Carlos Henrique Marchi
Emeritus Member, ABCM
marchi@ufpr.br

Federal University of Parana - UFPR
Department of Mechanical Engineering
Caixa postal 19040

81531-980 Curitiba, PR, Brazil

Roberta Suero

robertasuero@yahoo.com.br
Federal University of Parana - UFPR
Post-Graduate Program in Numerical Methods in

Carlos Henrique Marchi et al.

The Lid-Driven Square Cavity Flow:
Numerical Solution with a 1024 x 1024
Grid

The problem of flow inside a square cavity whodénlis constant velocity is solved. This
problem is modeled by the Navier-Stokes equatibls.numerical model is based on the
finite volume method with numerical approximatioofs second-order accuracy and
multiple Richardson extrapolations (MRE). The itara process was repeated until the
machine round-off error achievement. This work prgs results for 42 variables of
interest, and their discretization errors estimates the 1024 x 1024 nodes grid and the
following Reynolds numbers: 0.01, 10, 100, 400 4660. These results are compared

with sixteen sources in literature. The numericalusons of this work are the most
accurate obtained for this problem to date. The afseultiple Richardson extrapolations
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Introduction

This work addresses the classical problem (Kawad@b1;
Burggraf, 1966; Rubin and Khosla, 1977; Benjamimd d&enny,
1979; Ghia, Ghia and Shin, 1982) of laminar flowidte a square
cavity of which lid moves at constant velocity: Fig whereu andv
are the components of the velocity vectorxiandy directions,p
and y are fluid density and viscosity. This problem isdely
employed to evaluate numerical methods and to atidodes for
solving the Navier-Stokes equations (Botella angré&te 1998). In
the works cited in Table 1, the problem was solfieedl1 x 11 up to
2048 x 2048 node grids, and for Reynolds numbeed {Rm zero
to 21,000.

u=1,v=0

. e

fluid
u=v=0 (p.u) u=v=0

Yy
X
>
u=v=0
Figure 1. Classical problem of the lid-driven squar e cavity flow.

As can be seen in Table 1, several numerical msthade been
used, including finite difference method (FDM), ifn volume
method (FVM), finite elements method (FEM), lattiBeltzmann
(LB), and the spectral method (Spectral). In additia variety of
mathematical formulations has been used, includiream function
and vorticity (J-w); stream function and velocityp¢V); lattice
Boltzmann equation (LBE), and the Navier-Stokesatigns (1-v-
p). The problem considered here is also known agytdar driven
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reduces the discretization error significantly.
Keywords. discretization error, error estimate, CFD, Richion extrapolation, finite

cavity” (Botella and Peyret, 1998), because there &wo
discontinuities in the boundary condition wfat lid corners: 0 in
one side and 1 in another. In contrast, there ablem called
“regularized driven cavity” (Botella and Peyret,989, which does
not present discontinuities.

The main objective of this work is to present thestraccurate
numerical solutions found to date for the problem“singular
driven cavity” with Re = 0.01, 10, 100, 400 and @0Uo achieve
this aim, we use the Navier-Stokes equations; thigefvolume
method; co-located arrangement of variables; seggegsolution
for the three conservation equations; numericar@pmations of
second-order accuracy; 1024 x 1024 control voluomform grid;
the iterative process repeated until the machinenaeoff error
achievement; double precision in calculations; amulltiple
Richardson extrapolations (Richardson, 1910). Swist are
presented for 42 variables of interest, which imeolvelocity
profiles, mass flow rate, minimum value of the atrefunction,
minimum and maximum velocities (and their coordasat and wall
forces on the fluid.

Other objectives of this work are: (1) propose anreestimator
for use with numerical solutions obtained througtultiple
Richardson extrapolations; (2) verify (Roache, )98&e proposed
estimator provides reliable error estimates for@bfgm of which
analytical solution is known (Shih, Tan and Hwari®89); (3)
apply the proposed estimator to each of the 42akibes of interest
and five values of Re, presenting the estimatedrelization error
for each numerical solution; (4) confirm the oraéraccuracy [f,)
of the numerical solutions; and (5) compare theltesvith sixteen
sources in literature. This work does not haveiasta present an
optimized numerical model neither for CPU time néor
computational memory consumption. It is emphastbed the main
objective is to provide the most accurate resolidate for literature.

Although there is extensive literature on the peabkonsidered
here, this work is justified by the following reaso

No work appears to have been developed to datstitoate the
numerical error involved in the solution of eachiahble of interest
(Un in Table 2). This is important, however, in orderknow the
reliability of numerical solutions, allowing more areful
comparisons to be made. Some authors have presteteslution
variation for some variables for two or three grittey, however,
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did not estimate numerical errors with any diseaton error
estimator.

Only Bruneau and Saad (2006) and Wright and Ga$kéf5)
present solutions on grids as fine as those optksent work, but
only for Re = 1000, few variables and without usimgiltiple
Richardson extrapolations. In Table 2, the coluntd iRdicates
whether the authors have used Richardson extragolat not; if
the answer is positive, it is presented how mamesi it was used
for each variable. In this work, it is going to Berown that RE
reduces significantly the discretization error.

Most authors have stopped their iterative proce§sk{ased on
the residue criterion (R) or on the variation of @ariable (Ferziger
and Peric, 1999), with the tolerance value betwk8r-3 and 1.0e-
12. In the present work, the iterative processaisem until the
machine round-off error achievement.

Table 1. Author's formulation and grids for the cla

In Table 2, “digits” represents the number of diigant figures
for each solution, which has the highest valudegresented work.

In Table 2,p, is the theoretical accuracy of discretization erro
of the approximations employed by each author.he present
work, the practical value obtained for this ordeishown, for each
variable of interest, confirming or not the thearat value. In the
next sections, the following subjects are discustemathematical
and numerical models; the theory and equations tseaghiculate
effective and apparent orders of error to perfornultipie
Richardson extrapolations and the discretizatioarestimator; the
results for the problem with known analytical s@uat the classical
problem results; and conclusions of this work.

ssical problem.

