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The Lid-Driven Square Cavity Flow: 
Numerical Solution with a 1024 x 1024 
Grid 
The problem of flow inside a square cavity whose lid has constant velocity is solved. This 
problem is modeled by the Navier-Stokes equations. The numerical model is based on the 
finite volume method with numerical approximations of second-order accuracy and 
multiple Richardson extrapolations (MRE). The iterative process was repeated until the 
machine round-off error achievement. This work presents results for 42 variables of 
interest, and their discretization errors estimates, on the 1024 x 1024 nodes grid and the 
following Reynolds numbers: 0.01, 10, 100, 400 and 1000. These results are compared 
with sixteen sources in literature. The numerical solutions of this work are the most 
accurate obtained for this problem to date. The use of multiple Richardson extrapolations 
reduces the discretization error significantly. 
Keywords: discretization error, error estimate, CFD, Richardson extrapolation, finite 
volume method 
 
 
 
 
 
 
 
 

Introduction 
1This work addresses the classical problem (Kawaguti, 1961; 

Burggraf, 1966; Rubin and Khosla, 1977; Benjamin and Denny, 
1979; Ghia, Ghia and Shin, 1982) of laminar flow inside a square 
cavity of which lid moves at constant velocity: Fig. 1; where u and v 
are the components of the velocity vector in x and y directions, ρ 
and µ are fluid density and viscosity. This problem is widely 
employed to evaluate numerical methods and to validate codes for 
solving the Navier-Stokes equations (Botella and Peyret, 1998). In 
the works cited in Table 1, the problem was solved for 11 x 11 up to 
2048 x 2048 node grids, and for Reynolds numbers (Re) from zero 
to 21,000. 

 

 
Figure 1. Classical problem of the lid-driven squar e cavity flow. 

 
 
As can be seen in Table 1, several numerical methods have been 

used, including finite difference method (FDM), finite volume 
method (FVM), finite elements method (FEM), lattice Boltzmann 
(LB), and the spectral method (Spectral). In addition, a variety of 
mathematical formulations has been used, including stream function 
and vorticity (ψ-ω); stream function and velocity (ψ-V); lattice 
Boltzmann equation (LBE), and the Navier-Stokes equations (u-v-
p). The problem considered here is also known as “singular driven 
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cavity” (Botella and Peyret, 1998), because there are two 
discontinuities in the boundary condition of u, at lid corners: 0 in 
one side and 1 in another. In contrast, there is a problem called 
“regularized driven cavity” (Botella and Peyret, 1998), which does 
not present discontinuities. 

The main objective of this work is to present the most accurate 
numerical solutions found to date for the problem of “singular 
driven cavity” with Re = 0.01, 10, 100, 400 and 1000. To achieve 
this aim, we use the Navier-Stokes equations; the finite volume 
method; co-located arrangement of variables; segregated solution 
for the three conservation equations; numerical approximations of 
second-order accuracy; 1024 x 1024 control volumes uniform grid; 
the iterative process repeated until the machine round-off error 
achievement; double precision in calculations; and multiple 
Richardson extrapolations (Richardson, 1910). Solutions are 
presented for 42 variables of interest, which involve velocity 
profiles, mass flow rate, minimum value of the stream function, 
minimum and maximum velocities (and their coordinates), and wall 
forces on the fluid. 

Other objectives of this work are: (1) propose an error estimator 
for use with numerical solutions obtained through multiple 
Richardson extrapolations; (2) verify (Roache, 1998) if the proposed 
estimator provides reliable error estimates for a problem of which 
analytical solution is known (Shih, Tan and Hwang, 1989); (3) 
apply the proposed estimator to each of the 42 variables of interest 
and five values of Re, presenting the estimated discretization error 
for each numerical solution; (4) confirm the order of accuracy (pL) 
of the numerical solutions; and (5) compare the results with sixteen 
sources in literature. This work does not have as aim to present an 
optimized numerical model neither for CPU time nor for 
computational memory consumption. It is emphasized that the main 
objective is to provide the most accurate results to date for literature. 

