polish dried for two
hours. The measurements of the length, width and area of
the anterior and posterior wings were obtained with the
aid of a stereoscope microscope with an attached camera
(Leica S9 i), according to the technique described by Di
Mare and Corseuil (2004).

2.5. Experimental design and data analysis

The mortality data from virulence tests were
submitted to Probit regression analysis and sublethal
concentration values LC,, LC,,, LC; and LC,; (0.20509,
0.38126, 0.57929 and 0.80776 pg Bt.mL diet') were
obtained using the SAS software (P> 95%) (SAS Institute
Inc., 2014). We used a completely randomized design
(CRD) with ten repetitions per sex and the treatments
arranged in a 3 x 5 x 22 factorial arrangement. There
were three generations (F,, F,, F,), five treatments (LC,,
LC,,, LC,,, LC,; and control) and 22 variables being the
weight of tegument, thorax, abdomen, wings, whole
adult, and width, length and area of the anterior and
posterior wings of both sexes.

Statistical analysis was performed on the GENES
software (Cruz, 2001). The data were subjected to
analysis of variance by F test and the stratified linear
correlation was performed per generation and treatment.
The Tukey test dismembered the variables that showed
an interaction between treatment and the generation
at 5% probability.
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3. Results

3.1. Males morphometry

In the weight of the tegument of the males, treatments
LC,, LC,, and LC,, differed in the first generation; the
treatments LC,, LC,; and LC,; in the second generation and
only LC, in the third generation. The chest weight between
all treatments obtained significance between the control
in the first generation, with no significant differences
being observed in the second and third generations. In
the abdomen, the weight in the LC, in the first generation
reached the highest average, differing significantly among
all treatments. In subsequent generations, differences were
observed only in the LC, treatment (Table 1).

The weight of the wings showed significance only
to the LC, treatment in the first generation. In the total
weight of the males, treatments LC, in the first generation
and LC; in the third generation reached higher averages,
not differing significantly from the control. The length of
the anterior wings in the LC, treatment reached lower
averages over the three generations, with significance
being observed for LC, in the first generation, LC ; in the
second generation and LC, , LC , and LC,, third generation.
The same was not observed in the width of the anterior
wings of the males. Therefore, the length of the posterior
wings of the males obtained higher averages for the control,
differing significantly between all treatments in the first
generation and LC,, LC ; and LC,; in the second generation.
In the last generation, only LC,; showed significance among
all treatments. The same was not observed in the width
of the posterior wings of the males (Table 1).

The area of the anterior wing of the males obtained
averages superior to the control in the three generations,
differing significantly from the treatments LC,, LC,, and
LC, in the first generation and LC,, LC,, LC,; and LC,; in
the third generation. The same was not observed about
the area of the anterior wing of the males (Table 1).

3.2. Females morphometry

In weight of the tegument of the females, the treatment
LC, in the first generation, LC,; in the second generation and
LC,; in the third generation reached higher averages. The
weight of the chest of treatment LC, in the first generation,
LC,,, LC,,, LC20 and control in the second generation and
LC,, LC,; and LC,; in the third generation had the highest
averages, not significantly different between both (Table 2).

In the abdomen, LC ; and LC,; in the first generation,
LC, and LC,, in the second generation and LC,; in the
third generation reached lower averages among all other
treatments. However, weight of the wings, did not show
significance between treatments and generations. The
total weight of the females revealed that the LC; in the first
generation differed among all treatments. The same was
not observed in the second and third generations (Table 2).

In the length of the anterior wing, LC,; and control
in the first and second generation reached the highest
averages, with significance with the treatments LC, and
LC,,, respectively. In the third generation, there was no
significance between treatments. In the width of the
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anterior wing, it was observed that only in the second
generation, the treatments did not differ between both
(Table 2).

The length of the posterior wing showed higher averages
at LC,, and control over the first and second generation,
with significance for the LC, treatment. In the third
generation, there was no significant difference between
treatments. Regarding the width of the posterior wing,
LC, presented lower averages, differing significantly from
the control treatment.

The area of the anterior wing in the LC, treatment in
the first and second generation reached lower averages
than the control treatment, differing significantly between
both. In the third generation, there was no significant
difference between treatments. The same was not observed
in the area of the posterior wing of the females (Table 2).

Variations were observed in the wing area of males
in all generations, with an increase in the area of the
anterior and posterior wings according to the increase in
the exposed sub-dose. The same fact was not observed
in the LC, treatment in the second and third generations
in males (Table 1). In females, the same does not occur,
but after the second generation, the area of the anterior
wings became more stable, with no significant difference
in the third generation. About the posterior wing, the fact
occurred only in the second generation in females (Table 2).