Authors Ref. Formulation Re Method Grids
Kawaguti (1961) 1 P-w 0-64 FDM 11x11
Burggraf (1966) 2 Y-w 0-700 FDM 11x11-51x51
Rubin and Khosla (1977) 3 Y-w 100 & 1,000 FDM etc 17 x 17 - 128 x 128
Benjamin and Denny (1979) 4 P-w 1,000 - 10,000 FDM 61 x61—-151x 151
Ghia, Ghia and Shin (1982) 5 Y-w 100 - 10,000 FDM 129 x 129 & 257 x 257
Schreiber and Keller (1983) 6 P-w 1-10,000 FDM 121 x 121 -180x 180
Vanka (1986) 7 uv,p 100 - 5,000 FDM 41 x41-321x321
Hayase, Humphrey and Greif (1992) 8 u,v,p 100 - 10,000 FVM 10 x 10 -80 x 80
Nishida and Satofuka (1992) 9 Y-w 100 - 3,200 FDM 65 x 65 & 129 x 129
Hou et al. (1995) 10 LBE 100 - 7,500 LB 256 x 256
Wright and Gaskell (1995) 11 uv,p 100 & 1,000 FVM 1024 x 1024
Goyon (1996) 12 1,000 FDM 129 x 129
Barragy and Carey (1997) 13 Y- 1l.e-4 - 10,000 FEM 257 x 257
Botella and Peyret (1998) 14 u,v,p 100 & 1,000 Spectral 160
Zhang (2003) 15 Y-w 100 - 7,500 FDM 17 x 17 - 129 x 129
Erturk, Corke and Goke¢dl (2005) 16 P-w 1,000 — 21,000 FDM 401 x 401 - 601 x 601
Gupta and Kalita (2005) 17 Y-V 100 - 10,000 FDM 41 x41-161x 161
Bruneau and Saad (2006) 18 u,v,p 1,000 - 10,000 FDM 128 x 128 — 2048 x 2048
This work (2008) 19 u,v,p 1.0e-2 — 1,000 FVM 2x2—-1024 x 1024
Table 2. Author's numerical errors for the classica | problem.
Ref. p Precision Ui digits Uh RE
1 2 ? ? 5 ? No
2 2 single R: 5.0e-6 4 ? No
3 2 ? ? 34 ? No
4 2 ? ? 6 ? Yes=1
5 2 ? R: 1.0e-4 5 ? No
6 2 ? ? 5 ? Yes =3
7 2 ? R: 1.0e-3 4 ? No
8 2 ? R: 1.0e-5 ? ? No
9 210 ? R: 1.0e-8 6 ? No
10 1 single ? 4 8.7e-3 No
11 2 ? R: 1.0e-10 6 ? No
12 2 ? ? 4 ? No
13 8 ? R: 1.0e-6 5-7 1.0e-5 No
14 160 double R: 1.0e-8 7 1.0e-6 No
15 4 double AP, Aw: 1.0e-4 6 ? No
16 2 ? R: 1.0e-10 6 ? Yes =2
17 2 ? AY: 5.0e-7 3 ? No
18 3 ? 1.0e-12 5 ? No
19 2 double machine round-off  6-10 7.3e-6to 3.Ze-1Yes = 6-9
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Nomenclature

E = true discretization error

F =viscous drag force of the cavity’s lid or walh the fluid
in x direction (N)

h = size of the control volumes (m)

m = number of Richardson extrapolation

M = mass flow rate (kg/s)

nm = number of grids

p =pressure (Pa)

pe = effective order of the discretization error

p. = asymptotic order of the discretization error

pu = apparent order of the discretization error

r = grid refinement ratio

Re = Reynolds number

S =source term in Eq. (3)

u = component of the velocity vector in the x digt (m/s)
U = estimated discretization error

v = component of the velocity vector in the y dig@t (m/s)
X = Cartesian coordinate in the horizontal direati¢m)

y = Cartesian coordinate in the vertical directi¢m)

z = depth of the cavity (m)

Greek symbols

¢ =numerical solution of the variable of interest

@ = exact analytical solution of the variable ofénést
U = viscosity (Pa.s)

p =density (kg/m3)

Y = stream function (m2/s)

Subscripts

1 fine grid

2 coarse grid

3 supercoarse grid

M athematical M odel

The mathematical model of the problem consists g t ghost volumes (Ferziger and Peric, 1999); (8) Kfjp.to (3) are
Conservation of Mass and the Conservation of Mommaraws (the Written for unsteady state, aiming the use of tiasea relaxation

Navier-Stokes equations).

pro

Simplifications consideréor
blem are: steady state; two-dimensional lamiloay in x andy

the

Carlos Henrique Marchi et al.

Profile ofviny =% at 15 selected pointsxf

The minimum value W, of profile of u in x = % and its
respectivey coordinate.

The minimum Y,i,) and the maximumvg,,,) values of profile of
viny =% and their respectivecoordinates.

The minimum value of the stream functiop.{) and its
coordinatex andy.

The mass flow rateM) that flows througly = % line betweem = 0
and %, i.e.,

A
M =IO pV,.,, zdx (4)

wherez is the cavity depth, which is considered unitary.
The viscous drag forcé) in directionx (Hou et al., 1995) is the
force exerted by the fluid boundary surface, caltad by

e[

whereF, isF iny = 1 (cavity movable lid) anBi;isF iny = 0 (the
lower cavity wall).

zdx (5)

y

Numerical M odel

Briefly, the numerical model adopted to solve thatmematical
model described by Egs. (1) to (3) has the follgrtharacteristics:
(1) finite volume method (Ferziger and Peric, 199@) central
difference scheme (CDS) (Ferziger and Peric, 1980iffusive
and pressure terms; (3) CDS scheme with deferradeatmn
(Ferziger and Peric, 1999; Khosla and Rubin, 1994 )upstream
difference scheme (UDS) for advective terms; (43.Kf) to (3) are
solved sequentially using the MSI (Modified Strondmplicit)
method (Schneider and Zedan, 1981); (5) SIMPLE®h{S$®!Plicit
Linked Equations Consistent) method (Van Doormaal Raithby,
1984) to treat the pressure-velocity coupling; {fiform grids; (7)
the boundary conditions far andv, Fig. 1, are applied employing

parameter in the iterative solution process of thiecretized
mathematical model; and (9) a co-located arrangemmienariables

directions; incompressible fluig as constant; and absence of othefS used (Marchi and Maliska, 1994). This numeriaklel does not
effects. Thus, the resulting mathematical model is:

du_ ov_, 1)

ox 0y

a (U a(uv 0u  du) 0

pg+pg :u 72+72 —7p (2)
dXx oy ox° 0y 0Xx

®)

o 207
ax?

2,
+6v —@+S
ax ay ay’) ay

require boundary conditions for pressure (Ferzaget Peric, 1999).
The numerical solution of the variables of inteliestbtained as

follows:

¢ The numerical solution of the profile afin x = % is obtained
by the mathematical average wktored at the east face of the
two adjacent volumes to each desigedoordinate. Thisu at
each control volume east face is that one of thdéocated
arrangement of variables of Marchi and Maliska @99This is
necessary because the number of volumes used ih eac
coordinate direction is even, so that no contrdun® center
coincides with the line = %.

¢ The numerical solution of the profile ofin y = % is obtained
analogously to the profile ofi, through the mathematical

wherep is the pressure arf8lis a source term, which is null at the
classical problem (without known analytical solajiand given by
Shih, Tan and Hwang (1989) in the case of a matwfad solution
problem. The domain is a square of unitary sidén whe origin of
the system of coordinates, as shown in Fig. 1.

The variables of interest of the problem involve trimitive
variables themselvesi (@andv) and integrations ofi andv, which
are:

Profile ofuin x =%z at 15 selected points pf
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average of stored at the north face of the two adjacent velsim
to each desirer coordinate.

Unmin 1S the minimum value of the solution afstored at east
faces among all control volumes of the grid with %%. And its

y coordinate is the one in the east face centehefvblume
corresponding tOi,.

Vinin @Nd Vimax are the minimum and the maximum values of the
solution ofv stored at the north face among all control volumes
of the grid withy = %. And theirx coordinates are the ones in

ABCM
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the north face center of the volumes correspontng,, and The sources that cause numerical error can be ispditfour
Vinas types (Marchi and Silva, 2002): truncation, itevatiround-off, and
* For each vertical line, numerical solution of thieeam function programming errors. When other sources of errorirsgristent or
field () is obtained through integration of the productupf much smaller in relation to truncation ones, thenerical error can
stored at each control volume east face, by thghheif each also be called as discretization error.
control volume 4y), starting from the lower wall, ig = 0. The Considering the numerical model described in thevipus
vertical lines coincide witkx coordinates of the faces of eachsection, the predicted asymptotic order) (of the discretization
control volume. The numerical integration used hiefeased on €rror is equal to two (Ferziger and Peric, 1999rtseder, 2007) for
the rectangular rule (Kreyszig, 1999). The minimatue of the all variables of interest, except ferandy coordinates o, Urmin,

stream functiony,,;)) is obtained directly from th¢ field. Vimin @NdVmay Of whichp, are unknown. In literature (Roache, 1998,
«  The numerical solution of the mass flow rd) defined by Eq. 1994).pL is also called formal order or accuracy order.
(4) is obtained by numerical integration employirtge In theory (Marchi, 2001), it is expected tht(effective order)
rectangular rule, through and py (apparent order)» p_ for h - 0. In other words, it is
expected that the practical ordeps &ndpy), which are calculated
Ny /2 with the numerical solutions of each variable daérest, tend toward
M =2zpAx ZVm,y:y2 ®)  the asymptotic orderp(), foreseen a priori, when the size of the
i=1

control volumesl) tends toward zero.