Although there is extensive literature on the problem considered 
here, this work is justified by the following reasons: 

No work appears to have been developed to date to estimate the 
numerical error involved in the solution of each variable of interest 
(Uh in Table 2). This is important, however, in order to know the 
reliability of numerical solutions, allowing more careful 
comparisons to be made. Some authors have presented the solution 
variation for some variables for two or three grids; they, however, 
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did not estimate numerical errors with any discretization error 
estimator. 

Only Bruneau and Saad (2006) and Wright and Gaskell (1995) 
present solutions on grids as fine as those of the present work, but 
only for Re = 1000, few variables and without using multiple 
Richardson extrapolations. In Table 2, the column RE indicates 
whether the authors have used Richardson extrapolation or not; if 
the answer is positive, it is presented how many times it was used 
for each variable. In this work, it is going to be shown that RE 
reduces significantly the discretization error. 

Most authors have stopped their iterative process (Ui) based on 
the residue criterion (R) or on the variation of any variable (Ferziger 
and Peric, 1999), with the tolerance value between 1.0e-3 and 1.0e-
12. In the present work, the iterative process is taken until the 
machine round-off error achievement. 

In Table 2, “digits” represents the number of significant figures 
for each solution, which has the highest value in the presented work. 

In Table 2, pL is the theoretical accuracy of discretization error 
of the approximations employed by each author. In the present 
work, the practical value obtained for this order is shown, for each 
variable of interest, confirming or not the theoretical value. In the 
next sections, the following subjects are discussed: the mathematical 
and numerical models; the theory and equations used to calculate 
effective and apparent orders of error to perform multiple 
Richardson extrapolations and the discretization error estimator; the 
results for the problem with known analytical solution; the classical 
problem results; and conclusions of this work. 

 
 
 
 

 
 

Table 1. Author's formulation and grids for the cla ssical problem. 

Authors Ref. Formulation Re Method Grids 
Kawaguti (1961) 1 ψ-ω 0 – 64 FDM 11 x 11 
Burggraf (1966) 2 ψ-ω 0 – 700 FDM 11 x 11 – 51 x 51 
Rubin and Khosla (1977) 3 ψ-ω 100 & 1,000 FDM etc 17 x 17 – 128 x 128 
Benjamin and Denny (1979) 4 ψ-ω 1,000 – 10,000 FDM 61 x 61 – 151 x 151 
Ghia, Ghia and Shin (1982) 5 ψ-ω 100 – 10,000 FDM 129 x 129 & 257 x 257 
Schreiber and Keller (1983) 6 ψ-ω 1 – 10,000 FDM 121 x 121 – 180 x 180 
Vanka (1986) 7 u,v,p 100 – 5,000 FDM 41 x 41 – 321 x 321 
Hayase, Humphrey and Greif (1992) 8 u,v,p 100 – 10,000 FVM 10 x 10 – 80 x 80 
Nishida and Satofuka (1992) 9 ψ-ω 100 – 3,200 FDM 65 x 65 & 129 x 129 
Hou et al. (1995) 10 LBE 100 – 7,500 LB 256 x 256 
Wright and Gaskell (1995) 11 u,v,p 100 & 1,000 FVM 1024 x 1024 
Goyon (1996) 12  1,000 FDM 129 x 129 
Barragy and Carey (1997) 13 ψ-ω 1.e-4 – 10,000 FEM 257 x 257 
Botella and Peyret (1998) 14 u,v,p 100 & 1,000 Spectral 160 
Zhang (2003) 15 ψ-ω 100 – 7,500 FDM 17 x 17 – 129 x 129 
Erturk, Corke and Gökçöl (2005) 16 ψ-ω 1,000 – 21,000 FDM 401 x 401 – 601 x 601 
Gupta and Kalita (2005) 17 ψ-V 100 – 10,000 FDM 41 x 41 – 161 x 161 
Bruneau and Saad (2006) 18 u,v,p 1,000 – 10,000 FDM 128 x 128 – 2048 x 2048 
This work (2008) 19 u,v,p 1.0e-2 – 1,000 FVM 2 x 2 – 1024 x 1024 

 
 

Table 2. Author's numerical errors for the classica l problem. 

