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Comparison Between a Centered and 
a Flux Difference Split Schemes Using 
Unstructured Strategy 
Products developed at industries, institutes and research centers are expected to have high 
level of quality and performance, having a minimum waste, which require efficient and 
robust tools to numerically simulate stringent project conditions with great reliability. In 
this context, Computational Fluid Dynamics (CFD) plays an important role and the 
present work shows two numerical algorithms that are used in the CFD community to 
solve the Euler equations applied to typical aerospace and aeronautical problems. 
Particularly, unstructured discretization of the spatial domain has gained special attention 
by the international community due to its ease in discretizing complex spatial domains. 
This work has the main objective of illustrating some advantages and disadvantages of a 
centered algorithm and an upwind one using an unstructured spatial discretization of the 
flow governing equations. Numerical methods include a finite volume formulation and the 
Euler equations are applied to solve a supersonic flow over a ramp problem, a hypersonic 
flow over a blunt body problem, a hypersonic flow over a double ellipsoid problem and a 
supersonic flow over a simplified configuration of VLS problem. Convergence 
acceleration is obtained using a spatially variable time stepping procedure. 
Keywords: Euler equations; ramp, blunt body, double ellipsoid and simplified 
configuration of VLS flows; Jameson and Mavriplis scheme; Frink, Parikh and Pirzadeh 
scheme; flux difference splitting 
 
 
 

Introduction 

In the aerospace and aeronautical industries, the need for 
practical tests in several aerodynamic components of airplane and 
aerospace vehicle during the project phase is restricted by the high 
costs to manufacture scaled models and to perform the wind tunnels 
tests. Other main difficulties are related to the large number of 
experimental tests required during optimization of these models. 
The development of computer technology, allowing the existence of 
machines with high speed processors and high storage capacity, has 
boomed CFD towards a meaningful role in several sectors of the 
industry. Such sectors require low level of experimental 
development costs and products yield with the desired 
performance.1 

In this context, this work presents some numerical algorithms 
used in CFD community to solve the Euler equations applied to 
traditional aerospace and aeronautical problems. Supersonic flow 
over a ramp, hypersonic flow over a blunt body, hypersonic flow 
over a double ellipsoid and supersonic flow over a simplified 
configuration of VLS problems are studied in the context of an 
unstructured discretization of the flow governing equations. An 
unstructured discretization of the flow domain is usually 
recommended, for complex configurations, due to the ease and 
efficiency with which such domains can be discretized (Jameson 
and Mavriplis, 1986, Mavriplis, 1990, Batina, 1990, and Pirzadeh, 
1991). However, the issue of unstructured mesh generation will not 
be discussed in this work. Techniques such as Delaunay 
triangulation (Hefazi and Chen, 1992, and Mavriplis, 1995), which 
represents an unique triangulation of a given set of points that 
exhibits a large class of well-defined properties, and the advancing 
front method (Pirzadeh, 1991, Mavriplis, 1995, and Korzenowski 
and Azevedo, 1996), which begins with a discretization of the 
geometry boundaries as a set of edges and advances out these ones 
into the field, are currently used in the CFD community. The main 
objective of this work is to highlight the numerical features of the 
Jameson and Mavriplis (1986) and the Frink, Parikh and Pirzadeh 
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(1991) algorithms in the solution of the Euler equations, regardless 
of the method used for grid generation. 

In the present paper, the Jameson and Mavriplis explicit scheme 
(1986) and the Frink, Parikh and Pirzadeh explicit scheme (1991), 
with Roe flux difference splitting (1981), are compared, both in a 
cell centered type discretization, using a finite volume formulation. 
The Jameson and Mavriplis scheme (1986) is the most currently 
employed scheme in terms of unstructured discretization of flow 
governing equations (Mavriplis and Jameson, 1987, Batina, 1990, 
Arnone, Liou and Povinelli, 1991, Long, Khan and Sharp, 1991, 
Swanson and Radespiel, 1991, and Hooker, Batina and Williams, 
1992). The Frink, Parikh and Pirzadeh scheme (1991) is an upwind 
one and presents good robustness property (Frink, 1992, and Luo, 
Baum and Löhner, 1994). The present comparison intends to 
emphasize important features of these numerical schemes in the 
following topics: computational performance, some aspects of 
solution quality and robustness properties. 

