Acessibilidade / Reportar erro

The contribution of the BIOTA/FAPESP Program to the knowledge on pollination and plant reproduction

Contribuição do Programa BIOTA/FAPESP para o conhecimento sobre polinização e reprodução em plantas

Abstract

Interactions between plant and pollinators are associated with the origin and maintenance of species diversity, as well as ecosystem functioning. The potential of pollination as an ecosystem service is evidenced by its association with food production. Understanding pollination at the landscape scale is essential for characterizing the pollination service for several crops that depend on pollinators for fruit and seed set that make up the human diet. Our aim was to carry out a literature review of studies and projects funded by BIOTA/FAPESP to illustrate the main research approaches developed in the field of Pollination Biology, especially related to plant-pollinator interactions. Plant-pollinator interactions in the Atlantic forest were leveraged as a result of this long-term research program, during which several papers were published in international journals. Pollination by bees (melittophily) was the most representative pollination system studied. In addition to melittophily, other interactions were studied such as pollination by hawkmoths (sphingophily), by hummingbirds (ornithophily) and by bats (chiropterophily). The specific mutualistic relationships between fig trees and fig wasps were also subject of studies within the Program. At the beginning of the BIOTA/FAPESP Program, there were many gaps in basic information about pollination and breeding systems of Brazilian native plant species. Thus, the Program was fundamental to fuel research on the natural history of plants and pollinators from the Atlantic forest. Overall, the Program funded studies that investigated themes such as functional pollination ecology, pollinator effectiveness, plant population genetics, structure and dynamics of plant-pollinator interaction networks, as well as geographic distribution and macroevolution of pollination systems, as well as genetic and molecular studies of native plant populations focusing on pollen flow and genetic structure of populations. Additionally, studies on pollination in the context of landscape ecology had the aim of assessing the effects of forest fragmentation on the functioning of plant populations and their interactions with pollinators and the relationships between landscape structure and ecological processes, biodiversity, and ecosystem service. Therefore, the Program had a prominent role in producing basic data with great implications for understanding the ecology and promoting the conservation of plant-pollinator interactions.

Keywords
Abiotic and biotic pollination; pollen transport; reproduction; species diversity; functional ecology; ecosystem services

Resumo

A interação planta-polinizador está associada à origem e manutenção da diversidade de espécies de plantas e ao funcionamento dos ecossistemas. O potencial da polinização como serviço ecossistêmico é destacado quando associado à produção de alimentos. Compreender esta interação na escala da paisagem é essencial para caracterizar o serviço de polinização para muitos cultivos que dependem dos polinizadores para a formação de frutos e sementes que integram a dieta humana. O objetivo deste trabalho foi realizar uma revisão bibliográfica de estudos e projetos financiados pelo BIOTA/FAPESP para ilustrar as principais abordagens de pesquisa desenvolvidas no campo da Biologia da Polinização, especialmente relacionadas à interação planta-polinizador. As interações planta-polinizador na Mata Atlântica foram alavancadas como resultado desse programa de pesquisa de longo prazo, durante o qual vários artigos foram publicados em revistas internacionais. A polinização por abelhas (melitofilia) foi o sistema de polinização mais representativo estudado. Além da melitofilia, outras interações foram estudadas, como a polinização por mariposas (esfingofilia), por beija-flores (ornitofilia) e por morcegos (quiropterofilia). As relações mutualísticas específicas entre figueiras e vespas do figo também foram objeto de estudos no âmbito do Programa. No início do Programa BIOTA/FAPESP, havia muitas lacunas sobre informações básicas sobre polinização e sistemas de reprodução de espécies vegetais nativas brasileiras. Assim, o Programa foi fundamental para desenvolver pesquisas sobre a história natural de plantas e polinizadores da Mata Atlântica. No geral, o Programa financiou estudos que investigaram temas como ecologia funcional da polinização, eficácia de polinizadores, genética de populações de plantas, estrutura e dinâmica de redes de interação planta-polinizador, bem como distribuição geográfica e macroevolução dos sistemas de polinização, além de estudos genéticos e moleculares de populações de plantas nativas com foco no fluxo de pólen. Adicionalmente, estudos sobre polinização no contexto da ecologia da paisagem tiveram como objetivo avaliar os efeitos da fragmentação florestal no funcionamento das populações de plantas e suas interações com os polinizadores e as relações entre a estrutura da paisagem e os processos ecológicos, biodiversidade e serviços ecossistêmicos. Portanto, o Programa teve um papel de destaque na produção de dados básicos com grandes implicações para o entendimento da ecologia e promoção da conservação das interações planta-polinizador.

Palavras-chave
Interações bióticas e abióticas; transporte de pólen; reprodução; diversidade de espécies; ecologia funcional; serviços ecossistêmicos

Introduction

Pollination is a fascinating and unintentional process that is related to plant sexual reproduction and it involves pollen transport either by abiotic (wind and water) or biotic vectors (invertebrate and vertebrate animals), in which the expected result is fruit and seed set (Willmer 2011WILLMER, P. 2011. Pollination and Flora Ecology. Princeton University Press. 832p., Ollerton et al. 2011OLLERTON, J., WINFREE, R. & TARRANT, S. 2011. How many flowering plants are pollinated by animals? Oikos, 120:321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (last access 31/10/2022).
https://doi.org/10.1111/j.1600-0706.2010...
, IPBES 2016IPBES. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn. 552p.). Pollinators often collect pollen and nectar for protein and energetic nutritional requirements, respectively (Willmer 2011WILLMER, P. 2011. Pollination and Flora Ecology. Princeton University Press. 832p.). Interactions between plants and pollinators are associated with the origin and maintenance of species diversity, as well as ecosystem functioning (Andresen et al. 2018ANDRESEN, E., ARROYO-RODRÍGUEZ, V. & ESCOBAR, F. 2018. Tropical biodiversity: the importance of biotic interactions for its origin, maintenance, function, and conservation. In: Dáttilo, W. & Rico-Gray, V. (eds) Ecological networks in the tropics. Springer.).

Pollinators are mostly insects, such as bees, flies, butterflies, moths, wasps, beetles and thrips, but there are also vertebrate pollinators, such as birds, bats, non-flying mammals and lizards (Rech et al. 2014RECH, A.R., AGOSTINI, K., OLIVEIRA, P.E. & MACHADO, I.C. 2014. Biologia da polinização. Projeto Cultural, Rio de Janeiro. 524p., BPBES/REBIPP 2019BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
https://doi.org/10.4322/978-85-60064-83-...
). In Brazil, bees are the most abundant group of pollinators, being essential in agriculture, as they pollinated 78.9% of the main agricultural crops (BPBES/REBIPP 2019BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
https://doi.org/10.4322/978-85-60064-83-...
).

This ecological interaction provides many benefits to humans, and it is classified as a regulatory, provisional and cultural ecosystem service (IPBES 2016IPBES. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn. 552p., Costanza et al. 2017COSTANZA, R., GROOT, R., BRAAT, L., KUBISZEWSKI, I., FIORAMONTI, L., SUTTON, P., FARBER, S. & GRASSO, M. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services 28:1–16., BPBES/REBIPP 2019BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
https://doi.org/10.4322/978-85-60064-83-...
). The pollination process is responsible for genetic variability of native plant populations that support biodiversity and ecosystem functions (regulating service); reliable and diversified supply of fruits, seeds, and honey (provisioning service) and the promotion of cultural values related to traditional knowledge (cultural service) (IPBES 2016IPBES. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn. 552p., Costanza et al. 2017COSTANZA, R., GROOT, R., BRAAT, L., KUBISZEWSKI, I., FIORAMONTI, L., SUTTON, P., FARBER, S. & GRASSO, M. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services 28:1–16., BPBES/REBIPP 2019BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
https://doi.org/10.4322/978-85-60064-83-...
). The potential of pollination as an ecosystem service is evidenced by its association with food production. The first global economic valuation of the ecosystem service of pollination was of US $ 70 billion/year (Costanza et al. 1997COSTANZA, R., D’ARGE, R., DE GROOT, R., FARBER, S., GRASSO, M., HANNON, B., LIMBURG, K. NAEEM, S., O’NEILL, R.V., PARUELO, J., RASKIN, R.G., SUTTON, P. & VAN DEN BELT, M. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253–260.). More recently, this ecosystem service was valued at € 153 billion (Gallai et al. 2009GALLAI, N., SALLES, J.M., SETTELE, J. & VAISSIÈRE, B.E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68(3):810–821.). This number was updated in IPBES’s Pollinators, Pollination and Food Production Assessment Report, estimated between US $ 235 billion and US $ 577 billion (IPBES 2016IPBES. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn. 552p.). In Brazil, it is estimated that pollination related to agricultural production has an annual value of US $ 12 billion (Giannini et al. 2015GIANNINI, T.C., GARIBALDI, L.A., ACOSTA, A.L., SILVA, J.S., MAIA, K.P., SARAIVA, A.M., GUIMARÃES, P.R. & KLEINERT, A.M.P. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. Plos One 10(9):e0137198. https://doi.org/10.1371/journal.pone.0137198 (last access 31/10/2022).
https://doi.org/10.1371/journal.pone.013...
, BPBES/REBIPP 2019BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
https://doi.org/10.4322/978-85-60064-83-...
).