Ref. p Precision Ui digits Uh RE 
1 2 ? ? 5 ? No 
2 2 single R: 5.0e-6 4 ? No 
3 2 ? ? 3-4 ? No 
4 2 ? ? 6 ? Yes = 1 
5 2 ? R: 1.0e-4 5 ? No 
6 2 ? ? 5 ? Yes = 3 
7 2 ? R: 1.0e-3 4 ? No 
8 2 ? R: 1.0e-5 ? ? No 
9 2-10 ? R: 1.0e-8 6 ? No 
10 1 single ? 4 8.7e-3 No 
11 2 ? R: 1.0e-10 6 ? No 
12 2 ? ? 4 ? No 
13 8 ? R: 1.0e-6 5-7 1.0e-5 No 
14 160 double R: 1.0e-8 7 1.0e-6 No 
15 4 double ∆ψ,∆ω: 1.0e-4 6 ? No 
16 2 ? R: 1.0e-10 6 ? Yes = 2 
17 2 ? ∆ψ: 5.0e-7 3 ? No 
18 3 ? 1.0e-12 5 ? No 
19 2 double machine round-off 6-10 7.3e-6 to 3.7e-12 Yes = 6-9 
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Nomenclature 

E = true discretization error 
F = viscous drag force of the cavity’s lid or wall on the fluid 

in x direction (N) 
h = size of the control volumes (m) 
m = number of Richardson extrapolation 
M = mass flow rate (kg/s) 
nm = number of grids 
p = pressure (Pa) 
pE  = effective order of the discretization error 
pL  = asymptotic order of the discretization error 
pU  = apparent order of the discretization error 
r  = grid refinement ratio 
Re  = Reynolds number 
S = source term in Eq. (3) 
u = component of the velocity vector in the x direction (m/s) 
U = estimated discretization error 
v = component of the velocity vector in the y direction (m/s) 
x = Cartesian coordinate in the horizontal direction (m) 
y = Cartesian coordinate in the vertical direction (m) 
z = depth of the cavity (m) 

Greek symbols 

φ = numerical solution of the variable of interest 
Φ = exact analytical solution of the variable of interest 
µ = viscosity (Pa.s) 
ρ = density (kg/m3) 
ψ = stream function (m2/s) 

Subscripts 

1 fine grid 
2 coarse grid 
3 supercoarse grid 
 

Mathematical Model  

The mathematical model of the problem consists of the 
Conservation of Mass and the Conservation of Momentum laws (the 
Navier-Stokes equations). Simplifications considered for the 
problem are: steady state; two-dimensional laminar flow in x and y 
directions; incompressible fluid; µ as constant; and absence of other 
effects. Thus, the resulting mathematical model is: 
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where p is the pressure and S is a source term, which is null at the 
classical problem (without known analytical solution) and given by 
Shih, Tan and Hwang (1989) in the case of a manufactured solution 
problem. The domain is a square of unitary side with the origin of 
the system of coordinates, as shown in Fig. 1. 

The variables of interest of the problem involve the primitive 
variables themselves (u and v) and integrations of u and v, which 
are: 

Profile of u in x = ½ at 15 selected points of y. 

Profile of v in y = ½ at 15 selected points of x. 
The minimum value (umin) of profile of u in x = ½ and its 

respective y coordinate. 
The minimum (vmin) and the maximum (vmax) values of profile of 

v in y = ½ and their respective x coordinates. 
The minimum value of the stream function (ψmin) and its 

coordinates x and y.  
The mass flow rate (M) that flows through y = ½ line between x = 0 

and ½ , i.e., 
 

∫ =ρ= 2
1

2
1

0
dxzvM y

 (4) 

 
where z is the cavity depth, which is considered unitary. 