Nomenclature 

a = speed of sound in fluid, m/s 
CFL = “Courant-Friedrichs-Lewy” number 

eE  = inviscid flux vector (or Euler flux vector) in x direction 
e = total energy of fluid per unity volume, J/m3 

eF  = inviscid flux vector (or Euler flux vector) in y direction 
M∞ = freestream Mach number 
p = static pressure of fluid, N/m2 
U = velocity vector intensity, m/s 
u = x component of velocity vector q, m/s 
v = y component of velocity vector q, m/s 
Greek Letters 
α = attack angle, degrees 
β = shock wave angle, degrees 
γ = ratio of specific heats,  adopted  1.4  to atmospheric mean 
ρ = fluid density, kg/m3 
Subscripts 
e = Euler 
i = internal or computational index i 
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j = computational index j 
x = spatial position x in Cartesian coordinate system, m 
y = spatial position y in Cartesian coordinate system, m 

Governing Equations 

The fluid motion is governed by the time dependent Euler 
equations for an ideal gas, which express the conservation of mass, 
momentum and energy for a compressible inviscid nonconducting 
adiabatic fluid in the absence of external forces. The equations are 
given below in integral form for a bounded domain Ω with a 
boundary ∂Ω 
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where the vector of conserved variables Q and the convective fluxes 
Ee and Fe are: 
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In the above equations, ρ is the fluid density; u and v are the 

Cartesian components of the velocity vector U  in the x and y 
directions, respectively; e is the total energy per unit fluid volume; p 
is the static pressure; and xn  and ny are the Cartesian components 

of the exterior surface unit normal n  on the boundary ∂Ω. With the 
ideal gas assumption, the pressure and total enthalpy can be 
expressed as 
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where γ is the ratio of specific heats and is prescribed as 1.4 for air. 

The equations are nondimensionalized with a reference density 
ρ∞ and a speed of sound a∞. The density is nondimensionalized in 
terms of the freestream density; u and v velocity components are 
nondimensionalized in relation to the speed of sound; pressure and 
total energy per unit volume are nondimensionalized in relation to 
the product between freestream density and speed of sound squared. 
Other details of the present nondimensionalization may be found in 
Jameson and Mavriplis (1986).  

Equation (1) describes a relationship where the time rate of 
change of the state vector Q, within the domain Ω, is balanced by 
the net flux F across the boundary surface ∂Ω. The domain is 
divided into a finite number of triangles cells, and Eq. (1) is applied 
to each cell. 

Jameson and Mavriplis Algorithm 

Spatial and Temporal Discretization 

The Euler equations in conservative integral form and in a finite 
volume formulation can be written, on an unstructured context and 
after spatial discretization (Jameson, Schmidt and Turkel, 1981, 
Jameson and Mavriplis, 1986, and Maciel and Azevedo, 2001), as: 

 
( ) 0)Q(CdtQVd iii =+ , (4) 
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approximation of the flux integral in Eq. (4). In the present work, it 
is assumed that: 
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with i indicating a given mesh volume and k its respective neighbor 
volume; n1 and n2 represent consecutive nodes of the i-th volume in 
counter-clockwise orientation. 

The spatial discretization proposed by Jameson and Mavriplis 
(1986) is equivalent to a second-order centered scheme on a finite 
difference context. In this way, it is necessary to explicitly introduce 
an artificial dissipation operator “D” to avoid, for example, odd-
even uncoupled solutions and nonlinear instabilities (shock waves). 
Then, Eq. (4) is rewritten as 

 
( ) 0)Q(D)Q(CdtQVd iiii =−+ . (6) 

 
The time integration is accomplished by using a second-order, 

explicit, Runge-Kutta method with five stages that can be generally 
represented by: 
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with k = 1,..., 5; m = 0, 2 and 4; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 
1/2 and α5 = 1. According to Swanson and Radespiel (1991), the 
artificial dissipation should only be evaluated in odd stages, aiming 
CPU time economy and better stability conditions based on the 
hyperbolic/parabolic features of the Navier-Stokes equations. For 
the Euler equations, m = 0 (k = 1) and m = 1 (k = 2). The dissipation 
operator is “frozen” for the reminiscent stages, exploring the 
hyperbolic features of these equations to assure stable convergence. 