During the first two decades of the BIOTA/FAPESP Program, several projects were developed with the aim of understanding the diversity of interactions between plants and pollinators. Studies that describe the natural history of the plant-pollinator interaction revealed important details for the maintenance and conservation of the species that participate in the pollination process. Studies of population and community ecology are important to understand the spatio-temporal distribution of pollination interactions, comprising the behavior of these interactions in different landscapes related to diverse scenarios. Understanding pollination at the landscape scale is essential for characterizing the pollination service for several crops that depend on pollinators for fruit and seed set that integrate the human diet.

In this study, our aim was to carry out a literature review of studies and projects funded by BIOTA/FAPESP to illustrate the main research approaches developed in the field of Pollination Biology, specially related to plant-pollinator interactions. We conducted a systematic review of the literature in the databases Web of Science and Dimensions, starting in 1999, using the following search terms “Pollination” AND “BIOTA/FAPESP”. In addition, we consulted the virtual library of FAPESP with the search terms “Pollination” OR “Pollinators” (in English and Portuguese) considering the filter “Programs focused on specific themes – Research in Biodiversity”, in order to identify the projects supported by the BIOTA Program and related to plant-pollinator interaction. The search resulted in eight projects (Supplementary Material 1). Publications related to these projects were also included. After removing duplicate studies, the review resulted in 63 studies, including scientific articles (57), book chapters (1) and thesis (5) (Supplementary Material 2). We also evaluated the objectives and impacts of projects funded by the BIOTA/FAPESP Program (Supplementary Material 3). In addition to the scientific impacts, these projects indirectly helped build initiatives for the restoration and conservation of the Atlantic Forest.

Below, we present an overview of the major approaches developed within the BIOTA Program, from the first studies on the natural history of plants and pollinators, then ecological-evolutionary studies, to studies in the context of landscape ecology and ecosystem services. We were able to identify the contribution of the BIOTA/FAPESP Program to the consolidation of the Pollination Biology research in Brazil, mainly in the state of São Paulo, and the potential for developing innovative research on this topic in the future.

Studies on the Natural History of Plants and Pollinators

Studies on the natural history of angiosperms have always been important for Brazilian Pollination Biology and gained prominence in recent decades with the support of the BIOTA/FAPESP Program. The ecology of plant-pollinator interactions in the Atlantic forest was leveraged as a result of this long term research program, especially the ones concerning two of the world's richest plant families: Orchidaceae and Fabaceae. During the Program, several papers were published in international journals (e.g. Pansarin et al. 2008aPANSARIN, L.M., PANSARIN, E.R. & SAZIMA, M. 2008a. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit. Plant Biology 10:650–659.,bPANSARIN, L.M., PANSARIN, E.R., SAZIMA, M. 2008b. Facultative autogamy in Cyrtopodium polyphyllum (Orchidaceae) through a rain-assisted pollination mechanism. Australian Journal of Botany 56:363–367., 2018PANSARIN, L.M., PANSARIN, E.R., GERLACH, G. & SAZIMA, M. 2018. The Natural History of Cirrhaea and the Pollination System of Stanhopeinae (Orchidaceae). International Journal of Plant Sciences 179:436–449., Sazima et al. 2009SAZIMA, I., PINHEIRO, M. & SAZIMA, M. 2009. A presumed case of functional convergence between the flowers of Schizolobium parahyba (Fabaceae) and species of Malpighiaceae. Plant Systematics and Evolution 281:247–250., Brito et al. 2010BRITO, V.L.G., PINHEIRO, M. & SAZIMA, M. 2010. Sophora tomentosa and Crotalaria vitellina (Fabaceae): reproductive biology and interactions with bees in the restinga of Ubatuba, São Paulo. Biota Neotropica 10:185–192. https://doi.org/10.1590/S1676-06032010000100019 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603201000...
, Agostini et al. 2011AGOSTINI, K., SAZIMA, M. & GALETTO, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. The Science of Nature 98:933–942., Amorin et al. 2013AMORIM, F.W., GALETTO, L. & SAZIMA, M. 2013. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15:317–327., Moré et al. 2012MORÉ, M., AMORIM, F.W., BENITEZ-VIEYRA, S., MEDINA, A.M., SAZIMA, M. & COCUCCI, A.A. 2012. Armament imbalances: match and mismatch in plant-pollinator traits of highly specialized long-spurred orchids. PLOS ONE 7:e41878. https://doi.org/10.1371/journal.pone.0041878 (last access 31/10/2022).
https://doi.org/10.1371/journal.pone.004...
, Nunes et al. 2013NUNES, C.E.P., MORAES, C. M., GALETTO, L. & SAZIMA, M. 2013. Anatomy of the floral nectary of ornithophilous Elleanthus brasiliensis (Orchidaceae: Sobralieae). Botanical Journal of the Linnean Society 171:764–772., 2015NUNES, C.E.P., AMORIM, F.W., MAYER, J.L.S. & SAZIMA, M. 2015. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination. Plant Biology 18:15–25., 2017NUNES, C.E.P., WOLOWSKI, M., PANSARIN, E.R., GERLACH, G., AXIMOFF, I., VEREECKEN, N.J., SALVADOR, M.J., & SAZIMA, M. 2017. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids. The Science of Nature 104:11–12., Avila et al. 2015AVILA, R., PINHEIRO, M. & SAZIMA, M. 2015. The generalist Inga subnuda subsp. luschnathiana (Fabaceae): negative effect of floral visitors on reproductive success? Plant Biology 17:728–733., Saab et al. 2021SAAB, G.S., MANSANO, V.F., NOGUEIRA, A., MAIA, I.C., BERGAMO P.J. & PAULINO J.V. 2021. A sophisticated case of division of labour in the trimorphic stamens of the Cassia fistula. AoB Plants 13(5):plab054. doi: 10.1093/aobpla/plab054 (last access 31/10/2022).
https://doi.org/10.1093/aobpla/plab054...
).

Pollination by bees (melittophily) (Figure 1A) was the most representative pollination system studied in this period, as expected from the global pattern of dominance of bees as pollinators (Ollerton 2017OLLERTON, J. 2017 Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics 48:353–376.). Such studies used different approaches, but most of them had a greater focus on plants. In those studies, researchers explored questions related to floral traits, such as differences in stamen sizes and their relationship to pollination (Valadão-Mendes et al. 2022VALADÃO?MENDES, L.B., ROCHA, I., MEIRELES, D.A.L., LEITE, F.B., SAZIMA, M., MARUYAMA, P.K. & BRITO, V.L.G. 2022. Flower morphology and plant–bee pollinator interactions are related to stamen dimorphism in Melastomataceae. Plant Biology 24:240–248., Saab et al. 2021SAAB, G.S., MANSANO, V.F., NOGUEIRA, A., MAIA, I.C., BERGAMO P.J. & PAULINO J.V. 2021. A sophisticated case of division of labour in the trimorphic stamens of the Cassia fistula. AoB Plants 13(5):plab054. doi: 10.1093/aobpla/plab054 (last access 31/10/2022).
https://doi.org/10.1093/aobpla/plab054...
) and the functional convergence between flowers of different families (Sazima et al. 2009SAZIMA, I., PINHEIRO, M. & SAZIMA, M. 2009. A presumed case of functional convergence between the flowers of Schizolobium parahyba (Fabaceae) and species of Malpighiaceae. Plant Systematics and Evolution 281:247–250.). The floral resources offered by plants were studied in detail, analyzing the floral anatomical structure, nectar production dynamics, and chemical composition of the different resources (Pansarin et al. 2008aPANSARIN, L.M., PANSARIN, E.R. & SAZIMA, M. 2008a. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit. Plant Biology 10:650–659., Agostini et al. 2011AGOSTINI, K., SAZIMA, M. & GALETTO, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. The Science of Nature 98:933–942., Souza et al. 2017SOUZA, C.V., NEPI, M., MACHADO, S.R. & GUIMARAES, E. 2017. Floral biology, nectar secretion pattern and fruit set of a threatened Bignoniaceae tree from Brazilian tropical forest. Flora 227:46–55., Guimarães et al. 2018GUIMARÃES, E., TUNES, P., ALMEIDA-JUNIOR, L.D., DI STASI, L.C., DOETTERL, S. & MACHADO, S.R. 2018. Nectar replaced by volatile secretion: a potential new role for nectarless flowers in a bee-pollinated plant species. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01243 (last access 31/10/2022).
https://doi.org/10.3389/fpls.2018.01243...
). Also, differences in the reproductive system of each species under different environmental conditions were the topic of several studies (Pansarin et al. 2008bPANSARIN, L.M., PANSARIN, E.R., SAZIMA, M. 2008b. Facultative autogamy in Cyrtopodium polyphyllum (Orchidaceae) through a rain-assisted pollination mechanism. Australian Journal of Botany 56:363–367., Brito et al. 2010BRITO, V.L.G., PINHEIRO, M. & SAZIMA, M. 2010. Sophora tomentosa and Crotalaria vitellina (Fabaceae): reproductive biology and interactions with bees in the restinga of Ubatuba, São Paulo. Biota Neotropica 10:185–192. https://doi.org/10.1590/S1676-06032010000100019 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603201000...
, Brito & Sazima 2012BRITO, V.L.G. & SAZIMA, M. 2012. Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Systematics and Evolution 298:1271–1279.). Other studies have focused mainly on bee pollinators, offering lists and reviews of the main pollinating agents in the studied areas (Gaglianone et al. 2011GAGLIANONE, M.C., AGUIAR, A.J.C., VIVALLO, F. & ALVES-DOS-SANTOS, I. 2011. Checklist das abelhas coletoras de óleos do Estado de São Paulo, Brasil. Biota Neotropica 11:657–666. https://doi.org/10.1590/S1676-06032011000500030 (last access 31/11/2022).
https://doi.org/10.1590/S1676-0603201100...
, Imperatriz-Fonseca et al. 2011IMPERATRIZ-FONSECA, V.L., ALVES-DOS-SANTOS, I., SANTOS-FILHO, P.S., ENGELS, W., RAMALHO, M., WILMS, W., AGUILAR, J.B.V., PINHEIRO-MACHADO, C.A., ALVES, D.A., & MATOS, P.K.A. 2011. Checklist das abelhas e plantas melitófilas no Estado de São Paulo, Brasil. Biota Neotropica 11:631–655. https://doi.org/10.1590/S1676-06032011000500029 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603201100...
, Cordeiro et al. 2013CORDEIRO, G.D., BOFF, S., CAETANO, T.A., FERNANDES, P.C. & ALVES-DOS-SANTOS, I. 2013. Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil. Apidologie 44:254–267.), and showed that the specificity of the relationships between plants and bee pollinators may not be confirmed when the studies are carried out in detail (Nunes et al. 2017NUNES, C.E.P., WOLOWSKI, M., PANSARIN, E.R., GERLACH, G., AXIMOFF, I., VEREECKEN, N.J., SALVADOR, M.J., & SAZIMA, M. 2017. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids. The Science of Nature 104:11–12., Pansarin et al. 2018PANSARIN, L.M., PANSARIN, E.R., GERLACH, G. & SAZIMA, M. 2018. The Natural History of Cirrhaea and the Pollination System of Stanhopeinae (Orchidaceae). International Journal of Plant Sciences 179:436–449.).