. ) The effective orderpg) of the true error is defined by (Marchi,
where i represents the number of the control volumexin 2001)

direction;i = 1 is the real control volume at the left-handlwh
the cavity; N, is the total number of real control volumesxin
direction; Ax is the width of each control volume; angdis v at Iog{
the north face of each control volume.

e The numerical solution of the forc&n), which is defined by
Eq. (5), is obtained with one upstream point (UDS3rziger
and Peric, 1999) and the numerical integration usae is the whereE(@,) andE(q,) are true discretization errors of the numerical

E(cpz)}
E(p)
log(r)

b, = (10)

rectangular rule, which results in solutions@, andg, obtained, respectively, with finé,j and coarse
N (hy) grids; h = size of the control volumes (in this woltk= Ax =
Fn :422“AXZX(UT_ -u,) (7)  Ay); andr =hy/h; (grid refinement ratio).
Ny S TNy According to Eq. (10), the effective ordexi) is function of the

true discretization error of a variable of inter&dtus, for problems

whereur; is the velocity of the cavity lid at thecoordinate of Which analytical solution is known, it can be ustd verify a
each control volumé center; andy, , is the nodal velocity at ~ posteriori if, ash — 0, one obtaing,. WhenE is unknown, )

’ cannot be calculated. In this case, one can usecoheept of

each reali control volume center, whose volume north fac%bserved or apparent ordex,) defined by (De Vahl Davis, 1983;

coincides with the cavity lid. Marchi and Silva, 2002)
e The numerical solution ofs, defined by Eq. (5), is obtained '
analogously toFn but with one point downstream (DDS) » -0
(Ferziger and Peric, 1999), resulting in |Og(ﬂj
- =) (11)
Fs=-—"—"——>"u, (8)
by = where @, @ and @; = numerical solutions obtained, respectively,

. ) . with fine (hy), coarself,) and supercoarsé4 grids, and = hy/h, =
whereu; ; is the nodal velocity at each reai control volume hy/h,.

center, whose volume south face coincides withcéhvity lower Some studies (Benjamin and Denny, 1979; SchreitKaller,
wall, whoseu = 0. 1983; Erturk, Corke and Gokedl, 2005) achieved keweresults
when employing multiple Richardson extrapolatiodRE) to
reduce the discretization error ¢f,,. However, these authors used
this process with at most four grids, resulting up to three
extrapolations for the finest grid they used. la fresent work, this
procedure was utilized with up to ten grids, reeglin up to nine
extrapolations for the finest grid used (1024 x4)Q2nd applied to
almost all variables of interest. This was doner@ans of

The Stokes 1.5 computational code was implememigebitran
95, using Intel Fortran 9.1 compiler and doublecjsien. The
iterative process is repeated until the machinendeaff error
achievement. This is verified by monitoring thenorm (Kreyszig,
1999), along the iterations, of the residue (R) snfirthe three
solved systems of Eqgs. (1) to (3). The residue galre of the three
systems, in each outer iteration, is nondimensipe@lby its value

at the end of the first outer iteration (R1). B (m-1)e0 ~ F2(m-1)o0
Ao = Am-ty0 ¥ tmy _ (12)

Discretization Error
(m=12,..,nm-1)
The numerical error H) can be defined as the difference

between the exact analytical solutioh)(of a variable of interest whereq, ... is the numerical solution of the variable of it ()

and its numerical solutiory), i.e., with m extrapolations on the fine grith{; @ g1y, and@y m1y. are
numerical solutions withnf-1) extrapolations on the find,) and
E(=®-¢ ) coarse if,) grids;r = hy/h; (grid refinement ratiom = number of

Richardson extrapolations, with = 0 being the numerical solution
obtained in gridh without any extrapolationnm = number of

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght O 2009 by ABCM July-September 2009, Vol. XXXI, No. 3 /189
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different grids with numerical solutions ofp without any presented in Shih, Tan and Hwang (1989). The analyolution of
extrapolation;py(m) = true orders (Marchi and Silva, 2002) of theu andv is (Shih, Tan and Hwang, 1989)
discretization error, witlp(1) = p.. For the numerical model used

in this work,py = 2, 4, 6 ... for all variables of interest, excéy x u(x,y) =8(x* = 2x% + x?) (4y® - 2y) (15)
andy coordinates ofPmin, Umin, Vimin @NdVmayx Of Which values opy,
are unknown. V(X,y) ==8(4x® - 6x° + 2x) (y* - y?) (16)

In this work, Eq. (12) is applied to all variable§ interest to

reduce the discretization error, excepktandy coordinates omin,  The lid velocity varies withx, according to Eq. (15) foy = 1. The
Umin, Vmin @Nd Vimay, OF which results are the ones obtained with thether boundary conditions are shown in Fig. 1. Teynolds
finest grid, of 1024 x 1024 nodes, without any agtlation. In number (Re) is one for Eq. (17).

theory, the accuracy order of the resultsi@f.5;05),v(0.5;0.5),M, All numerical solutions in this work were obtainedth ten

Fs, FN, Vimin, Viax Umin @Nd Wrig is 20, since they are obtained with different grids: 2 x 2, 4 x 4, 8 x 8 and so on apl024 x 1024 real
nine extrapolations through Eq. (12). And, in thseof the profiles control volumes. All simulations of this study werede in a Xeon

of u and v, it is 14, because they are obtained with siQuad Core X5355 Intel processor, 2.66 GHz, using core. The
extrapolations. for the

In practical situations, a numerical solution igadbed because
the analytical solution is unknown. Hence, the tuaue of the
numerical error is also unknown. Therefore, the eucal error
must be estimated. The estimated discretizatiorore(J) of
¢1omay > 1-€., OF the numerical solution with the highgstssible

number of extrapolations in the finest grid, wié bonsidered equal
to

U ((pl,(nnm)oo) = ‘(pl(nm—z)oo - (pZ,(nn’FZ)oo‘ (13)

which is the module of the difference with the keghnumber of
extrapolations that can be calculated betweenwbdinest grids. In
the case of the andy coordinates ofpiyin, Umin Vimin @NdVina, ONE
adopts

u(xy)= ‘(910241024 - (p512x512‘ (14)

maximum RAM memory employed was 242 MB,
simulations with 1024 x 1024 nodes grid. To obtie numerical
solutions, the initial estimate used forv andp was the analytical
one for the problem given, respectively, by Eq%) (&nd (16) and
by Shih, Tan and Hwang (1989).