Artificial Dissipation Operator 

The artificial dissipation operator presented in this work is 
suggested by Mavriplis (1990) and it has the following structure: 
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the summation is extrapolated from its real neighbor. The ε terms 
are defined as follows: 
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with ( )∑ +∑ −=ν
==

3

1k
ik
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1k
iki pppp  representing a pressure sensor 

to identify regions of high gradients. The K(2)  and K(4) constants 
have typical values of 1/4 and 3/256, respectively. Again, whenever 
k represents a ghost cell, it is assumed ig ν=ν . The Ai terms are 
contributions of the maximum normal eigenvalue of the Euler 
equations integrated along each cell face. These terms are defined 
as: 
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where ui,k, vi,k and ai,k are calculated as the arithmetical average 
between the respective property values associated with the i-th real 
volume and its k-th neighboring volume. 

Frink, Parikh and Pirzadeh Algorithm 

Spatial and Temporal Discretization 

Flux quantities are computed using Roe (1981 and 1986) flux 
difference splitting. The flux across each cell face k is computed 
using Roe numerical flux formula: 
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Here QL and QR are the state variables to the left and right of the 
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with Roe-averaged quantities such as: 
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is  satisfied  exactly.  Introducing  the  diagonalizing  matrices  T~   
and  1T~ − ,  and  the   diagonal   matrix   of eigenvalues Λ , then A

~
 

is defined as 
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The term 
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in Roe flux formula can be reduced to three ∆F flux components, 
each one associated with a distinct eigenvalue 
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where yx nv~nu~U~ +=  and vnunU yx ∆+∆=∆ . 

For a first-order scheme, the state of the primitive variables at 
each cell face is set to the cell centered averages on either side of 
the face. 

The time integration is accomplished by using the second-order, 
explicit, Runge-Kutta method described by Eq. (7). 

Spatially Variable Time Step 

With the purpose of accelerating Jameson and Mavriplis explicit 
scheme (1986) and Frink, Parikh and Pirzadeh explicit scheme 
(1991), a spatially variable time step in each computational mesh 
cell is used. The basic idea of this procedure is to maintain a 
constant CFL number in the overall calculation domain, allowing 
the use of appropriating time steps for each specific mesh region 
during the convergence process. In this way, according to CFL 
definition, it is possible to write: 

 
( ) cellcellcell csCFLt ∆=∆ , (20) 

 
where CFL is the “Courant-Friedrichs-Lewy” number to provide 
numerical stability; ( )cells∆  is a characteristic length of information 
transport. In a finite volume formulation, ( )cells∆  is chosen as the 
smallest among the smallest cell centroid-neighboring centroid 
distance and the smallest cell side length. In the above equation, 
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information transport. 

Initial Condition 

For the physical problems studied in this work, freestream 
values are adopted for all properties as initial condition in the 
overall domain (Jameson and Mavriplis, 1986). Therefore, the 
vector of conservative variables is 

 

( ){ }T2M5.0)1(1sinMcosM1Q ∞∞∞ +−γγαα= , (21) 
 

where M∞ is the freestream Mach number and α is the flow attack 
angle. 



E. S. de G. Maciel 

 / Vol. XXVII, No. 3, July-September 2005 ABCM 226 

Boundary Conditions 

The boundary conditions are basically of three types: wall, 
entrance and exit. These boundary conditions are implemented, as 
commented before, in ghost cells: 

a) Wall condition: For the Euler equations, wall condition 
implies in flow tangency. It is accomplished by considering the 
velocity component of the ghost volume tangent to the wall be equal 
to the corresponding velocity component of its neighbor real 
volume. At the same time, the velocity component of the ghost 
volume normal to the wall is taken to be equal in value but of 
opposite sign relative to the velocity component of its neighbor real 
volume. 

The fluid pressure gradient normal to the wall is assumed be 
equal to zero in the Euler formulation. The same hypothesis is 
applied to the temperature gradient. From these assumptions, ghost 
volume pressure and density are extrapolated from its neighbor real 
volume (zero-order extrapolation). 

b) Entrance Condition: 
b.1) Subsonic Flow: Three property values need to be 

specified at this boundary, based on an analysis of propagation of 
information in the characteristic directions in the calculation domain 
(Azevedo, 1992, Maciel and Azevedo, 1997, and Maciel and 
Azevedo, 1998). In other words, for subsonic flow, three 
characteristic lines have direction and orientation pointing inward to 
the calculation domain and should be fixed. Only the characteristic 
line of speed “(qn-a)” cannot be fixed and should be determined by 
interior information. For the problems studied herein, pressure of 
ghost volume is extrapolated from its neighbor. 

b.2) Supersonic Flow: all variables are fixed with freestream 
values at the entrance boundary. 

c) Exit Condition: 
c.1) Subsonic Flow: Three characteristic lines have direction 

and orientation pointing outward from calculation domain. These 
ones are extrapolated from interior domain and the characteristic 
line of speed “(qn-a)” should be specified. Then, pressure of the 
ghost volume is fixed at its initial value. 

c.2) Supersonic Flow: In this case, all variables are 
extrapolated from interior domain because the four characteristic 
lines of the Euler equations are pointing outward from interior 
domain and nothing can be fixed at the boundary. 