In addition to melittophily, other interactions were studied within the BIOTA/FAPESP Program, such as pollination by hawkmoths (sphingophily) (Figure 1B), by hummingbirds (ornithophily) (Figure 1C) and bats (chiropterophily) (Figure 1D). Using palynological techniques, Avila et al. (2010)AVILA, R.S., CRUZ-BARROS, M.A.V., SILVA CORREA, A.M. & SAZIMA, M. 2010. Tipos polínicos encontrados em esfingídeos (Lepidoptera, Sphingidae) em área de Floresta Atlântica do sudeste do Brasil: uso da palinologia no estudo de interações ecológicas. Brazilian Journal of Botany 33:415–424. showed the diversity of pollen types found in Sphingidae, while Moré et al. (2012)MORÉ, M., AMORIM, F.W., BENITEZ-VIEYRA, S., MEDINA, A.M., SAZIMA, M. & COCUCCI, A.A. 2012. Armament imbalances: match and mismatch in plant-pollinator traits of highly specialized long-spurred orchids. PLOS ONE 7:e41878. https://doi.org/10.1371/journal.pone.0041878 (last access 31/10/2022).
https://doi.org/10.1371/journal.pone.004...
demonstrated that phenotypic selection is dependent on the match between the long tongue of hawkmoths and flower nectar spur in a highly specialized long-spurred orchid. In the Atlantic forest hummingbirds are the main group of birds that act as pollinators of flowers, and our understanding of this interaction was expanded by the study by Lunau et al. (2011)LUNAU, K., PAPIOREK, S., ELTZ, T. & SAZIMA, M. 2011. Avoidance of achromatic colours by bees provides a private niche for hummingbird. Journal of Experimental Biology 214:1607–1612. that unprecedentedly showed that the avoidance of achromatic colors by bees provides a private niche for these birds. Other studies also allowed us to better comprehend the diversity and the morphological, anatomical, and functional aspects of ornithophilous flowers (Rocca & Sazima 2008ROCCA, M.A. & SAZIMA, M. 2008. Ornithophilous canopy species in the Atlantic rain forest of southeastern Brazil. Journal of Field Ornithology 79:130–137., Stahl et al. 2012STAHL, J.M., NEPI, M., GALETTO, L., GUIMARAES, E. & MACHADO, S.R. 2012. Functional aspects of floral nectar secretion of Ananas ananassoides, an ornithophilous bromeliad from the Brazilian savanna. Annals of Botany 109:1243–1252., Nunes et al. 2013NUNES, C.E.P., MORAES, C. M., GALETTO, L. & SAZIMA, M. 2013. Anatomy of the floral nectary of ornithophilous Elleanthus brasiliensis (Orchidaceae: Sobralieae). Botanical Journal of the Linnean Society 171:764–772., 2015NUNES, C.E.P., AMORIM, F.W., MAYER, J.L.S. & SAZIMA, M. 2015. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination. Plant Biology 18:15–25.).

Figure 1.
Some pollination systems studied by BIOTA/FAPESP Program. 1A: Cirrhaea sp. pollinated by Euglossa cordata (Photo by Ludmila M. Pansarin); 1B: Inga sessilis pollinated by the hawkmoths Erinnyis ello (Photo by Felipe Wanderley Amorim); 1C: Stifftia fruticosa pollinated by the male hummingbird Thalurania glaucopis (Photo by Ivan Sazima & Marlies Sazima); and 1D: Mucuna urens pollinated by the bat Glossophaga soricina (Photo by Ivan Sazima & Marlies Sazima).

The fascinating specific mutualistic relationships between fig trees and fig wasps was also subject of studies within the Program, such as the results published by Farache et al. (2009)FARACHE, F.H.A., Ó, V.T. & PEREIRA, R.A.S. 2009. Novel occurrence of non-pollinating fig wasps (Hymenoptera, Chalcidoidea) in Ficus microcarpa (L.f) in Brazil. Neotropical Entomology 38:683–685. and Cruaud et al. (2010CRUAUD, A., JABBOUR?ZAHAB, R., GENSON, G., COULOUX, A., YAN?QIONG, P., DA RONG, Y., UBAIDILLAH, R., PEREIRA, R.A.S., KJELLBERG, F., VAN NOORT, S., KERDELHUÉ, C. & RASPLUS, J.Y. 2010. Out of Australia and back again: the world?wide historical biogeography of non?pollinating fig wasps (Hymenoptera: Sycophaginae). Journal of Biogeography 38:209–225., 2011CRUAUD, A., COOK, J., DA-RONG, Y., GENSON, G., JABBOUR-ZAHAB, R., KJELLBERG, F., PEREIRA, R.A.S., RØNSTED, N., SANTOS-MATTOS, O., SAVOLAINEN, V., UBAIDILLAH, R., VAN NOORT, S., YAN-QIONG, P. & RASPLUS, JY. 2011. Fig–fig wasp mutualism: the fall of the strict cospeciation paradigm? In Evolution of Plant-Pollinator Relationships (S. Patiny ed.) Cambridge: Cambridge University Press, Cambridge p. 68–102.). These studies addressed the strict cospeciation and historical biogeography between them. On the other hand, generalist plants were also represented within the context of natural history, like two representatives of Fabaceae Inga sessilis (Figure 1B) and Inga subnuda, pollinated by four different groups of animals: hummingbirds, bees, hawkmoths and bats (Amorim et al. 2013, Ávila et al. 2015).

Studies on Ecology and Evolution of Plant-Pollinator Interactions

At the beginning of the BIOTA/FAPESP Program, there were many gaps in basic information about pollination and breeding systems of Brazilian native plant species, as well as on behavior of native pollinators. The Program was fundamental to fuel research on the natural history of plants and pollinators from the Atlantic forest. As the knowledge on pollination, breeding systems and pollinator behavior assembled, the research questions moved to ecological and evolutionary aspects of plant-pollinator interactions and plant reproduction, without neglecting the task of documenting basic natural history data. Overall, BIOTA/FAPESP funded studies that investigated themes such as functional pollination ecology, pollinator effectiveness, plant population genetics, structure and dynamics of plant-pollinator interaction networks, as well as geographic distribution and macroevolution of pollination systems (Supplementary Material 2). Below, we provide an overview of these studies and some of their findings.