The column named as Shih, in Table 3, presentsnhi&:
parameters of the iterative process involved ingtablem solution
for the 1024 x 1024 nodes grid. At this taki:is the time interval
used to further the iterative process; Itmax is tbtal number of
outer iterations made; Itfi is the approximate number of outer
iterations made when the round-off error leveldkiaved; R1 is the
I,--norm of the residue sum of the three solved systafter the first

iteration; Rf/R1 is thé;-norm of the residue sum of the three solved

systems at Itmax, made dimensionless based onirdtetération,
showing how much the residue was reduced alongitérative
process; Alg is the number of significant figurelstioe solution
which does not have round-off errors after Itmardtions; and
tCPU is the CPU time needed to make Itmax iteratidine typical
behavior of the residue drop along the iterationd the machine

where @uooax1024 aNd Q104510 are the numerical solutions obtainedround-off error achievement are shown in Fig. 2tfor 256 x 256

without extrapolation on 1024 x 1024 and 512 x Bbdes grids.

Literature (Roache, 1998) offers several discrétiza error
estimators. The use of Eqgs. (13) and (14) is jestibased on an
analysis of the problem presented in the next @ecflhis problem
is similar to the classical problem of square gawiith movable lid,
but its analytical solution is known. Thus, it wasssible to evaluate
the performance of Egs. (13) and (14), which resuin reliable
error estimates, i.eJ/|E| > 1 for all variables of interest of the
present work.

Problem with Known Analytical Solution

There is a variant of the classical problem of whémalytical
solution is known and is given by Shih, Tan and Hgv#1989). In
this case, the source ter® Of Eq. (3) is different from zero, and is

Table 3. Parameters of the iterative process for th

nodes grid. In that figure, Shih denotes the pnobleom this
section, and Ghia the problem treated in the nestian.

Ideally, for the model used in this work, the vabfehe stream
function @) in y = 1 should be null for each of the 1024 control
volumes at the cavity lid. Its absolute maximum ueal which
represents the mass conservation error, resultgdlir 10'* which
is very near the null value and is at the leveldotible precision
used in this work.

The velocity profiles in the two directions in tleavity center
are shown in Fig. 3. The congruence between thigtaza solution
of Shih, Tan and Hwang (1989) and the numericaltsmi of the
present work, with the 1024 x 1024 grid, can be sabered
excellent.

e 1024 x 1024 nodes grid.

Variable Shih The classical pblem
Re=1 Re = 0.01 Re =10 Re = 100 Re = 400 Re 8§ 100
At (s) 5.0e-4 1.0e-5 0.02 0.05 0.5 0.5
Itmax 60,000 200,000 380,000 100,000 240,000 1@0,00
It(Em) 45,000 150,200 362,700 80,900 202,300 85,300
R1 3.8e-01 1.0e+04 1.6e+02 1.2e+02 1.2e+02 1.2e+02
Rf/R1 2.8e-10 9.5e-13 5.9e-14 8.1e-15 3.3e-15 1%e-
Alg 7(v) e 12 10 12 12 13 12
tCPU 1d 9h 4d 10h 9d 1h 2d 9h 5d 16h 2d 12h

190 / Vol. XXXI, No. 3, July-September 2009
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T T

—0— Shih, Re=1
—X— Ghia, Re=0.01
—+— Ghia, Re=10
—— Ghia, Re=100
—%— Ghia, Re=400
—<— Ghia, Re=1,000

R A P I [ P [ P B TS I

1

| -norm Rf/R1
g

10"

10716 | L LI LI A A :
Iterations

Figure 2. Residue versus iterations for the 256 x 2 56 nodes grid.

Table 4. Results for the problem of Shih, Tanand H  wang (1989).

Variable Pe [0) E U/E|
Wrmin 1. 956996 -1.2500000e- 1 2.0e-9 2. 4e+2
X(Wmin) I nd. 5.0e-1 0 I nd.
Y(Wmin) 0 7.0703e-1 7.6e-5 6.4
M 2.000252 9. 3749999997e- 2 2.7e-12 7.4
Fs 1.999764 5. 333333334e-1 -8.2e-11 1. 8e+1
Fn 1.638635 2.666678e+0 -1.1le-5 3.1
Unin 2.082329 -2.721659%-1 3.4e-7 1. le+l
Y(Umin) 1.071713 4.0869%-1 -4.4e-4 1.1
Vimin 2. 583567 -2.886756e-1 4. 2e-7 2.6
X(Vimin) 2.545598 7.8857e-1 1.0e-4 4.9
Vinax 2.566173 2.886756e-1 -4.2e-7 2.6
X(Vimax) 2.545598 2.1143e-1 -1.0e-4 4.9
u(0.5;0.0625) 2.000029 -6.2011718741e-2 -8.5e-12 7.3
u(0.5;0.125) 2.000029 -1.21093749988e- 1 -1.2e-11 7.3
u(0.5;0.1875) 2.000077 -1.74316406238e- 1 -1.2e-11 7.4
u(0.5;0.25) 1.999877 -2.18749999990e- 1 -9.8e-12 7.3
u(0.5;0.3125) 1.999951 -2.51464843745e-1 -5.4e-12 7.6
u(0.5;0.375) 1. 999963 -2.695312499997e- 1 -2.8e-13 1. 8e+1
u(0.5;0.4375) 1. 999966 -2.70019531254e- 1 4.0e-12 6.2
u(0.5;0.5) 1. 999965 -2.50000000006e- 1 5.9e-12 6.6
u(0.5;0.5625) 1. 999963 -2.06542968755e- 1 4. 6e-12 6.7
u(0.5;0.625) 1. 999960 -1.367187500006e- 1 6. 0e-13 6.7
u(0.5;0.6875) 1. 999961 - 3.7597656248e- 2 -2.0e-12 6.5
u(0.5;0.75) 1.999970 9. 3749999998e- 2 2.0e-12 9.0
u(0.5;0.8125) 1. 999986 2.60253906243e- 1 7.2e-12 7.8
u(0.5;0.875) 2.000027 4.64843749987e- 1 1.3e-11 7.5
u(0.5;0.9375) 1.995103 7.10449218737e-1 1.3e-11 7.0
v(0.0625;0.5) 1.999920 1.53808593744e-1 6.2e-12 7.1
v(0.125;0.5) 1. 999929 2.4609374999e- 1 1. 4e-11 7.1
v(0.1875;0.5) 1. 999935 2.8564453123e-1 1.5e-11 7.3
v(0.25;0.5) 1.999942 2.81249999990e- 1 1.0e-11 7.6
v(0.3125;0.5) 1.999952 2.41699218747e-1 3.3e-12 7.6
v(0.375;0.5) 1. 999964 1.75781250002e- 1 -2.3e-12 6.5
v(0.4375;0.5) 1. 999979 9.2285156254e- 2 -3.7e-12 6.8
v(0.5;0.5) 1.999762 2.3e-14 -2.3e-14 1. Oe+1
v(0.5625;0.5) 1. 999963 - 9. 2285156254e- 2 3.6e-12 6.9
v(0.625;0.5) 1. 999959 -1.75781250002e- 1 2.1e-12 6.2
v(0.6875;0.5) 1.999952 -2.41699218746e-1 -3.5e-12 7.7
v(0.75;0.5) 1.999944 -2.81249999989%e- 1 -1.1le-11 7.0
v(0.8125;0.5) 1.999938 -2.8564453123e-1 -1.5e-11 7.3
v(0.875;0.5) 1.999934 -2.4609374999%e-1 -1.4e-11 7.1
v(0.9375;0.5) 1. 999925 -1.53808593744e- 1 -5.9e-12 7.1
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Figure 3. u at x = %2 and v at y = % for the problem of Shih, Tan and

Hwang (1989).