Results 

The computational performance, general aspects of solution 
quality and robustness characteristics of Jameson and Mavriplis 
explicit scheme (1986) and Frink, Parikh and Pirzadeh explicit 
scheme (1991) are presented in the forthcoming discussion. Tests 
were performed in a PENTIUM-200MHz microcomputer, 64 
Mbytes of RAM and the criterion adopted to obtain a converged 
solution was the order of magnitude of the maximum residue of all 
conservation equations to be dropped four orders. 

Unstructured meshes were created transforming each 
rectangular cell of given structured meshes into two triangular cells. 
All necessary tables were generated and a volume-based data 
structure was implemented. Although this procedure of mesh 
generation does not produce meshes with the best spatial 
discretization, meshes with reasonable quality have been obtained 
for the present problems. 

Supersonic Flow Over a Ramp 

An algebraic mesh with 5,880 triangular real volumes and 3,050 
nodes was used for the supersonic flow over a ramp. The freestream 

Mach number used in this simulation was 4,0, characterizing a 
supersonic flow. Figure 1 shows the unstructured mesh used for the 
discretized Euler equations. The ramp has an inclination angle of 
20°. 

Figures 2 and 3 show pressure contours obtained by both 
Jameson and Mavriplis explicit scheme (1986) and Frink, Parikh 
and Pirzadeh explicit scheme (1991), respectively. A CFL number 
of 2.1 was used for the Jameson and Mavriplis scheme (1986), 
while a CFL number of 1.1 was used for the Frink, Parikh and 
Pirzadeh one.  The  computational  cost  per  iteration  and  per  cell  
was  0.000135s obtained for the Jameson and Mavriplis scheme 
(1986), while Frink, Parikh and Pirzadeh scheme (1991) presented a 
computational cost of 0.000198s. 

 

 
Figure 1. Ramp’s unstructured mesh. 

 

 
Figure 2. Pressure contours (Jam./Mav.). 

 

 
Figure 3. Pressure contours (Frink et al). 

 
Jameson and Mavriplis scheme presents a peak of pressure grater 
than that obtained by Frink, Parikh and Pirzadeh scheme. 

Figures 4 and 5 show the Mach number contours obtained for 
Jameson and Mavriplis scheme (1986) and for Frink, Parikh and 



Comparison Between a Centered and a … 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright © 2005 by ABCM         July-September 2005, Vol. XXVII, No. 3 / 227

Pirzadeh scheme (1991), respectively. It is possible to note that 
Mach number contours in the Frink, Parikh and Pirzadeh scheme are 
smoother than that of the Jameson and Mavriplis scheme. It 
describes a more diffusive solution obtained for Frink, Parikh and 
Pirzadeh method because of its first order of accuracy in space. 
Such behaviour of generating excess of diffusion and loss of 
accuracy in the solution, associated with schemes of first-order 
spatial accuracy, is well known from literature: Harten (1983), 
Harten (1984), Sweby (1984) and Liou (1996) 

 

 
Figure 4. Mach number contours (Jam./Mav.). 

 

 
Figure 5. Mach number contours (Frink et al). 

 
Figures 6 and 7 show density contours generated by Jameson 

and Mavriplis scheme (1986) and by Frink, Parikh and Pirzadeh 
scheme (1991), respectively. 

 

 
Figure 6. Density contours (Jam./Mav.). 

 
Figure 7. Density contours (Frink et al). 

 
Figures 8 and 9 present pressure ratio distribution over the ramp 

studied here, obtained for the Jameson and Mavriplis (1986) and for 
the Frink, Parikh and Pirzadeh (1991) schemes, respectively. The 
pressure ratio distribution of the Frink, Parikh and Pirzadeh method 
presents constant pressure behaviour just after the shock wave; on 
the contrary, the Jameson and Mavriplis method presents a peak of 
pressure and a constant region just behind it. In this case, the 
solution described by Jameson and Mavriplis scheme is worse than 
that described by Frink, Parikh and Pirzadeh scheme. The better 
treatment of the flux vectors by the Frink, Parikh and Pirzadeh 
scheme becomes possible the establishment of the constant pressure 
region just after the shock wave. 