3.3. Linear correlation stratifies

In the first generation males, the parameters tegument
+ abdomen, thorax + healthy adult, and wing + healthy
adult achieved moderate positive linear correlations to
the LC, and control treatments. However, females in the
parameters tegument + thorax, tegument + abdomen,
intact adult + abdomen, inferior length + superior width,
thorax + intact adult and intact adult + integument,
reached, predominantly, moderate to strong positive linear
correlations to the LC ; and LC, treatments, respectively.
The same was not observed in the second generation of
males, with moderate linear correlations for LC, and LC
in the parameters tegument + abdomen, chest + abdomen
and healthy adults + abdomen. In females, the treatments
that presented strong linear correlations were LC, and LC
to the parameters integument + abdomen, integument +
healthy adults and healthy adults + abdomen (Figure 1).

In the third generation, the males in the control
treatment showed moderate positive linear correlations
to the parameters wing + intact adult, integument +
upper wing, wing + upper width and upper width +
whole adult. Unlike females who obtained moderate
negative linear correlations to the control treatment in the
parameters thorax + upper size width, lower size length
+thorax, integument + wing, integument + healthy adult,
wing + abdomen, healthy adult + abdomen and thorax
+ abdomen. Therefore, a greater number of moderate
positive correlations to treatment LC, with the parameters
integument + abdomen, integument + intact adult, intact
adult + abdomen, thorax + abdomen and integument +
thorax, respectively (Figure 1).
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Figure 1. Linear stratified morphometric correlation of Anticarsia gemmatalis submitted to sublethal doses of the bioinsecticide Dipel®
over three generations at 25 + 1 °C, 70 + 10% RH and photoperiod L12: D12 h. Tegument (TEG), thorax (TX), abdomen (A), wing (AS),
upper wing (A-S), whole adult (T), upper wing length (TSC), lower wing length (TIC), upper wing width (TSL), bottom wing width

(TIL), lower wing area (AI).

4. Discussion

The sublethal effect of Dipel® sub-doses on A. gemmatalis
morphometry varied according to the concentration
of the bioinsecticide. The sublethal effects observed in
the bodyweight of adults may be associated with the
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differential susceptibility between the sexes exposed to
sub-doses of the bioinsecticide based on B. thuringiensis, in
addition to the physiological changes that are reflected in
the adult phase (Retnakaran et al., 1983; Alix et al., 2001;
Desneux et al., 2007; Sedaratian et al., 2013).
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The chest weight was higher than that of females in
both generations. In field conditions, one should consider
the higher energy expenditure of males to locate and court
females and, therefore, the greater need for chest muscles
to be developed (Srygley and Chai, 1990). The relative
speed of flight in insects is correlated with the chest mass,
and the sublethal effects caused by the bioinsecticide
can interfere with the formation of muscles essential to
flight. This region concentrates phasic muscles, which
commonly work to move appendages in the exoskeleton
(Howland, 1974). This arrangement of muscles within the
insects’ rib cage is directly related to weight, because the
larger it is inferred that the male will have better physical
conditioning (Srygley and Chai, 1990). Individuals who have
these morphometric characteristics exhibit, for example,
a higher frequency of copulations, better biological and
even physical conditioning (Di Mare and Corseuil, 2004).

The abdomen is another fundamental structure for the
proper functioning of all insect functions. This structure is
responsible for energy reserves and the weight parameter is
linked to the amount of this reserve. However, the balance
between chest and abdomen must exist for the insect
to perform the basic functions for survival (Srygley and
Thomas, 2002). The hovering flight that insects present is
amajor component of the energy cost, requiring a greater
energy reserve in the abdomen (Srygley and Chai, 1990).
This type of flight has advantages because it allows the
insect to escape from predators through high-speed flights
(Marden and Chai, 1991).

Among the treatments, LC; in the first generation
and CL, in the second generation were those with lower
thresholds in relation to the weight of the chest and
abdomen, considering the proportions of the body smaller
than the females. Body size significantly affects most of the
physiological characters linked to survival and reproduction,
one of the most important quantitative characteristics
subject to evolution (Darwin, 1859; Schmidt-Nielsen,
1984; Roff, 1992; Stearns, 1992).

Smaller individuals are potentially less likely to
perpetuate their offspring, due to competitive disadvantages
compared to other males and the lower acceptability of
females (Stearns, 1976). The choice for the female, in this
case, can occur, in such a way, that each female has its
optimum male size to copulate. This fact, is closely linked
to the hypothesis of the physiological capacity of insects to
define patterns of allometric measurements (Borgia, 1979).