For each variable of interest, Tab. 4 presentsih@)effective
order @g) calculated by Eq. (10), based on the true dimaibon
error E) of the numerical solutiongp( without extrapolation, on the
1024 x 1024 and 512 x 512 nodes grids, i.e., with 2; (b) the
numerical solution ¢ on the 1024 x 1024 nodes grid, with
extrapolation calculated by Eq. (12), except¥@ndy variables for
which none extrapolation was employed; (c) the ealf E
calculated by Eq. (9); and (d) the ratio of the ireated
discretization error{) to the module oE. In this table and in the
following ones, the notation 1.0e-3 and Ind. repmesrespectively,
1.0 x 10° and indefinite.

In Tab. 4, it can be noted that for the velocitgfpes ofu and
v, pg varies from 1.995 to 2.000, confirming the valdepp = 2,
which was predicted a priori. For coordinate tyeiables,pg is
indefinite or assumes values of null and closertidywor to two. For
other variablespg varies from 1.639 to 2.584, i.e., aroynd

Table 4 indicates, for all variables of interebgttU/|E| > 1 for
U calculated by Egs. (13) or (14) depending on tméable. In other
words, the analytical solution is contained withiine interval
comprised byp + U. For the velocity profilesi andv, theU/|E| ratio
varies between 6.2 and 18. For coordinate typeakibes, this ratio
varies from 1.1 to 6.4. For other variables, th@raaries between
2.6 and 240.
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For the velocity profilesu andv, M and Fs, the EWE| ratio
varies from 1.6 x 10to 3.8 x 16. This ratio represents the
extension to which the discretization error of gwdution without
extrapolation Eh), obtained on the 1024 x 1024 grid, is reduced
with the use of multiple extrapolations through E@2). This
reduction was not so effective for the variabgs, Vinax Uminn FN
and Y,,n, Which reductions were, respectively, of 1.9, 2®, 4.6
and 75.

The magnitude oE and U may vary considerably along the
velocity profiles. The ratio between the maximund dme minimum
values ofE is 652, and folJ it is 478.

Summarizing, in this section, for a two-dimensiorfadw
problem with known analytical solution, we showe(:) the
importance of using multiple extrapolations to reeluthe true
discretization errorK); and (2) the discretization error estimated
(U) with Eqg. (13) or (14) reliability, i.e.U/[E| > 1. In the next
section, the same procedure is applied to the ickdssavity flow
problem of which analytical solution is unknown.

Classical Prablem with Unknown Analytical Solution

In the classical problem (Kawaguti, 1961; Burggraf66;
Rubin and Khosla, 1977; Benjamin and Denny, 1978iaGGhia
and Shin, 1982) of laminar flow inside a squareitgauthe lid
velocity Ut) is constant and has unitary value. The other daon
conditions are shown in Fig. 1. At lid corneuss 0 on one side and
u = 1 on the other. The source ter® 6f Eq. (3) is null. The
Reynolds number (Re) is defined by

L

Re= pUT — (17)
V)

whereL = 1 m, dimension of the side of the square cayty; 1
kg/m3, density; angl is the viscosity in Pa.s, obtained from Eq. (17)
for a given Re. Numerical solutions were obtainedRe = 0.01, 10,
100, 400 and 1000. The initial estimate usedwas =p = 0.

Table 3 shows the main parameters of the itergpirn@cess
involved in the problem solution achievement foe 024 x 1024
nodes grid. It is noted that the typical behavibthe residue drop
along iterations and the achievement of the mactdnad-off error
are shown in Fig. 2 for the 256 x 256 nodes gridr these five
values of Re and the 1024 x 1024 grid, CPU timeéedafrom 2
days and 9 hours to 9 days and 1 hour.[Tin@rm of the residue sum
of the three solved systems varied from 1.6 X°16 9.5 x 10°. The
obtained solutions present from 10 to 13 signifidagures without
machine round-off error.

The stream function valugy in y = 1, which should be null for
each of the 1024 control volumes at the cavity tekulted in the
following maximum values: 5.9 x 1/, 1.7 x 10', 5.4 x 10'®, 1.0 x
10" and 2.3 x 185, respectively, for Re = 0.01, 10, 100, 400 and
1000. These values are very close to the null beimg at the level
of double precision employed in this work.

The velocity profiles in the two directions at dgvcenter are
shown in Fig. 4. The congruence between the nuadesautions of
Ghia, Ghia and Shin (1982), Botella and Peyret 8)2d Bruneau
and Saad (2006), and the numerical solution ofwlek using the
1024 x 1024 grid can be considered very good.
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Figure 4. uatx =% and v at y = % for the classic  al problem.
Table 5. Apparent order (pU) for the classical prob  lem.
Variable Re =0.01 Re =10 Re =100 Re =400 Re = 1000
Wmin 1.813490 1.329414 1.831320 2.001399 1. 995930
X(Wrmin) I nd. I nd. I nd. I nd. I nd.
Y(Wmin) I nd. I nd. I nd. I nd. I nd.
M 2.034916 2. 028581 1. 996948 2.006947 2.002034
Fs 1.992172 1. 994006 2.029269 1. 332492 1.929611
Fn -1.59e-6 -9.89%e-5 -3.50e-4 5.21e-3 3. 06e-2
Umin 2.181172 2. 066232 2.075970 2.031114 1.997271
Y(Umin) 1 1 I nd. I nd. I nd.
Vinin 1.621232 2.190969 1. 101600 2. 143075 2. 125597
X(Vimin) I nd. 1 I nd. I nd. 1
Vimax 1. 634400 1. 868090 1. 997206 2.016770 1. 972962
X(Vmay) I nd. I nd. I nd. I nd. I nd.
u(0.5;0.0625) 1. 960768 1.968367 2.147456 1.984548 1.976726
u(0.5;0.125) 1.958143 1.964883 1.868924 1.999443 1. 993667
u(0.5;0.1875) 1. 923552 1.931919 1.978974 2.004525 2.005013
u(0.5;0.25) 2.178329 2.126091 1.993379 2.007160 2.015676
u(0.5;0.3125) 2.031881 2.026274 1.998071 2.009989 2.014781
u(0.5;0.375) 2.015371 2. 013097 2. 000054 2.014118 2.017440
u(0.5;0.4375) 2.008997 2.007837 2.000902 2.020004 2.027410
u(0.5;0.5) 2.005441 2.004812 2. 000935 2.028634 2.071716
u(0.5;0.5625) 2.002936 2. 002602 1.999763 1.988412 1. 932956
u(0.5;0.625) 2. 000757 2.000613 1. 995031 2.003845 1.981615
u(0.5;0.6875) 1.998272 1.998354 2. 085979 2.006704 1.991411
u(0.5;0.75) 1. 993929 1.994724 2.004496 2.007500 1. 996045
u(0.5;0.8125) 1.976978 1.980210 1.996234 2.007477 1. 999568
u(0.5;0.875) 2.057222 2.046188 1. 986320 2.007307 2.002394
u(0.5;0.9375) 2.019786 2.017118 1. 986999 2.009975 2.010322
v(0.0625;0.5) 2.218522 2.029222 1.990425 2.004249 2.005623
v(0.125;0.5) 2.025451 2.012204 1.991731 2. 005891 2.004193
v(0.1875;0.5) 2.011352 2.007024 1.993743 2. 006560 2.003540
v(0.25;0.5) 2.006277 2.004850 1. 996269 2.007214 2.000912
v(0.3125;0.5) 2.003755 2. 004056 1. 999362 2.007830 1.996139
v(0.375;0.5) 2.002376 2.004485 2.003797 2.007450 1.991814
v(0.4375;0.5) 2.001669 2.008224 2.014244 1.901847 1.978584
v(0.5;0.5) 1.973113 1.972879 1.759938 2.013626 2. 345369
v(0.5625;0.5) 2.001658 1.996774 1.981704 2.010731 2.027308
v(0.625;0.5) 2.002371 1. 999829 1.992687 2.008691 2.015160
v(0.6875;0.5) 2.003753 2.002233 1.997319 2.007301 2.010284
v(0.75;0.5) 2.006278 2. 005644 2. 000465 2.005482 2.006818
v(0.8125;0.5) 2.011358 2.012787 2. 003962 2.003772 2. 009697
v(0.875;0.5) 2.025481 2. 043456 2.080131 2.007310 2.004484
v(0.9375;0.5) 2.220438 1.919401 1.988282 2.002781 1. 987050
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Table 5 presents the apparent orggj) for Re = 0.01, 10, 100, condition ofu, at lid corners: 0 on one side and 1 on the otimer.
400 and 1000. This order was calculated using EL), pased on the Bruneau and Saad (2006), two other variables veerned to diverge
numerical solutions ¢ of each variable of interest, without when h - 0, due to the discontinuity existing in the bouryda
extrapolation, on the 1024 x 1024, 512 x 512 an@ 2256 nodes condition ofu. It should be noted that féis: (a) in all five values of
grids, i.e., withr = 2. For theu andv velocity profiles,py varies from Re, its value converges to - 0; (b) it is calculated with the same
1.760 to 2.345, with most results very close tohlie ofp. = 2, types of numerical approximations &s; (c) its py varies from
which was predicted a priori. For coordinate tyggiables,p, is 1.322 to 2.029; and (d) its calculation does nowoive
indefinite or assumes a unitary value. For otheialsées,py, can differ  discontinuities.
substantially fronp,, varying from 1.102 to 2.191. Table 6 presents, for Re = 0.01, 10, 100, 400 a6@D1the