 

 
Figure 8. Pr/Pr(free) distribution at wall (Jam./Mav.). 

 

 
Figure 9. Pr/Pr(free) distribution at wall (Frink et al). 



E. S. de G. Maciel 

 / Vol. XXVII, No. 3, July-September 2005 ABCM 228 

Figures 10 and 11 show convergence histories of each method 
obtained for this problem. The convergence rate of Jameson and 
Mavriplis scheme is better than that of Frink, Parikh and Pirzadeh 
scheme. The steady state solution obtained for the former was 
reached in 222 iterations. On the other hand, the steady state 
solution obtained for the latter was reached in 255 iterations. Both 
schemes present similar behaviour in terms of convergence rate for 
this problem. 

 

 
Figure 10. Convergence history (Jam./Mav.). 

 

 
Figure 11.  Convergence history (Frink et al). 

 
One way to verify whether the results are good is to calculate 

the β angle of the shock wave in relation to freestream direction. It 
is possible to determine from Figures 2 and 3 the shock angle of 
each numerical scheme. Making this measure, it is possible to 
encounter for the Jameson and Mavriplis scheme a shock angle of 
βJM = 33° and, repeating the same procedure, it is also possible to 
encounter a shock angle of βFPP = 36° for the Frink, Parikh and 
Pirzadeh. So in Anderson (1984) is possible to determine the β 
angle as function of the freestream Mach number and the angle of 
inclination of the ramp. For an angle of inclination of 20° and for 
the freestream Mach number of 4.0, it is possible to encounter an β 
angle of 32.5°. Hence, it is possible to verify that the Jameson and 
Mavriplis angle is in very good agreement with the shock angle. 

Supersonic Flow Over a Blunt Body 

An algebraic mesh with 7,056 triangular real volumes and 3,650 
nodes was generated for the blunt body configuration. The far field 
was located at 25 times the blunt body nose’s ratio. Initial 

conditions were set as freestream Mach number equals to 10.0, 
hypersonic flow, and the angle of attack equalled to 0.0°. A CFL 
number of 0.7 was used by the Jameson and Mavriplis scheme 
while a CFL number of 0.6 was used by the Frink, Parikh and 
Pirzadeh scheme. Figure 12 shows unstructured mesh used for this 
physical problem. 

Figures 13 and 14 show pressure contours obtained by the 
Jameson and Mavriplis scheme and by the Frink, Parikh and 
Pirzadeh scheme, respectively. The Jameson and Mavriplis scheme 
presents a peak of pressure in front of the nose greater than that 
obtained for the Frink, Parikh and Pirzadeh scheme. This behaviour 
is due to the second order accuracy generated by the spatial 
discretization of the Jameson and Mavriplis scheme (1986), which 
permits more precise results. 

 

 
Figure 12. Blunt Body’s unstructured mesh. 

 

 
Figure 13. Pressure contours (Jam./Mav.). 

 

 
Figure 14. Pressure contours (Frink et al). 
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Figures 15 and 16 present the Mach number contours generated 
by the Jameson and Mavriplis scheme (1986) and by the Frink, 
Parikh and Pirzadeh scheme (1991), respectively. Jameson and 
Mavriplis solution presents a peak of Mach number greater than that 
obtained by Frink, Parikh and Pirzadeh solution. The Frink, Parikh 
and Pirzadeh method underpredicts the Mach number distribution in 
the field in relation to Jameson and Mavriplis scheme.  

 

 
Figure 15. Mach number contours (Jam./Mav.). 

 

 
Figure 16. Mach number contours (Frink et al). 

 

 
Figure 17. Density contours (Jam./Mav.). 

 

 
Figure 18. Density contours (Frink et al). 

 

 
Figure 19. Cp distribution (Jam./Mav.). 

 

 
Figure 20. Cp distribution (Frink et al). 

 
Figures 17 and 18 present the density contours generated by the 

Jameson and Mavriplis scheme (1986) and by the Frink, Parikh and 
Pirzadeh scheme (1991), respectively. The density fields generated 
by both schemes are similar, although the peak of density is more 
highlighted by the Jameson and Mavriplis scheme. 