Research on the functional pollination ecology encompassed from specialized pollination systems (e.g. long-tubed hawkmoths and long-spurred orchids, Moré et al. 2012MORÉ, M., AMORIM, F.W., BENITEZ-VIEYRA, S., MEDINA, A.M., SAZIMA, M. & COCUCCI, A.A. 2012. Armament imbalances: match and mismatch in plant-pollinator traits of highly specialized long-spurred orchids. PLOS ONE 7:e41878. https://doi.org/10.1371/journal.pone.0041878 (last access 31/10/2022).
https://doi.org/10.1371/journal.pone.004...
) to generalized ones (e.g. generalist brush flowers, Ávila Jr. et al. 2015), although we noted a preference for specialized systems among the studies (bat, hummingbird or large bee pollination systems, Supplementary Material 2). In this context, it was shown that nectar traits may change along the flower lifespan, matching the preferences (Agostini et al. 2011AGOSTINI, K., SAZIMA, M. & GALETTO, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. The Science of Nature 98:933–942., Amorim et al. 2013AMORIM, F.W., GALETTO, L. & SAZIMA, M. 2013. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15:317–327.) and availability of pollinators (Stahl et al. 2012STAHL, J.M., NEPI, M., GALETTO, L., GUIMARAES, E. & MACHADO, S.R. 2012. Functional aspects of floral nectar secretion of Ananas ananassoides, an ornithophilous bromeliad from the Brazilian savanna. Annals of Botany 109:1243–1252., Souza et al. 2017SOUZA, C.V., NEPI, M., MACHADO, S.R. & GUIMARAES, E. 2017. Floral biology, nectar secretion pattern and fruit set of a threatened Bignoniaceae tree from Brazilian tropical forest. Flora 227:46–55.). There was also a focus on flower colour, with studies demonstrating how colour variation within flowers (Saab et al. 2021SAAB, G.S., MANSANO, V.F., NOGUEIRA, A., MAIA, I.C., BERGAMO P.J. & PAULINO J.V. 2021. A sophisticated case of division of labour in the trimorphic stamens of the Cassia fistula. AoB Plants 13(5):plab054. doi: 10.1093/aobpla/plab054 (last access 31/10/2022).
https://doi.org/10.1093/aobpla/plab054...
), within plants (Brito et al. 2015BRITO, V.L., WEYNANS, K., SAZIMA, M. & LUNAU K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science 6:362. doi: 10.3389/fpls.2015.00362 (last access 31/10/2022).
https://doi.org/10.3389/fpls.2015.00362...
), within populations (Bergamo et al. 2016BERGAMO, P.J., RECH, A.R., BRITO, V.L.G. & SAZIMA, M. 2016. Flower colour and visitation rates of Costus arabicus support the ‘bee avoidance’ hypothesis for red-reflecting hummingbird-pollinated flowers. Functional Ecology 30:710–720.) and between plant species (Lunau et al. 2011LUNAU, K., PAPIOREK, S., ELTZ, T. & SAZIMA, M. 2011. Avoidance of achromatic colours by bees provides a private niche for hummingbird. Journal of Experimental Biology 214:1607–1612.) are related to the visual abilities of bees and/or hummingbirds. Finally, studies have demonstrated the role of floral scent in attracting Euglossini bees (Nunes et al. 2017NUNES, C.E.P., WOLOWSKI, M., PANSARIN, E.R., GERLACH, G., AXIMOFF, I., VEREECKEN, N.J., SALVADOR, M.J., & SAZIMA, M. 2017. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids. The Science of Nature 104:11–12.) and in maintaining high pollinator visitation in rewardless flowers (Guimarães et al. 2018GUIMARÃES, E., TUNES, P., ALMEIDA-JUNIOR, L.D., DI STASI, L.C., DOETTERL, S. & MACHADO, S.R. 2018. Nectar replaced by volatile secretion: a potential new role for nectarless flowers in a bee-pollinated plant species. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01243 (last access 31/10/2022).
https://doi.org/10.3389/fpls.2018.01243...
). Overall, these studies focused on particular traits of plants and pollinators, advancing our knowledge of physiological, morphological, and behavioral adaptations that mediate plant-pollinator interactions.

Some studies helped reveal the consequences of distinct floral visitors and their behavior on the outcomes of plant-pollinator interactions. In this regard, BIOTA/FAPESP has funded research on the specialized fig pollination system, investigating the negative and positive effects of figs and fig-wasps on each other (e.g. Elias et al. 2008ELIAS, L.G., MENEZES, A.O.J.R. & PEREIRA, R.A.S. 2008. Colonization sequence of non-pollinating fig wasps associated with Ficus citrifolia in Brazil. Symbiosis 45:107–111.). Such accumulated knowledge contributed to a review of the evolutionary impacts of this interaction on figs and fig-wasps (Cruaud et al. 2011CRUAUD, A., COOK, J., DA-RONG, Y., GENSON, G., JABBOUR-ZAHAB, R., KJELLBERG, F., PEREIRA, R.A.S., RØNSTED, N., SANTOS-MATTOS, O., SAVOLAINEN, V., UBAIDILLAH, R., VAN NOORT, S., YAN-QIONG, P. & RASPLUS, JY. 2011. Fig–fig wasp mutualism: the fall of the strict cospeciation paradigm? In Evolution of Plant-Pollinator Relationships (S. Patiny ed.) Cambridge: Cambridge University Press, Cambridge p. 68–102.). At the level of single plant species, it was shown how bee body size determines which floral visitors are mutualists and which are antagonists in Jacaranda caroba (Quinalha et al. 2017QUINALHA, M.M., NOGUEIRA, A., FERREIRA, G. & GUIMARÃES, E. 2017. Effect of mutualistic and antagonistic bees on floral resources and pollination of a savanna shrub. Flora 232:30–38.). Similarly, a study revealed that nectar rewards in Sophora tomentosa and Crotalaria vitellina are available only for long-tongued bee pollinators but not for small antagonists (Brito et al. 2010BRITO, V.L.G., PINHEIRO, M. & SAZIMA, M. 2010. Sophora tomentosa and Crotalaria vitellina (Fabaceae): reproductive biology and interactions with bees in the restinga of Ubatuba, São Paulo. Biota Neotropica 10:185–192. https://doi.org/10.1590/S1676-06032010000100019 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603201000...
). Moreover, bill length determined which hummingbird species were more effective in depositing pollen on the stigmas of the bromeliad Vriesea rodigasiana (Rocca et al. 2006ROCCA, M.A., SAZIMA, M. & SAZIMA, I. 2006. Woody woodpecker enjoys soft drinks: the blond-crested woodpecker seeks nectar and pollinates canopy plants in south-eastern Brazil. Biota Neotropica 6(2). https://doi.org/10.1590/S1676-06032006000200027 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603200600...
). In sum, BIOTA/FAPESP contributed not only to the understanding of the evolution of specialized fig pollination systems but also to how pollinator traits influence their performance as mutualists or antagonists in plant species with distinct flower morphologies.

BIOTA/FAPESP also funded genetic and molecular studies of native plant populations focusing on how the pollen flow via pollinators influenced populations’ genetic structure. Using microsatellite markers, one study revealed high outcrossing rates and infrequent selfing in progenies of Qualea grandiflora, implying that pollinators were effective in promoting cross-pollination (Antiqueira & Kageyama 2015ANTIQUEIRA, L.M.O.R. & KAGEYAMA, P.Y. 2015. Sistema reprodutivo e fluxo de pólen em progênies de Qualea grandiflora Mart., espécie típica do cerrado. Revista Árvore 39:337–344.). A limited pollen flow was found among Copaifera langsdorfii populations, which suggests that long-distance pollination is rare in the studied area (Antiqueira et al. 2014ANTIQUEIRA, L.M.O.R., SOUZA, R.G.V.C., BAJAY, M.M. & KAGEYAMA, P.Y. 2014. Estrutura e diversidade genética de Copaifera langsdorffii Desf. em fragmentos de Cerrado no Estado de São Paulo. Revista Árvore 38:667–675.). The opposite pattern was reported for Centrolobium tomentosum, in which most of the gene flow between populations was through pollen instead of seeds (Sujii et al. 2021SUJII, O.S., TAMBARUSSI, E.V., GRANDO, C., SILVESTRE, E.A., VIANA, J.P.G., BRANCALION, P.H.S. & ZUCCHI, M.I. 2021. High gene flow through pollen partially compensates spatial limited gene flow by seeds for a Neotropical tree in forest conservation and restoration areas. Conservation Genetics 22:383–396.). The role of pollinators was also evident in a comparative study involving Tibouchina pulchra, in which low-altitude populations showed high pollinator visitation and outcrossing rates, while high-altitude populations showed low pollinator visitation and more selfing (Brito et al. 2016BRITO, V.L.G., MORI, G.M., VIGNA, B.B.Z., AZEVEDO-SILVA, M., SOUZA, A.P. & SAZIMA, M. 2016. Genetic structure and diversity of populations of polyploid Tibouchina pulchra Cogn. (Melastomataceae) under different environmental conditions in extremes of an elevational gradient. Tree Genetics & Genomes 12:101. DOI 10.1007/s11295-016-1059-y (last access 31/10/2022).
https://doi.org/10.1007/s11295-016-1059-...
). These studies highlight the potential of combining genetic and ecological approaches to reveal complex evolutionary processes.