An unexpected behavior pfj, shown in Table 5, occurred for the numerical solution ¢ of each variable of interest. In the case of
variableFn. For all five values of Ry varies between -3.50 x 0 coordinate type variables, the solution is presnteithout
and 3.06 x 18. Based oy versush curves, it was found thay — 0O extrapolations, obtained on the 1024 x 1024 node&k §or the
for h - 0. This means that the value Bh diverges with grid remaining variables, the solution is the one olgdion the 1024 x
refinement. In Nie, Robbins and Chen (2006), fa same problem 1024 nodes grid with extrapolations through Eq)(\b results are
studied in this work, it was shown tham cannot be obtained solely shown for Fn due to its divergence. The number of significant
through continuum mechanics, i.e., with the Na@trkes equations. figures presented for each variable is defined tbyréspectiveJ
It is also necessary to consider the movement amostopic scale. value from Table 7.

This problem is due to the discontinuity existimgthe boundary

Table 6. Numerical solution ( ¢) for the classical problem.

Variable Re =0.01 Re =10 Re = 100 Re =400 Re = 1000
Wrin -1.0007622e-1 -1.001132e-1 -1.035212e-1 -1.1398887e-1 -1.18936708e-1
X(Wrmin) 5. 0000e- 1 5.1660e-1 6.1621e-1 5.5371e-1 5.3125e-1
Y(Wrin) 7.6465e-1 7.6465e-1 7.3730e-1 6. 0547e-1 5.6543e-1
M 5.89511561e-2 5.89995617e-2 6. 6547335e- 2 1.06628389%e-1 1.1651428e-1
Fs 3.20058670e+1 3.19974769e- 2 3.2679321e-3 1.1943510e-3 7.980404e-4
Umin -2.077556e-1 -2.075765e-1 -2.140417e-1 -3.287295e-1 -3.885721e-1
Y(Umin) 5. 3564e-1 5.3467e-1 4.5850e-1 2.7979%e-1 1.7139%-1
Vimin -1.844491e-1 -1.885062e-1 -2.53804e-1 -4.54058e-1 -5.27056e-1
X(Vimin) 7.9053e-1 7.9346e-1 8.1006e-1 8.6182e-1 9.0967e-1
Vimax 1. 844415e-1 1.809117e-1 1.79572814e-1 3.0383231e-1 3.769471e-1
X(Vmay) 2.0947e-1 2.1240e-1 2.3682e-1 2.2510e-1 1.5771e-1
u(0.5;0.0625) - 3.85275436e- 2 - 3. 85425800e- 2 -4.1974991e-2 -9.259926e- 2 -2.02330048e-1
u(0.5;0.125) -6.9584425e-2 -6.96238561e-2 -7.7125399e-2 -1.78748051e-1 -3.478451e-1
u(0.5;0.1875) -9.6906717e-2 -9.6983962e-2 -1.09816214e-1 -2.6391720e-1 -3.844094e-1
u(0.5;0.25) -1.22595555e- 1 -1.22721979%e-1 -1.41930064e-1 -3.2122908e-1 -3.189461e-1
u(0.5;0.3125) -1.47461728e-1 -1.47636199%e-1 -1.72712391e-1 -3.2025109e-1 -2.456937e-1
u(0.5;0.375) -1.71067124e-1 -1.71260757e-1 -1.98470859%e-1 -2.6630635e-1 -1.837321e-1
u(0.5;0.4375) -1.91535923e-1 -1.91677043e-1 -2.12962392e-1 -1.9073056e-1 -1.2341046e-1
u(0.5;0.5) -2.05191715e-1 -2.05164738e-1 -2.091491418e-1 -1.15053628e-1 -6.205613e-2
u(0.5;0.5625) -2.06089397e-1 -2.05770198e-1 -1.82080595e-1 -4.2568947e-2 5.6180e-4
u(0.5;0.625) -1.85581148e-1 -1.84928116e-1 -1.31256301e-1 3. 024302e-2 6.5248742e-2
u(0.5;0.6875) -1.322092275e-1 -1.313892353e-1 -6.0245594e-2 1.0545601e-1 1.3357257e-1
u(0.5;0.75) -3.2443684e-2 -3.1879308e-2 2.7874448e-2 1.8130685e-1 2.0791461e-1
u(0.5;0.8125) 1.27054983e-1 1.26912095e-1 1.40425325e-1 2.5220384e-1 2.884424e-1
u(0.5;0.875) 3.55228331e-1 3. 54430364e-1 3.1055709e-1 3.1682969e- 1 3. 625454e-1
u(0.5;0.9375) 6.51176326e-1 6. 50529292e- 1 5.97466694e- 1 4.69580199%e-1 4.229321e-1
v(0.0625;0.5) 9.4572847e-2 9.2970121e-2 9. 4807616e- 2 1.85132290e-1 2.807057e-1
v(0.125;0.5) 1.55984965e- 1 1.52547843e-1 1.4924300e-1 2.6225126e-1 3.650418e-1
v(0.1875;0.5) 1.82641889e-1 1.78781456e-1 1.74342933e-1 2.9747923e-1 3.678527e-1
v(0.25;0.5) 1.78849493e-1 1.76415100e-1 1.79243328e-1 3. 0096003e- 1 3.0710428e-1
v(0.3125;0.5) 1.51784706e-1 1.52055820e-1 1.69132064e-1 2.6831096e-1 2.3126839%e-1
v(0.375;0.5) 1. 089092434e-1 1.121477612e-1 1.45730201e-1 2.0657139%e-1 1. 6056422e-1
v(0.4375;0.5) 5.66144697e-2 6.21048147e-2 1.087758646e-1 1.30571694e-1 9. 296931e-2
v(0.5;0.5) 6.3677058e- 6 6.3603620e-3 5. 7536559e- 2 5.2058082e-2 2.579946e-2
v(0.5625;0.5) -5.66033951e-2 -5.10417285e-2 -7.748504e-3 -2.4714514e-2 -4.184068e-2
v(0.625;0.5) -1.089027070e-1 -1.056157259%e-1 -8.4066715e-2 -1.00884164e-1 -1.107983e-1
v(0.6875;0.5) -1.51784274e-1 -1.51622101e-1 -1.63010143e-1 -1.82109238e-1 -1.816797e-1
v(0.75;0.5) -1.78854716e-1 -1.81633561e-1 -2.27827313e-1 -2.80990219%e-1 -2.533815e-1
v(0.8125;0.5) -1.82650133e-1 -1.87021651e-1 -2.53768577e-1 -4.0004235e-1 -3.315667e-1
v(0.875;0.5) -1.55992321e-1 -1.59898186e-1 -2.18690812e-1 -4.4901185e-1 -4.677756e-1
v(0.9375;0.5) -9.4576294e-2 -9.6409942e-2 -1.23318170e-1 -2.70354943e-1 -4.5615254e-1
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Table 7. Estimated discretization error (U) of the ~ numerical solution (- ¢) for the classical problem.