Figures 19 and 20 show the –Cp distribution on the blunt body 
lower and upper surfaces for both methods. The Frink, Parikh and 
Pirzadeh scheme presents two peaks of –Cp in the lower surface. 
Due to flow symmetry, the –Cp distribution over the blunt body 
should be symmetrical in both surfaces. So the peak formed near x 
= 0.2m is wrong. 
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Figures 21 and 22 show the convergence history for Jameson 
and Mavriplis scheme (1986) and for the Frink, Parikh and Pirzadeh 
scheme (1991), respectively. The Jameson and Mavriplis scheme 
(1986) presents convergence in 805 iterations, while the Frink, 
Parikh and Pirzadeh scheme (1991) presents convergence in 1,831 
iterations. For this problem, the Jameson and Mavriplis scheme has 
presented faster rate of convergence than that generated for the 
Frink, Parikh and Pirzadeh scheme. 

 

 
Figure 21. Convergence history (Jam./Mav.). 

 

 
Figure 22. Convergence history (Frink et al). 

 
One possibility for quantitative comparison of both schemes is 

the determination of the stagnation pressure ahead of the 
configuration. Anderson (1984) presents a table of properties from 
normal shock waves in its B Appendix. This table permits the 
determination of some properties of shock waves as function of the 
freestream Mach number. In front of the configurations studied in 
this paper, the shock waves present a normal shock behaviour, 
which permits the determination of the stagnation pressure, after 
shock wave, from the tables encountered in Anderson (1984). So it 
is possible to determine de ratio ∞prpr0  from Anderson (1984), 
where pr0 is the stagnation pressure in front of the configuration and 
pr∞ is the freestream pressure (equals to 1/γ for the present 
nondimensionalization). 

Hence, for this problem, M∞ = 10.0, ∞prpr0 = 129,2 and pr∞ = 
0.714, permitting the determination of pr0 as equal to 92.25. Values 
of pr0(JM) = 82.46 and pr0(FPP) = 78.65 are encountered from Figures 
13 and 14, respectively. The relative errors were 10.6% for the 
Jameson and Mavriplis method and 14.7% for the Frink, Parikh and 

Pirzadeh method. The Jameson and Mavriplis scheme was better 
than Frink, Parikh and Pirzadeh scheme for this problem. 

Hypersonic Flow Over a Double Ellipsoid 

An algebraic mesh with 8,232 triangular real volumes and 4,250 
nodes was generated by the physical problem of the double 
ellipsoid. The far field was located at 5 times the major semi-axis of 
the greater ellipsoid. The unstructured mesh is shown in Figure 23. 
A CFL number of 0.2 was used by the Jameson and Mavriplis 
scheme, while a CFL number of 0.7 was used by the Frink, Parikh 
and Pirzadeh scheme. The initial condition used a freestream Mach 
number of 15.0 and zero attack angle. 

 

 
Figure 23. Double Ellipsoid’s unstructured mesh. 

 

 
Figure 24. Pressure contours (Jam./Mav.). 

 

 
Figure 25. Pressure contours (Frink et al). 
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Figure 26. Mach number contours (Jam./Mav.). 

 

 
Figure 27. Mach number contours (Frink et al). 

 
Pressure contours of Jameson and Mavriplis scheme (1986) and 

Frink, Parikh and Pirzadeh scheme (1991) are exhibited in Figures 
24 and 25, respectively. The pressure distribution of Frink, Parikh 
and Pirzadeh method is underpredicted. This has a result in the 
calculation of pressure and moment coefficients. These coefficients 
are essential for aerodynamic projects of aerospace vehicles. 

Figures 26 and 27 show Mach number contours obtained for 
both schemes. The Jameson and Mavriplis method presents a peak 
of Mach number grater than the Frink, Parikh and Pirzadeh method. 
The Mach number field is underpredicted by the Frink, Parikh and 
Pirzadeh method. The excessive dissipative effect of the Frink, 
Parikh and Pirzadeh method because of its first order of spatial 
discretization is the main reason for that solution’s behaviour. 

Figures 28 and 29 show the density contours for the Jameson 
and Mavriplis method and for Frink, Parikh and Pirzadeh method, 
respectively. Again, the density field is underpredicted by the Frink, 
Parikh and Pirzadeh scheme. 

 

 
Figure 28. Density contours (Jam./Mav.). 

 

 
Figure 29. Density contours (Frink et al). 