There was a great effort in documenting interactions for entire plant-pollinator assemblages. This effort resulted in several studies investigating the structure and dynamics of plant-pollinator networks. For instance, flower morphology (Valadão-Mendes et al. 2022VALADÃO?MENDES, L.B., ROCHA, I., MEIRELES, D.A.L., LEITE, F.B., SAZIMA, M., MARUYAMA, P.K. & BRITO, V.L.G. 2022. Flower morphology and plant–bee pollinator interactions are related to stamen dimorphism in Melastomataceae. Plant Biology 24:240–248.) and bee body size (Raiol et al. 2021RAIOL, R.L., GASTAUER, M., CAMPBELL, A.J., BORGES, R.C., AWADE, M. & GIANNINI, T.C. 2021. Specialist bee species are larger and less phylogenetically distinct than generalists in tropical plant–bee interaction networks. Frontiers in Ecology and Evolution 9: doi 10.3389/fevo.2021.699649 (last access 31/10/2022).
https://doi.org/10.3389/fevo.2021.699649...
) determined bee-plant interactions and influenced the structure of bee-plant networks. We highlight the BIOTA Gradiente Funcional project, which funded studies of plant-pollinator interactions along altitudinal gradients, including plant-bee (Pinheiro et al. 2018PINHEIRO, M., BRITO, V.L.G. & SAZIMA, M. 2018. Pollination biology of melittophilous legume tree species in the Atlantic Forest in Southeast Brazil. Acta Botanica Brasilica 32(3):410–425.), plant-hummingbird (Vizentin-Bugoni et al. 2014VIZENTIN-BUGONI, J., MARUYAMA, P.K. & SAZIMA, M. 2014. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proceedings of Royal Society 2812013239720132397 http://doi.org/10.1098/rspb.2013.2397 (last access 31/10/2022).
https://doi.org/10.1098/rspb.2013.2397...
) and plant-hawkmoth networks (Sazatornil et al. 2016SAZATORNIL, F.D., MORÉ, M., BENITEZ-VIEYRA, S., COCUCCI, A.A., KITCHING, I.J., SCHLUMPBERGER, B.O., OLIVEIRA, P.E., SAZIMA, M. & AMORIM, F.W. 2016. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth–plant networks. Journal of Animal Ecology 85:1586–1594. https://doi.org/10.1111/1365-2656.12509 (last access 31/10/2022).
https://doi.org/10.1111/1365-2656.12509...
). These studies stressed the importance of plant and pollinator traits in shaping network structure. All this knowledge also contributed to broader investigations at regional and global scales, showing how plant-bee networks change along environmental gradients (Giannini et al. 2015GIANNINI, T.C., GARIBALDI, L.A., ACOSTA, A.L., SILVA, J.S., MAIA, K.P., SARAIVA, A.M., GUIMARÃES, P.R. & KLEINERT, A.M.P. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. Plos One 10(9):e0137198. https://doi.org/10.1371/journal.pone.0137198 (last access 31/10/2022).
https://doi.org/10.1371/journal.pone.013...
) and how niche processes influence plant-hummingbird network dynamics (Simmons et al. 2019SIMMONS, B.I., VIZENTIN-BUGONI, J., MARUYAMA, P.K., COTTON, P.A., MARÍN-GÓMEZ, O.H., LARA, C., ROSERO-LASPRILLA, L., MAGLIANESI, M.A., ORTIZ-PULIDO, R., ROCCA, M.A., RODRIGUES, L.C., TINOCO, B.A., VASCONCELOS, M.F., SAZIMA, M., MARTÍN GONZÁLEZ, A.M., SONNE, J., RAHBEK, C., DICKS, L.V., DALSGAARD, B. & SUTHERLAND, W.J. 2019. Abundance drives broad patterns of generalization in plant–hummingbird pollination networks. Oikos, 128:1287–1295.). In this sense, BIOTA/FAPESP greatly contributed to our understanding of plant-pollinator patterns and processes at the community level.

Finally, there were also great advances in registering plant and pollinator occurrences, greatly advancing our understanding of broad geographic and macroevolutionary patterns of pollinators and pollination systems. Such efforts were mainly focused on bees, which generated occurrence databases of oil-collecting bees (Gaglianone et al. 2011GAGLIANONE, M.C., AGUIAR, A.J.C., VIVALLO, F. & ALVES-DOS-SANTOS, I. 2011. Checklist das abelhas coletoras de óleos do Estado de São Paulo, Brasil. Biota Neotropica 11:657–666. https://doi.org/10.1590/S1676-06032011000500030 (last access 31/11/2022).
https://doi.org/10.1590/S1676-0603201100...
), Euglossine bees (Cordeiro et al. 2013CORDEIRO, G.D., BOFF, S., CAETANO, T.A., FERNANDES, P.C. & ALVES-DOS-SANTOS, I. 2013. Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil. Apidologie 44:254–267.) as well as bee-pollinated plants in general (Imperatriz-Fonseca et al. 2011IMPERATRIZ-FONSECA, V.L., ALVES-DOS-SANTOS, I., SANTOS-FILHO, P.S., ENGELS, W., RAMALHO, M., WILMS, W., AGUILAR, J.B.V., PINHEIRO-MACHADO, C.A., ALVES, D.A., & MATOS, P.K.A. 2011. Checklist das abelhas e plantas melitófilas no Estado de São Paulo, Brasil. Biota Neotropica 11:631–655. https://doi.org/10.1590/S1676-06032011000500029 (last access 31/10/2022).
https://doi.org/10.1590/S1676-0603201100...
) for the state of São Paulo. Advancing the knowledge of bees and their associated plants also promoted ecological niche modeling studies, which are important to predict how pollination systems may face anthropogenic threats such as climate change (Giannini et al. 2010GIANNINI, T.C., SARAIVA, A.M. & ALVES-DOS-SANTOS, I. 2010. Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Ponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecological Informatics 5(1):59–66.). In this context, by combining ecological niche modeling and analysis of pollen loads, it was shown which plant species are important to protect two Euglossine bee species across their distribution (Miranda et al. 2021MIRANDA, E.A., LIMA, I.N., OI, C.A., LÓPEZ-URIBE, M.M., DEL LAMA, M.A., FREITAS, B.M. & SILVA, C.I. 2021. Overlap of ecological niche breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) accessed by pollen loads and species distribution modeling. Neotropical Entomology 50:197–207. https://doi.org/10.1007/s13744-020-00847-x (last access 31/10/2022).
https://doi.org/10.1007/s13744-020-00847...
). As data on pollination systems also accumulated, it was possible to conduct studies investigating macroevolutionary patterns of the pollination of tropical plant groups (e.g. Stanhopeinae orchids, Pansarin et al. 2018PANSARIN, L.M., PANSARIN, E.R., GERLACH, G. & SAZIMA, M. 2018. The Natural History of Cirrhaea and the Pollination System of Stanhopeinae (Orchidaceae). International Journal of Plant Sciences 179:436–449.). Therefore BIOTA/FAPESP had a prominent role in producing basic data with great implications for understanding the ecology and promoting the conservation of plant-pollinator interactions.

Pollination as an Ecosystem Service and the Landscape Effect: Applied Approach and Future Perspective

Based on projects funded by BIOTA/FAPESP, studies on pollination in the context of landscape ecology began in 2006 with the aim of assessing the effects of forest fragmentation on the functioning of plant populations and their interactions with pollinators (Supplementary Material 1 – Projects supported by BIOTA/FAPESP Program – project 2004/10299-4, coordinator Rodrigo Augusto Santinelo Pereira) and the relationships between landscape structure and ecological processes, biodiversity and ecosystem services (Supplementary Material 1 – Projects supported by BIOTA/FAPESP Program – project 2013/23457-6, coordinator Jean Paul Walter Metzger).