Variable Re =0.01 Re =10 Re =100 Re = 400 Re = 1000
Wnin 3.5e-7 1.5e-6 1.1e-6 3.1le-7 3.1e-8
X(Wmin) 4.9e-4 9. 8e-4 9. 8e-4 9. 8e-4 4.9e-4
Y(Wmin) 9. 8e-4 9.8e-4 9. 8e-4 4.9e-4 9.8e-4
M 9. 3e-9 8.3e-9 2.7e-8 8. 6e-8 5.8e-7
Fs 7.0e-6 7.8e-9 5.8e-9 8. 0e-9 8.8e-9
Unnin 1.7e-6 1. 3e-6 1. 6e-6 1. le-6 3.8e-6
Y(Unin) 4.9e-4 4.9e-4 4.9e-4 4.9e-4 4.9e-4
Vinin 1.9e-6 2.2e-6 1.1le-5 2.1e-5 6. 2e-5
X(Vimin) 4.9e-4 4.9e-4 4.9e-4 4.9e-4 4.9e-4
Vinax 1.8e-6 1.1le-6 2.7e-8 2.5e-7 7.3e-6
X(Vmay) 4.9e-4 4.9e-4 4.9e-4 4.9e-4 4.9e-4
u(0.5;0.0625) 5.8e-9 4.8e-9 4.5e-8 1.9e-7 5.4e-8
u(0.5;0.125) 1.1e-8 9. 0e-9 7.2e-8 5. 6e-8 1.7e-6
u(0.5;0.1875) 1.5e-8 1.3e-8 8. 6e-8 2.6e-7 2.1e-6
u(0.5;0.25) 2.0e-8 1.7e-8 8. 6e-8 5.0e-7 1. 6e-6
u(0.5;0.3125) 2.4e-8 2.1le-8 7.3e-8 4. 7e-7 1.4e-6
u(0.5;0.375) 2.8e-8 2.5e-8 5.0e-8 2.8e-7 1. 2e-6
u(0.5;0.4375) 3. 0e-8 2.8e-8 2.0e-8 1. 2e-7 9.4e-7
u(0.5;0.5) 3.0e-8 2.8e-8 8. 6e-9 2.7e-8 6. 4e-7
u(0.5;0.5625) 2.4e-8 2.3e-8 2.8e-8 5.0e-8 3. 6e-7
u(0.5;0.625) 1. 2e-8 1.2e-8 3.5e-8 1. 2e-7 3.7e-8
u(0.5;0.6875) 7.4e-9 6. 4e-9 3.7e-8 2.2e-7 3.4e-7
u(0.5;0.75) 3.2e-8 2.9e-8 4. 6e-8 3.2e-7 7.8e-7
u(0.5;0.8125) 5.4e-8 4.9e-8 7.1e-8 3.8e-7 1. 4e-6
u(0.5;0.875) 6.1le-8 5. 6e-8 1.1e-7 3.3e-7 2.3e-6
u(0.5;0.9375) 4.1e-8 3.9e-8 9.5e-8 2.3e-8 3.6e-6
v(0.0625;0.5) 2.4e-8 2.0e-8 7.2e-8 6.5e-8 2.9e-6
v(0.125;0.5) 3.6e-8 2.9e-8 1. 0e-7 1.9e-7 3.0e-6
v(0.1875;0.5) 3.5e-8 2.8e-8 9.7e-8 3.1le-7 1.9e-6
v(0.25;0.5) 2.6e-8 2.2e-8 7.9e-8 3.5e-7 8. 6e-7
v(0.3125;0.5) 1.6e-8 1.5e-8 5.5e-8 2.8e-7 4. 0e-7
v(0.375;0.5) 7.6e-9 9. 2e-9 2.9e-8 1.5e-7 1.1le-7
v(0.4375;0.5) 2. 8e-9 5.9e-9 3.7e-9 4.5e-8 2.2e-7
v(0.5;0.5) 3.7e-12 3.8e-9 2.0e-8 2.7e-8 5.2e-7
v(0.5625;0.5) 2.8e-9 1.2e-9 4.8e-8 7.3e-8 7.8e-7
v(0.625;0.5) 7.6e-9 3.9e-9 5.3e-8 9. 4e-8 1.0e-6
v(0.6875;0.5) 1.6e-8 1.3e-8 5.0e-8 8.0e-8 1.2e-6
v(0.75;0.5) 2.6e-8 2.4e-8 5.2e-8 7.7e-8 1. 5e-6
v(0.8125;0.5) 3. 5e-8 3.4e-8 7.3e-8 3. 7e-7 1.7e-6
v(0.875;0.5) 3.6e-8 3. 6e-8 8.7e-8 5.5e-7 1.9e-6
v(0.9375;0.5) 2.4e-8 2.4e-8 5.8e-8 7.3e-8 5.9e-7

Table 7 presents the discretization error estimétBdthrough presented in Tab. 7 and its value probably overedés the true
Egs. (13) or (14) for the solution of Table 6. Amncbe seen, for error; moreover, the iterative process was repeaiatl the
profiles ofu andv, roughly, the magnitude & grows with Re. In achievement of machine round-off error. Among ariables of
the case of the remaining variables, this influenfcBe onU seems interest compared in Tables 8 to 13, the resulBotélla and Peyret
to be absent. For the same Re, the magnitudel ofliffers  (1998) are probably more accurate than those optheent work
considerably among several variables of interedtickv can be only for the following variablesy,,, for Re = 100 and 1000; and
divided into three distinct sets: (1) is generally much lower for vy, for Re = 1000.
profiles ofu andv, M andFs; (2) Vimin Vimax Umin @nd Ymin have a It is worth noting the congruence among all resufsthe
slightly higherU; and (3) the coordinate type variables have thpresent work, which are compared to those of Batalid Peyret
highestU. The magnitude off may vary largely along the velocity (1998). The results of Botella and Peyret (1998) within the
profiles: the ratios between the maximum and theimmim values interval comprised betweem+ U of this work results. For example,
of U are 16,000, 47, 30, 24 and 97, respectively, ®r=R0.01, 10, the result of Botella and Peyret (1998) fgr,, in Re = 1000 is
100, 400 and 1000. 0.3769447, which is between 0.3769398 and 0.3769§44n in

Tables 8 to 13 list the results of this work andsth of several the present work. An exceptionys,, for which Botella and Peyret
other authors for the variables of interest, wheed. indicates the (1998) report the result of -0.1189366, which i$ comprised the
works cited in Table 1. Among all results of thetesen works interval of -0.118936739 and -0.118936677 of thisky presenting
reported in literature and cited here, those ofeBatand Peyret a very slight difference of 7.7 x T0
(1998) are probably the most accurate. Howeversidening the
estimated errory) reported by Botella and Peyret (1998) and the
tolerance they adopted in the iterative process,résults of the
present work are probably more accurate than tbb&otella and
Peyret (1998). Keeping in mind that, in the presewntk, U is
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Table 8. Comparisons of

Wnmin With other authors for the classical problem.