 
Figures 30 and 31 present the –Cp distribution over the lower 

and upper surfaces of the double ellipsoid for both schemes. The 
distribution of –Cp is more sharply defined for the Jameson and 
Mavriplis solution than for the Frink, Parikh and Pirzadeh solution.  

 

 
Figure 30. Cp distribution (Jam./Mav.). 
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Figure 31. Cp distribution (Frink et al). 

 
Figures 32 and 33 show convergence histories described for the 

Jameson and Mavriplis method and for the Frink, Parikh and 
Pirzadeh method, respectively. The Jameson and Mavriplis method 
presents convergence in 4,380 iterations while the Frink, Parikh and 
Pirzadeh method presents convergence in 2,186 iterations. For this 
problem, the Frink, Parikh and Pirzadeh method has presented a rate 
of convergence greater than the Jameson and Mavriplis one. 

 

 
Figure 32. Convergence history (Jam./Mav.). 

 

 
Figure 33.  Convergence history (Frink et al). 

 

For this problem, M∞ = 15.0, it is possible to encounter in the B 
Appendix of Anderson (1984) the value of the ratio ∞prpr0 = 
290.2. Hence for pr∞ = 0.714, the stagnation pressure in front of the 
double ellipsoid configuration is 207.20. The stagnation pressure 
calculated by the Jameson and Mavriplis scheme (1986) is 189.78 
and the same pressure calculated by the Frink, Parikh and Pirzadeh 
scheme (1991) is 184.81, both pressures encountered in Figures 24 
and 25, respectively. The relative errors for each scheme were 8.4% 
for the Jameson and Mavriplis scheme and 10.8% for the Frink, 
Parikh and Pirzadeh scheme. Again, the Frink, Parikh and Pirzadeh 
scheme was worse than the Jameson and Mavriplis scheme. 

Supersonic Flow Over a Simplified Configuration of VLS 

 
Figure 34. Simplified VLS’ unstructured mesh. 

 
An algebraic mesh with  9,860  triangular  real  volumes  and  

5,130  nodes was generated by the physical problem of a supersonic 
flow over a simplified configuration of VLS. Figure 34 exhibits the 
generated unstructured mesh. The far field was located at 25 times 
the VLS nose’s ratio. 

The initial condition used a freestream Mach number of 4.0 and 
0.0° attack angle. The CFL number used by Jameson and Mavriplis 
scheme (1986) was 1.6, while the CFL number used by Frink, 
Parikh and Pirzadeh scheme (1991) was 0.5. 

Figures 35 and 36 show pressure contours for the Jameson and 
Mavriplis scheme and for the Frink, Parikh and Pirzadeh scheme, 
respectively. It is possible to note that, for this problem, the 
Jameson and Mavriplis scheme underpredicts the pressure field in 
relation to Frink, Parikh and Pirzadeh one. 

 

 
Figure 35. Pressure contours (Jam./Mav.). 
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Figure 36. Pressure contours (Frink et al). 

 
Figures 37 and 38 exhibit Mach numbers contours for the 

Jameson and Mavriplis scheme (1986) and for the Frink, Parikh and 
Pirzadeh scheme (1991), respectively. It is possible to note from 
these figures that the Mach number contours are more sharply 
defined by the Jameson and Mavriplis scheme, representing no 
excessive dissipation provided by this scheme. 

 

 
Figure 37. Mach number contours (Jam./Mav.). 

 

 
Figure 38. Mach number contours (Frink et al). 

 

 
Figure 39. Density contours (Jam./Mav.). 

 

 
Figure 40. Density contours (Frink et al). 

 
Figures 39 and 40 show the density contours generated for the 

Jameson and Mavriplis scheme (1986) and for the Frink, Parikh and 
Pirzadeh scheme (1991), respectively. 

Figures 41 and 42 present the –Cp distribution over lower and 
upper surfaces of the simplified configuration of VLS. Both 
schemes have presented similar behaviour. 

 

 
Figure 41. Cp distribution (Jam./Mav.). 
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Figure 42. Cp distribution (Frink et al). 

 

 
Figure 43. Convergence history (Jam./Mav.). 

 

 
Figure 44. Convergence history (Frink et al). 

 
Figures 43 and 44 exhibit the convergence histories for both 

schemes. The Jameson and Mavriplis scheme (1986) has reached a 
steady state condition in 284 iterations, while the Frink, Parikh and 
Pirzadeh scheme (1991) has reached a steady state condition in 
1,045 iterations. So, the Jameson and Mavriplis scheme presented a 
better convergence rate than the Frink, Parikh and Pirzadeh scheme 
(3.7 times faster). 