In this sense, pollination is considered an ecosystem service when it contributes to food production. For instance, for the production of Arabica coffee, biotic pollination promotes an 18% increase in fruit set assessed in a global review (Moreaux et al. 2022MOREAUX, C., MEIRELES, D.A.L., SONNE, J., BADANO, E.I., CLASSEN, A., GONZÁLEZ-CHAVES, A., HIPÓLITO, J., KLEIN, A.-M., MARUYAMA, P.K., METZGER, J.P., PHILPOTT, S.M., RAHBEK, C., SATURNI, F.T., SRITONGCHUAY, T., TSCHARNTKE, T., UNO, S., VERGARA, C.H., VIANA, B.F., STRANGE, N. & DALSGAARD, B. 2022. The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems & Environment 323:107680. https://doi.org/10.1016/j.agee.2021.107680 (last access 31/10/2022).
https://doi.org/10.1016/j.agee.2021.1076...
). Additionally, forest cover near plantations contribute to increased coffee yields and insect diversity in Brazil (Saturni et al. 2016SATURNI, F.T., JAFFE, R. & METZGER, J.P. 2016. Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystem & Environment 235:1–12., Medeiros et al. 2019MEDEIROS, H.R., MARTELLO, F., ALMEIDA, E.A.B., MENGUAL, X., HARPER, K.A., GRANDINETE, Y.C., METZGER, J.P., RIGHI, C.A. & RIBEIRO, M.C. 2019. Landscape structure shapes the diversity of beneficial insects in coffee producing landscapes. Biological Conservation 238:108193., González-Chaves et al. 2022GONZÁLEZ-CHAVES, A., CARVALHEIRO, L.G., GARIBALDI, L. & METZGER, J.P. 2022. Positive forest cover effects on coffee yields are consistent across regions. (2022). Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology 59:330–341.), but forest proximity is also important (González-Chaves et al. 2020GONZÁLEZ-CHAVES, A., JAFFE, R., METZGER J.P. & KLEINERT, M.P.A. 2020. Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landscape Ecology 35:1841–1855.).

Moreover, studies with a focus on the sustainable use and conservation of pollinators (Supplementary Material 1 – Projects supported by BIOTA/FAPESP Program – project 2004/15801-0, coordinator Vera Lucia Imperatriz Fonseca and project 2017/21097-3, coordinator Osmar Malaspina) have demonstrated that stingless bees have the potential to increase production of several crops, such as eggplants (Nunes-Silva et al. 2013NUNES-SILVA, P., HRNCIR, M., SILVA, C., ROLDÃO, Y. & IMPERATRIZ-FONSECA, V.L. 2013. Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie 44(5):537–546.). Thus, as several crops are dependent on biotic pollination for food production, this reflects the demand for this service. On the other hand, the supply of pollination depends on the amount of habitat and vegetation cover in forest remnants, so the provision of this service can be compromised by changes in land use and land cover over time. Based on modeling of predicted land use and land cover changes associated with agriculture expansion (between the years 2012 and 2030) in São Paulo state, the demand for pollination will increase by 40% by 2030, while pollinator supply will decrease by 3% (Barbosa et al. 2020BARBOSA, M.M., CARNEIRO, L.T., PEREIRA, M.F.C.S., RODRIGUEZ, C.Z., CHAGAS, T.R.F., MOYA, W., BERGAMINI, L.L., MANCINI, M.C.S., PAES, N.D. & GIRALDO, L.C.P. 2020. Future scenarios of land-use-cover effects on pollination supply and demand in São Paulo State, Brazil. Biota Neotropica 20(suppl.1):e20190906. https://doi.org/10.1590/1676-0611-BN-2019-0906 (last access on 31/10/2022).
https://doi.org/10.1590/1676-0611-BN-201...
).

The knowledge about the geographic distribution of Meliponini bees and their interactions with plants allowed the development of initiatives related to the creation and availability of this information in databases (Cartolano Júnior 2009CARTOLANO-JR, E.A. 2009. Proposta de um sistema de informação orientado a serviços sobre a biodiversidade de abelhas. Tese de Doutorado, Universidade de São Paulo, São Paulo.), (Supplementary Material 1 – Projects supported by BIOTA/FAPESP Program – project 2004/15801-0, coordinator Vera Lúcia Imperatriz-Fonseca). Available information on a wide range of pollinator species and their interactions with plants can be used in studies of functional ecology and ecosystem restoration. Montoya-Pfeiffer et al. (2020)MONTOYA-PFEIFFER, P. M., RODRIGUES, R. R. & ALVES-DOS-SANTOS, I. 2020. Bee pollinator functional responses and functional effects in restored tropical forests. Ecological Applications 30(3):02054. https://doi.org/10.1002/eap.2054 (last access 31/10/2022).
https://doi.org/10.1002/eap.2054...
demonstrated that the abundance and diversity of bee communities and the frequency and diversity of the interacting plant species in restoration plantings were lower than those in primary forest fragments but higher than those in anthropogenic wetlands and sugarcane fields, suggesting that restoration plantings better enhance bee community recovery and functionality than other disturbed habitats. The authors also concluded that restoration efforts should include the provisioning of nesting resources and management and conservation of primary forest remnant fragments that represent source habitats for them.

From now on, the assembled information about plant-pollinator interactions can be used to guide decision-making, for example in restoration programs regarding the choice of priority of plant species for bee visitation, which highlight that these plant species are clustered in a small number of phylogenetically-diverse plant families (Campbell et al. 2019CAMPBELL, A.J., GIGANTE CARVALHEIRO, L., GASTAUER, M., ALMEIDA-NETO, M. & GIANNINI, T.C. 2019. Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports 9:17383. https://doi.org/10.1038/s41598-019-53829-4
https://doi.org/10.1038/s41598-019-53829...
). Finally, the support of the BIOTA/FAPESP Program to projects on cross-cutting themes with pollination and developed under the demand of environmental and agricultural agencies has enabled the state of São Paulo to play a leading role in developing applied research for decision-making (Projects supported by BIOTA/FAPESP Program – project 2016/17680-2 , coordinator Gerd Sparovek).

Acknowledgments

We thank the students, professors, and researchers who participated in field and lab work and we especially thank Felipe Wanderley Amorim and Ivan Sazima for kindly providing the images 1B and 1C respectively for figure 1. FAPESP and the BIOTA/FAPESP program gave essential support through many grants, scholarships, and logistics to fieldwork in Parque Estadual da Serra do Mar, Picinguaba, and Santa Virgínia Centres. Additional funding and scholarships were provided by CAPES and CNPq.

Supplementary Material

The following online material is available for this article:

Supplementary Material 1 – Projects supported by BIOTA/FAPESP Program.

Supplementary Material 2 – Publications resulted from a systematic review of the literature in the databases Web of Science and Dimensions, starting in 1999, using the following search terms “Pollination” AND “BIOTA/FAPESP”. In addition, we consulted the virtual library of FAPESP with the search terms “Pollination” OR “Pollinators” (in English and Portuguese) considering the filter “Programs focused on specific themes – Research in Biodiversity”, in order to identify the projects supported by the BIOTA Program and related to plant-pollinator interaction.

Supplementary Material 3 – Projects supported by BIOTA/FAPESP Program; main goals and impact indexes. Abbreviations: BP.TT = Scholarship in Brazil: Technical Training Program; BP.IC = Scholarship in Brazil: Scientific Initiation; BP.MS = Scholarship in Brazil: Master; BP.DR = Scholarship in Brazil: PhD; BP.DD = Scholarship in Brazil: PhD (Direct); BE.PQ = Scholarships abroad: Research. Information from the FAPESP Virtual Library (https://bv.fapesp.br/pt/) and from the BIOTA/FAPESP Program website (https://www.biota.org.br/).

  • Ethics
    This study did not involve human beings and/or clinical trials that require approval by an Institutional Committee.