Carlos Henrique Marchi et al.

L — Re = 100 Re = 400 R T —
'quin X y 'quin X y 'quin X y
2 0. 1022 0.1017
3 0.1034 0.114
4 0.1193
5 0.103423 0.6172 0.7344 0.113909 0. 5547 0. 6055 0.117929 0.5313 0. 5625
6 0. 10330 0. 61667 0. 74167 0.11399 0.55714 0.60714 0.11894 0. 52857 0. 56429
7 0. 1034 0.6188 0. 7375 0. 1136 0. 5563 0. 6000 0.1173 0. 5438 0. 5625
9 0. 103506 0. 6094 0.7344 0. 119004 0. 5313 0. 5625
10 0. 1030 0. 6196 0.7373 0.1121 0. 5608 0. 6078 0.1178 0. 5333 0. 5647
11 0.103519 0. 6157 0.7378 0.118821 0.5308 0. 5659
12 0. 1157
13 0. 10330 0.11389 0.118930
14 0.1189366 0. 5308 0. 5652
15 0. 103511 0.617187 0.734375 0. 118806 0.531250 0.562500
17 0.103 0. 6125 0. 7375 0.113 0. 5500 0. 6125 0.117 0. 5250 0. 5625
16 0. 118942 0. 5300 0. 5650
18 0.11892 0. 53125 0. 56543
Present 0.1035212 0.61621 0.73730 0.11398887 0.55371 0.60547 0.118936708 0.53125 0. 56543
Re = 10, Ref. 2:Wmin = 0.0999; Presentt,, = 0.1001132
Table 9. Comparisons of u(0.5;0.5) and v(0.5;0.5) with other authors for the classical prob  lem.
Ref. u(0.5;0.5) v(0.5;0.5) -------m-mmmmme e
Re =100 Re =400 Re = 1000 Re =100 Re =400 RO
5 -0. 20581 -0.11477 -0. 06080 0. 05454 0. 05186 0. 02526
14 -0. 0620561 0. 0257995
16 -0. 0620 0. 0258
18 -0. 06205 0. 02580
Present -0.2091491418 -0. 115053628 -0. 06205613 0. 057536559 0. 052058082 0. 02579946
Table 10. Comparisons of u(0.5;0.0625) and v(0.0625;0.5) with other authors for the classical p  roblem.
Ref u(0.5;0.0625) O O L ———
Re =100 Re =400 Re = 1000 Re =100 Re =400 0O
5 -0.04192 -0. 09266 -0.20196 0. 09233 0. 18360 0. 27485
14 -0.2023300 0. 2807056
18 -0. 20227
Present -0.041974991 -0. 09259926 -0.202330048 0. 094807616 0. 185132290 0. 2807057
Table 11. Comparisons of umin With other authors for the classical problem.
Ref Re = 100 Re =00 -------emr —eeeeee- Re = 1000 ----------
Umin y Unin y Unin y
5 -0.21090 0. 4531 -0. 32726 0. 2813 -0.38289 0.1719
7 -0.213 0. 4578 -0. 327 0. 2797 -0. 387 0.1734
14 -0.2140424 0. 4581 - 0. 3885698 0.1717
Present -0.2140417 0. 45850 -0. 3287295 0. 27979 -0.3885721 0.17139
Table 12. Comparisons of v, With other authors for the classical problem.
Ref (TR 0 Re = 400--------  --mmeeeem- Re = 1000 ----------
Vimin X \iin X \iin X
5 -0. 24533 0. 8047 -0.44993 0. 8594 -0. 51550 0. 9063
14 - 0. 2538030 0. 8104 -0.5270771 0. 9092
Present - 0. 253804 0. 81006 - 0. 454058 0. 86182 -0.527056 0. 90967
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The Lid-Driven Square Cavity Flow: Numerical Solution with a 1024 x 1024 Grid

Table 13. Comparisons of vmax With other authors for the classical problem.

Ref Re = 100 L J Re = 1000 --------
Vmax X Vinax X Vinax X

5 0. 17527 0.2344 _ 0.30203 0.2266 _ 0.37095 0. 1563

14 0.1795728 0. 2370 0. 3769447 0. 1578

Present 0.179572814  0.23682  0.30383231  0.22510  0.3769471  0.15771

Conclusion

In this work, numerical solutions were obtainedléminar flow
inside a square cavity of which lid moves at vdeabelocity and
analytical solution is known (Shih, Tan and Hwah§89). Results
were presented for 42 variables of interegtig the 1024 x 1024
nodes grid. It was found that:

1. For all variables of interest, the discretizatierror estimated
(V) with Egs. (13) and (14), proposed here, is rédiam other
words,U/|E| > 1, where E is the true discretization error.

2. The use of multiple Richardson extrapolationsR@8j with Eq.
(12) reducedE between 1.6 x 103 and 3.8 x°®lfimes for
velocity profilesu andv, M andFs. This reduction was not so
effective for variablesVimin, Vimax Uminn FN and Y, Which
reductions were of 1.9, 2.0, 2.6, 4.6 and 75 timespectively.
For coordinate type variables, this procedure amggapply.

3. For 34 variables, the effective order valge) (is very close
(1.96 to 2.08) to the theoretical asymptotic ordpr) = 2
predicted a priori. For coordinate type variablps,seems to
tend towards unity. For other variablgsg, varies from 1.64 to
2.58, i.e., aroung,.

The main focus of this work was to solve the problef laminar
flow inside a square cavity of which lid moves atoamstant velocity
and analytical solution is unknown (Kawaguti, 19@urggraf,
1966; Rubin and Khosla, 1977; Benjamin and Den®y,91 Ghia,
Ghia and Shin, 1982). Results were presented fovatiables of
interest (), and their estimated discretization errdd$ ¢n a grid of
1024 x 1024 nodes and Reynolds numbers (Re) = 001,00, 400
and 1000. It was found that:

* Among all results of the sixteen works reportediterature and
cited here, those of Botella and Peyret (1998)paobably the
most accurate. However, considering the estimateor €U)
reported by Botella and Peyret (1998) and the &olee they
adopted in the iterative process, the results efptesent work
are probably more accurate than those of Botellh Bayret
(1998). Among all variables of interest compared @bles 8 to
13, the results of Botella and Peyret (1998) ambably more
accurate than those of the present work only ferftllowing
variables:vpi, for Re = 100 and 1000; ang, for Re = 1000.
There is a notable consistency among all resulthefpresent
work, comparing them with those of Botella and Rey1998):
the results of Botella and Peyret (1998) fall iesitie interval
comprised betweeq+ U of the results of the present work.

« For velocity profilesu andv, the apparent ordepy) varies from
1.76 to 2.34, with most of the results very cloge the
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