For this problem, M∞ = 4.0, it is possible to encounter in 
Anderson (1984) the value of the ratio ∞prpr0 = 21.07. Hence, for 
pr∞ = 0.714, the stagnation pressure in front of the simplified 
configuration of VLS is 15.04. The stagnation pressure calculated 
by the Jameson and Mavriplis scheme (1986) is 6.81 and the same 
pressure calculated by the Frink, Parikh and Pirzadeh scheme 
(1991) is 10.16, both pressures encountered in Figures 35 and 36, 
respectively. The relative errors for each scheme were 54.7% for 
Jameson and Mavriplis scheme and 32.4% for Frink, Parikh and 
Pirzadeh scheme. In this case, the Frink, Parikh and Pirzadeh 
scheme was better than the Jameson and Mavriplis scheme. 

Table 1 presents a summary of the overall computational results 
obtained for Jameson and Mavriplis (1986) and Frink, Parikh and 
Pirzadeh (1991) schemes. 

 

Table 1. Computational Performance of Jameson and Mavriplis and Frink, Parikh and Pirzadeh Schemes. 

 
Numerical Schemes 

Jameson and Mavriplis (1986) 
Cost (sec/iter/cell) = 0.000135s 

Frink, Parikh and Pirzadeh (1991) 
Cost (sec/iter/cell) = 0.000198s 

 
Test Cases 

 
CFL 

Number of 
Iterations 

 
k(2) / k(4) 

 
CFL 

Number of 
Iterations 

 
k(2) / k(4) 

Ramp 2.1 222 Standard 1.1 255 Inherent 
Blunt Body 0.7 805 Standard 0.6 1,831 Inherent 

Double Ellipsoid 0.2 4,380 Standard 0.7 2,186 Inherent 
Simplified VLS 1.6 284 Standard 0.5 1,045 Inherent 

 
As can be seen in this table, the Jameson and Mavriplis scheme 

(1986) is better than Frink, Parikh and Pirzadeh scheme (1991). 
Only for the problem of the double ellipsoid, Frink, Parikh and 
Pirzadeh algorithm presents a higher rate of convergence than 
Jameson and Mavriplis algorithm. Even so, the qualitative and 
quantitative results to the double ellipsoid problem for the Jameson 
and Mavriplis scheme were better than those for the Frink, Parikh 
and Pirzadeh scheme. The Frink, Parikh and Pirzadeh scheme 
presents better quantitative results for the simplified configuration 
of VLS than the Jameson and Mavriplis scheme. Both schemes 
present similar behaviour of robustness: every problems were tested 
and results were compared, resulting in good features of robustness 
for both schemes. The computational cost were very similar for the 

schemes tested, which represents a good feature of the Frink, Parikh 
and Pirzadeh algorithm. 

Conclusions 

Comparisons between the Jameson and Mavriplis explicit 
scheme (1986) and the Frink, Parikh and Pirzadeh explicit scheme 
(1991) in the solution of the Euler equations in the two-dimensional 
space were discussed in this work. Both schemes were tested in four 
typical problems of the aerospace industry: supersonic flow over a 
ramp, hypersonic flow over a blunt body, hypersonic flow over a 
double ellipsoid and supersonic flow over a simplified configuration 
of VLS. Their characteristics in relation to computational 
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performance, some aspects of solution quality and robustness were 
studied, showing advantages and disadvantages between the two 
algorithms. 

In general aspects, the Jameson and Mavriplis scheme (1986) is 
better than the Frink, Parikh and Pirzadeh scheme (1991) in terms of 
high rate of convergence and run time for the aeronautical problems 
studied. The computational cost of the Frink, Parikh and Pirzadeh 
scheme (1991) is worse than Jameson and Mavriplis scheme (1986). 
General aspects of solution quality and robustness for the Frink, 
Parikh and Pirzadeh scheme (1991) are not so different of those 
respective features of the Jameson and Mavriplis scheme (1986). 
The Frink, Parikh and Pirzadeh method (1991) has presented the 
same robustness features of the Jameson and Mavriplis method 
(1986), mainly, for the hypersonic “cold gas” examples tested 
herein. Hence, the Jameson and Mavriplis scheme (1986) was more 
efficient than the Frink, Parikh and Pirzadeh scheme (1991) for the 
high speed aerospace problems studied. 
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