References

  • AGOSTINI, K., SAZIMA, M. & GALETTO, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. The Science of Nature 98:933–942.
  • AMORIM, F.W., GALETTO, L. & SAZIMA, M. 2013. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15:317–327.
  • ANDRESEN, E., ARROYO-RODRÍGUEZ, V. & ESCOBAR, F. 2018. Tropical biodiversity: the importance of biotic interactions for its origin, maintenance, function, and conservation. In: Dáttilo, W. & Rico-Gray, V. (eds) Ecological networks in the tropics. Springer.
  • ANTIQUEIRA, L.M.O.R. & KAGEYAMA, P.Y. 2015. Sistema reprodutivo e fluxo de pólen em progênies de Qualea grandiflora Mart., espécie típica do cerrado. Revista Árvore 39:337–344.
  • ANTIQUEIRA, L.M.O.R., SOUZA, R.G.V.C., BAJAY, M.M. & KAGEYAMA, P.Y. 2014. Estrutura e diversidade genética de Copaifera langsdorffii Desf. em fragmentos de Cerrado no Estado de São Paulo. Revista Árvore 38:667–675.
  • AVILA, R.S., CRUZ-BARROS, M.A.V., SILVA CORREA, A.M. & SAZIMA, M. 2010. Tipos polínicos encontrados em esfingídeos (Lepidoptera, Sphingidae) em área de Floresta Atlântica do sudeste do Brasil: uso da palinologia no estudo de interações ecológicas. Brazilian Journal of Botany 33:415–424.
  • AVILA, R., PINHEIRO, M. & SAZIMA, M. 2015. The generalist Inga subnuda subsp. luschnathiana (Fabaceae): negative effect of floral visitors on reproductive success? Plant Biology 17:728–733.
  • BARBOSA, M.M., CARNEIRO, L.T., PEREIRA, M.F.C.S., RODRIGUEZ, C.Z., CHAGAS, T.R.F., MOYA, W., BERGAMINI, L.L., MANCINI, M.C.S., PAES, N.D. & GIRALDO, L.C.P. 2020. Future scenarios of land-use-cover effects on pollination supply and demand in São Paulo State, Brazil. Biota Neotropica 20(suppl.1):e20190906. https://doi.org/10.1590/1676-0611-BN-2019-0906 (last access on 31/10/2022).
    » https://doi.org/10.1590/1676-0611-BN-2019-0906
  • BERGAMO, P.J., RECH, A.R., BRITO, V.L.G. & SAZIMA, M. 2016. Flower colour and visitation rates of Costus arabicus support the ‘bee avoidance’ hypothesis for red-reflecting hummingbird-pollinated flowers. Functional Ecology 30:710–720.
  • BPBES/REBIPP. 2019. Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M.M., Freitas, L., Carneiro, L.T., Bueno, R.O., Consolaro, H., Carvalheiro, L.G., Saraiva, A.M., Silva, C.I. Padgurschi, M.C.G. (Org.). 1ª edição, São Carlos, SP: Editora Cubo. 184 p. http://doi.org/10.4322/978-85-60064-83-0
    » https://doi.org/10.4322/978-85-60064-83-0
  • BRITO, V.L.G. & SAZIMA, M. 2012. Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Systematics and Evolution 298:1271–1279.
  • BRITO, V.L.G., PINHEIRO, M. & SAZIMA, M. 2010. Sophora tomentosa and Crotalaria vitellina (Fabaceae): reproductive biology and interactions with bees in the restinga of Ubatuba, São Paulo. Biota Neotropica 10:185–192. https://doi.org/10.1590/S1676-06032010000100019 (last access 31/10/2022).
    » https://doi.org/10.1590/S1676-06032010000100019
  • BRITO, V.L., WEYNANS, K., SAZIMA, M. & LUNAU K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra Frontiers in Plant Science 6:362. doi: 10.3389/fpls.2015.00362 (last access 31/10/2022).
    » https://doi.org/10.3389/fpls.2015.00362
  • BRITO, V.L.G., MORI, G.M., VIGNA, B.B.Z., AZEVEDO-SILVA, M., SOUZA, A.P. & SAZIMA, M. 2016. Genetic structure and diversity of populations of polyploid Tibouchina pulchra Cogn. (Melastomataceae) under different environmental conditions in extremes of an elevational gradient. Tree Genetics & Genomes 12:101. DOI 10.1007/s11295-016-1059-y (last access 31/10/2022).
    » https://doi.org/10.1007/s11295-016-1059-y
  • CAMPBELL, A.J., GIGANTE CARVALHEIRO, L., GASTAUER, M., ALMEIDA-NETO, M. & GIANNINI, T.C. 2019. Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports 9:17383. https://doi.org/10.1038/s41598-019-53829-4
    » https://doi.org/10.1038/s41598-019-53829-4
  • CARTOLANO-JR, E.A. 2009. Proposta de um sistema de informação orientado a serviços sobre a biodiversidade de abelhas. Tese de Doutorado, Universidade de São Paulo, São Paulo.
  • CORDEIRO, G.D., BOFF, S., CAETANO, T.A., FERNANDES, P.C. & ALVES-DOS-SANTOS, I. 2013. Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil. Apidologie 44:254–267.
  • COSTANZA, R., D’ARGE, R., DE GROOT, R., FARBER, S., GRASSO, M., HANNON, B., LIMBURG, K. NAEEM, S., O’NEILL, R.V., PARUELO, J., RASKIN, R.G., SUTTON, P. & VAN DEN BELT, M. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253–260.
  • COSTANZA, R., GROOT, R., BRAAT, L., KUBISZEWSKI, I., FIORAMONTI, L., SUTTON, P., FARBER, S. & GRASSO, M. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services 28:1–16.
  • CRUAUD, A., JABBOUR?ZAHAB, R., GENSON, G., COULOUX, A., YAN?QIONG, P., DA RONG, Y., UBAIDILLAH, R., PEREIRA, R.A.S., KJELLBERG, F., VAN NOORT, S., KERDELHUÉ, C. & RASPLUS, J.Y. 2010. Out of Australia and back again: the world?wide historical biogeography of non?pollinating fig wasps (Hymenoptera: Sycophaginae). Journal of Biogeography 38:209–225.
  • CRUAUD, A., COOK, J., DA-RONG, Y., GENSON, G., JABBOUR-ZAHAB, R., KJELLBERG, F., PEREIRA, R.A.S., RØNSTED, N., SANTOS-MATTOS, O., SAVOLAINEN, V., UBAIDILLAH, R., VAN NOORT, S., YAN-QIONG, P. & RASPLUS, JY. 2011. Fig–fig wasp mutualism: the fall of the strict cospeciation paradigm? In Evolution of Plant-Pollinator Relationships (S. Patiny ed.) Cambridge: Cambridge University Press, Cambridge p. 68–102.
  • ELIAS, L.G., MENEZES, A.O.J.R. & PEREIRA, R.A.S. 2008. Colonization sequence of non-pollinating fig wasps associated with Ficus citrifolia in Brazil. Symbiosis 45:107–111.
  • FARACHE, F.H.A., Ó, V.T. & PEREIRA, R.A.S. 2009. Novel occurrence of non-pollinating fig wasps (Hymenoptera, Chalcidoidea) in Ficus microcarpa (L.f) in Brazil. Neotropical Entomology 38:683–685.
  • GAGLIANONE, M.C., AGUIAR, A.J.C., VIVALLO, F. & ALVES-DOS-SANTOS, I. 2011. Checklist das abelhas coletoras de óleos do Estado de São Paulo, Brasil. Biota Neotropica 11:657–666. https://doi.org/10.1590/S1676-06032011000500030 (last access 31/11/2022).
    » https://doi.org/10.1590/S1676-06032011000500030
  • GALLAI, N., SALLES, J.M., SETTELE, J. & VAISSIÈRE, B.E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68(3):810–821.
  • GIANNINI, T.C., SARAIVA, A.M. & ALVES-DOS-SANTOS, I. 2010. Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Ponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecological Informatics 5(1):59–66.
  • GIANNINI, T.C., GARIBALDI, L.A., ACOSTA, A.L., SILVA, J.S., MAIA, K.P., SARAIVA, A.M., GUIMARÃES, P.R. & KLEINERT, A.M.P. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. Plos One 10(9):e0137198. https://doi.org/10.1371/journal.pone.0137198 (last access 31/10/2022).
    » https://doi.org/10.1371/journal.pone.0137198
  • GONZÁLEZ-CHAVES, A., CARVALHEIRO, L.G., GARIBALDI, L. & METZGER, J.P. 2022. Positive forest cover effects on coffee yields are consistent across regions. (2022). Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology 59:330–341.
  • GONZÁLEZ-CHAVES, A., JAFFE, R., METZGER J.P. & KLEINERT, M.P.A. 2020. Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landscape Ecology 35:1841–1855.
  • GUIMARÃES, E., TUNES, P., ALMEIDA-JUNIOR, L.D., DI STASI, L.C., DOETTERL, S. & MACHADO, S.R. 2018. Nectar replaced by volatile secretion: a potential new role for nectarless flowers in a bee-pollinated plant species. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01243 (last access 31/10/2022).
    » https://doi.org/10.3389/fpls.2018.01243
  • IMPERATRIZ-FONSECA, V.L., ALVES-DOS-SANTOS, I., SANTOS-FILHO, P.S., ENGELS, W., RAMALHO, M., WILMS, W., AGUILAR, J.B.V., PINHEIRO-MACHADO, C.A., ALVES, D.A., & MATOS, P.K.A. 2011. Checklist das abelhas e plantas melitófilas no Estado de São Paulo, Brasil. Biota Neotropica 11:631–655. https://doi.org/10.1590/S1676-06032011000500029 (last access 31/10/2022).
    » https://doi.org/10.1590/S1676-06032011000500029
  • IPBES. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn. 552p.
  • LUNAU, K., PAPIOREK, S., ELTZ, T. & SAZIMA, M. 2011. Avoidance of achromatic colours by bees provides a private niche for hummingbird. Journal of Experimental Biology 214:1607–1612.