This optimal size would be the result of a trade-off
between the negative influences that the female has with
large males on fertility and the advantages of large males
for the biological conditioning of the offspring (Clutton-
Brock and Parker, 1992; Andersson, 1994). However, even
individuals who presented smaller sizes such as LC, and
LC,, in the first generation, LC, and LC, in the second
generation and LC ; and LC,; in the third generation may
not perpetuate their offspring, considering that the larger
body size generally increases the pairing success due to
intraspecific competition or female choice (Clutton-Brock
and Parker, 1992; Andersson, 1994).

Wing proportions are influenced, according to the size
of the rib cage, as individuals with larger wings have more
developed muscles (Marden and Chai, 1991). Morphometry
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studies confirm that the insects’ anterior wings have an
important allometric measurement in determining size
and shape (Di Mare and Corseuil, 2004; Sane, 2003). This
fact is called phenotypic plasticity (Gotthard and Nylin,
1995; Loh et al.,, 2008), and does not justify the great
variation only in the wings, but in all the dimensioned
segments of this study.

Anterior wings perform the aerodynamic capacity
and are closely related to the flight speed. However, the
posterior wings function as an airfoil that regulates the
direction and maneuverability of the flight (Di Mare and
Corseuil, 2004; Dudley, 2000). A. gemmatalis lives in open
agroecosystems and travels over long distances, thus
requiring a relatively larger wing area (Di Mare and Corseuil,
2004). Studies monitoring populations of A. gemmatalis
have shown that these adults can migrate great distances,
even crossing entire states in the USA (Buschman et al.,
1977). The species is known to be unable to survive the
winter in the continental USA. On many occasions, insect
pest populations fly dozens of kilometers in search of
favorable conditions for development (Buschman et al.,
1977; Sosa-Gémez, 2004).

Studies evaluating the morphometry of adults in
Pieridae, Nymphalidae, and Papilionidae families have
shown positive correlations between the flight speed and
chest weight, but negatively for the abdomen weight that
has the function of storing energy and the reproductive
organs (Srygley and Chai, 1990). Thus, the influence of
weight distribution between the chest and abdomen may
interfere with the allometric measurements of A. gemmatalis
due to exposure to the bioinsecticide sub-dose based on
B. thuringiensis (Sih, 1987; Srygley and Chai, 1990).

The parameters abdomen + intact adults and abdomen
+integument in females had a predominance of positive
correlations. Biologically, males aim to develop and fertilize
females; in turn, females have the function of producing
eggs, storing male sperm until the eggs are ready to be
fertilized, generating offspring and perpetuating the
species (Milano et al., 2008). The region where the female
reproductive system is located is in the abdomen and
requires that all basic functions communicate and have
a good functioning to generate viable offspring, also, the
minimum size is of great relevance for the perpetuation
of the species (Milano et al., 2010).

In the integument + healthy adult parameters in both
sexes, they reinforce the strong correlation between the
balance of the segments, between weight and adequate
wing size. The morphology of insect wings has a direct
effect on a flight and, therefore, on the ability of flying
species to explore their environment efficiently. The need
to maneuver, hover, accelerate and fly at a low energy
cost should affect the shape of the wing and lead to the
diversification of wing morphometry, according to the
stress exposed to the host (Meresman et al., 2020).

Ininsects, the variation in wing morphometry suggests
that different selective pressures, such as bioinsecticides, act
non-uniformly in different regions of the wings, probably
due to differences associated with body size (Bai et al.,
2012; Tocco et al., 2019; Le-Roy et al., 2019). Therefore,
this can influence the ecology and physiology of the
population and even the organization of the community.
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Additional effects can also occur in the type of defense
used to prevent predators, parasitoids, entomopathogens
and in the development and fertility rates of the insect
pest (Srygley and Chai, 1990).

Here, we demonstrate the phenotypic plasticity
of A. gemmatalis adults submitted to sub-doses of the
bioinsecticide based on B. thuringiensis. Due to the possible
difference in susceptibility between the sexes, males
have larger body size and more pronounced phenotypic
plasticity than females.

The common sense that biopesticides are intrinsically
related to their lethal effects (death) restricts, to a few
studies, a more holistic and detailed view that would be
provided by the assessment of the sub-lethal effects of
these products. It is noteworthy that these sub-lethal effects
affect the insect population structure target and interfere
with their ecological interactions. There is the possibility
of being implemented in integrated pest management as
one of the methods to assess possible resistant populations
under field conditions.
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