  • MEDEIROS, H.R., MARTELLO, F., ALMEIDA, E.A.B., MENGUAL, X., HARPER, K.A., GRANDINETE, Y.C., METZGER, J.P., RIGHI, C.A. & RIBEIRO, M.C. 2019. Landscape structure shapes the diversity of beneficial insects in coffee producing landscapes. Biological Conservation 238:108193.
  • MIRANDA, E.A., LIMA, I.N., OI, C.A., LÓPEZ-URIBE, M.M., DEL LAMA, M.A., FREITAS, B.M. & SILVA, C.I. 2021. Overlap of ecological niche breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) accessed by pollen loads and species distribution modeling. Neotropical Entomology 50:197–207. https://doi.org/10.1007/s13744-020-00847-x (last access 31/10/2022).
    » https://doi.org/10.1007/s13744-020-00847-x
  • MONTOYA-PFEIFFER, P. M., RODRIGUES, R. R. & ALVES-DOS-SANTOS, I. 2020. Bee pollinator functional responses and functional effects in restored tropical forests. Ecological Applications 30(3):02054. https://doi.org/10.1002/eap.2054 (last access 31/10/2022).
    » https://doi.org/10.1002/eap.2054
  • MORÉ, M., AMORIM, F.W., BENITEZ-VIEYRA, S., MEDINA, A.M., SAZIMA, M. & COCUCCI, A.A. 2012. Armament imbalances: match and mismatch in plant-pollinator traits of highly specialized long-spurred orchids. PLOS ONE 7:e41878. https://doi.org/10.1371/journal.pone.0041878 (last access 31/10/2022).
    » https://doi.org/10.1371/journal.pone.0041878
  • MOREAUX, C., MEIRELES, D.A.L., SONNE, J., BADANO, E.I., CLASSEN, A., GONZÁLEZ-CHAVES, A., HIPÓLITO, J., KLEIN, A.-M., MARUYAMA, P.K., METZGER, J.P., PHILPOTT, S.M., RAHBEK, C., SATURNI, F.T., SRITONGCHUAY, T., TSCHARNTKE, T., UNO, S., VERGARA, C.H., VIANA, B.F., STRANGE, N. & DALSGAARD, B. 2022. The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems & Environment 323:107680. https://doi.org/10.1016/j.agee.2021.107680 (last access 31/10/2022).
    » https://doi.org/10.1016/j.agee.2021.107680
  • NUNES, C.E.P., MORAES, C. M., GALETTO, L. & SAZIMA, M. 2013. Anatomy of the floral nectary of ornithophilous Elleanthus brasiliensis (Orchidaceae: Sobralieae). Botanical Journal of the Linnean Society 171:764–772.
  • NUNES, C.E.P., AMORIM, F.W., MAYER, J.L.S. & SAZIMA, M. 2015. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination. Plant Biology 18:15–25.
  • NUNES, C.E.P., WOLOWSKI, M., PANSARIN, E.R., GERLACH, G., AXIMOFF, I., VEREECKEN, N.J., SALVADOR, M.J., & SAZIMA, M. 2017. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids. The Science of Nature 104:11–12.
  • NUNES-SILVA, P., HRNCIR, M., SILVA, C., ROLDÃO, Y. & IMPERATRIZ-FONSECA, V.L. 2013. Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie 44(5):537–546.
  • OLLERTON, J. 2017 Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics 48:353–376.
  • OLLERTON, J., WINFREE, R. & TARRANT, S. 2011. How many flowering plants are pollinated by animals? Oikos, 120:321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (last access 31/10/2022).
    » https://doi.org/10.1111/j.1600-0706.2010.18644.x
  • PANSARIN, L.M., PANSARIN, E.R. & SAZIMA, M. 2008a. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit. Plant Biology 10:650–659.
  • PANSARIN, L.M., PANSARIN, E.R., SAZIMA, M. 2008b. Facultative autogamy in Cyrtopodium polyphyllum (Orchidaceae) through a rain-assisted pollination mechanism. Australian Journal of Botany 56:363–367.
  • PANSARIN, L.M., PANSARIN, E.R., GERLACH, G. & SAZIMA, M. 2018. The Natural History of Cirrhaea and the Pollination System of Stanhopeinae (Orchidaceae). International Journal of Plant Sciences 179:436–449.
  • PINHEIRO, M., BRITO, V.L.G. & SAZIMA, M. 2018. Pollination biology of melittophilous legume tree species in the Atlantic Forest in Southeast Brazil. Acta Botanica Brasilica 32(3):410–425.
  • QUINALHA, M.M., NOGUEIRA, A., FERREIRA, G. & GUIMARÃES, E. 2017. Effect of mutualistic and antagonistic bees on floral resources and pollination of a savanna shrub. Flora 232:30–38.
  • RAIOL, R.L., GASTAUER, M., CAMPBELL, A.J., BORGES, R.C., AWADE, M. & GIANNINI, T.C. 2021. Specialist bee species are larger and less phylogenetically distinct than generalists in tropical plant–bee interaction networks. Frontiers in Ecology and Evolution 9: doi 10.3389/fevo.2021.699649 (last access 31/10/2022).
    » https://doi.org/10.3389/fevo.2021.699649
  • RECH, A.R., AGOSTINI, K., OLIVEIRA, P.E. & MACHADO, I.C. 2014. Biologia da polinização. Projeto Cultural, Rio de Janeiro. 524p.
  • ROCCA, M.A. & SAZIMA, M. 2008. Ornithophilous canopy species in the Atlantic rain forest of southeastern Brazil. Journal of Field Ornithology 79:130–137.
  • ROCCA, M.A., SAZIMA, M. & SAZIMA, I. 2006. Woody woodpecker enjoys soft drinks: the blond-crested woodpecker seeks nectar and pollinates canopy plants in south-eastern Brazil. Biota Neotropica 6(2). https://doi.org/10.1590/S1676-06032006000200027 (last access 31/10/2022).
    » https://doi.org/10.1590/S1676-06032006000200027
  • SAAB, G.S., MANSANO, V.F., NOGUEIRA, A., MAIA, I.C., BERGAMO P.J. & PAULINO J.V. 2021. A sophisticated case of division of labour in the trimorphic stamens of the Cassia fistula AoB Plants 13(5):plab054. doi: 10.1093/aobpla/plab054 (last access 31/10/2022).
    » https://doi.org/10.1093/aobpla/plab054
  • SAZIMA, I., PINHEIRO, M. & SAZIMA, M. 2009. A presumed case of functional convergence between the flowers of Schizolobium parahyba (Fabaceae) and species of Malpighiaceae. Plant Systematics and Evolution 281:247–250.
  • SATURNI, F.T., JAFFE, R. & METZGER, J.P. 2016. Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystem & Environment 235:1–12.
  • SAZATORNIL, F.D., MORÉ, M., BENITEZ-VIEYRA, S., COCUCCI, A.A., KITCHING, I.J., SCHLUMPBERGER, B.O., OLIVEIRA, P.E., SAZIMA, M. & AMORIM, F.W. 2016. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth–plant networks. Journal of Animal Ecology 85:1586–1594. https://doi.org/10.1111/1365-2656.12509 (last access 31/10/2022).
    » https://doi.org/10.1111/1365-2656.12509
  • SIMMONS, B.I., VIZENTIN-BUGONI, J., MARUYAMA, P.K., COTTON, P.A., MARÍN-GÓMEZ, O.H., LARA, C., ROSERO-LASPRILLA, L., MAGLIANESI, M.A., ORTIZ-PULIDO, R., ROCCA, M.A., RODRIGUES, L.C., TINOCO, B.A., VASCONCELOS, M.F., SAZIMA, M., MARTÍN GONZÁLEZ, A.M., SONNE, J., RAHBEK, C., DICKS, L.V., DALSGAARD, B. & SUTHERLAND, W.J. 2019. Abundance drives broad patterns of generalization in plant–hummingbird pollination networks. Oikos, 128:1287–1295.
  • SOUZA, C.V., NEPI, M., MACHADO, S.R. & GUIMARAES, E. 2017. Floral biology, nectar secretion pattern and fruit set of a threatened Bignoniaceae tree from Brazilian tropical forest. Flora 227:46–55.
  • STAHL, J.M., NEPI, M., GALETTO, L., GUIMARAES, E. & MACHADO, S.R. 2012. Functional aspects of floral nectar secretion of Ananas ananassoides, an ornithophilous bromeliad from the Brazilian savanna. Annals of Botany 109:1243–1252.
  • SUJII, O.S., TAMBARUSSI, E.V., GRANDO, C., SILVESTRE, E.A., VIANA, J.P.G., BRANCALION, P.H.S. & ZUCCHI, M.I. 2021. High gene flow through pollen partially compensates spatial limited gene flow by seeds for a Neotropical tree in forest conservation and restoration areas. Conservation Genetics 22:383–396.
  • VALADÃO?MENDES, L.B., ROCHA, I., MEIRELES, D.A.L., LEITE, F.B., SAZIMA, M., MARUYAMA, P.K. & BRITO, V.L.G. 2022. Flower morphology and plant–bee pollinator interactions are related to stamen dimorphism in Melastomataceae. Plant Biology 24:240–248.
  • VIZENTIN-BUGONI, J., MARUYAMA, P.K. & SAZIMA, M. 2014. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proceedings of Royal Society 2812013239720132397 http://doi.org/10.1098/rspb.2013.2397 (last access 31/10/2022).
    » https://doi.org/10.1098/rspb.2013.2397
  • WILLMER, P. 2011. Pollination and Flora Ecology. Princeton University Press. 832p.

Edited by

Associate Editor

Carlos Joly

Publication Dates

  • Publication in this collection
    10 Feb 2023
  • Date of issue
    2022

History

  • Received
    10 Nov 2022
  • Accepted
    05 Jan 2023
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br