The viscous drag force (F) in direction x (Hou et al., 1995) is the 
force exerted by the fluid boundary surface, calculated by 
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where Fn is F in y = 1 (cavity movable lid) and Fs is F in y = 0 (the 
lower cavity wall). 

Numerical Model  

Briefly, the numerical model adopted to solve the mathematical 
model described by Eqs. (1) to (3) has the following characteristics: 
(1) finite volume method (Ferziger and Peric, 1999); (2) central 
difference scheme (CDS) (Ferziger and Peric, 1999) for diffusive 
and pressure terms; (3) CDS scheme with deferred correction 
(Ferziger and Peric, 1999; Khosla and Rubin, 1974) on upstream 
difference scheme (UDS) for advective terms; (4) Eqs. (1) to (3) are 
solved sequentially using the MSI (Modified Strongly Implicit) 
method (Schneider and Zedan, 1981); (5) SIMPLEC (Semi IMPlicit 
Linked Equations Consistent) method (Van Doormaal and Raithby, 
1984) to treat the pressure-velocity coupling; (6) uniform grids; (7) 
the boundary conditions for u and v, Fig. 1, are applied employing 
ghost volumes (Ferziger and Peric, 1999); (8) Eqs. (1) to (3) are 
written for unsteady state, aiming the use of time as a relaxation 
parameter in the iterative solution process of the discretized 
mathematical model; and (9) a co-located arrangement of variables 
is used (Marchi and Maliska, 1994). This numerical model does not 
require boundary conditions for pressure (Ferziger and Peric, 1999). 

The numerical solution of the variables of interest is obtained as 
follows: 
• The numerical solution of the profile of u in x = ½ is obtained 

by the mathematical average of u stored at the east face of the 
two adjacent volumes to each desired y coordinate. This u at 
each control volume east face is that one of the co-located 
arrangement of variables of Marchi and Maliska (1994). This is 
necessary because the number of volumes used in each 
coordinate direction is even, so that no control volume center 
coincides with the line x = ½.  

• The numerical solution of the profile of v in y = ½ is obtained 
analogously to the profile of u, through the mathematical 
average of v stored at the north face of the two adjacent volumes 
to each desired x coordinate. 

• umin is the minimum value of the solution of u stored at east 
faces among all control volumes of the grid with x = ½. And its 
y coordinate is the one in the east face center of the volume 
corresponding to umin.   

• vmin and vmax are the minimum and the maximum values of the 
solution of v stored at the north face among all control volumes 
of the grid with y = ½. And their x coordinates are the ones in 
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the north face center of the volumes corresponding to vmin and 
vmax.  

• For each vertical line, numerical solution of the stream function 
field (ψ) is obtained through integration of the product of u, 
stored at each control volume east face, by the height of each 
control volume (∆y), starting from the lower wall, in y = 0. The 
vertical lines coincide with x coordinates of the faces of each 
control volume. The numerical integration used here is based on 
the rectangular rule (Kreyszig, 1999). The minimum value of the 
stream function (ψmin) is obtained directly from the ψ field. 

• The numerical solution of the mass flow rate (M) defined by Eq. 
(4) is obtained by numerical integration employing the 
rectangular rule, through 
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where i represents the number of the control volume in x 
direction; i = 1 is the real control volume at the left-hand wall of 
the cavity; Nx is the total number of real control volumes in x 
direction; ∆x is the width of each control volume; and vn is v at 
the north face of each control volume. 

• The numerical solution of the force (Fn), which is defined by 
Eq. (5), is obtained with one upstream point (UDS) (Ferziger 
and Peric, 1999) and the numerical integration used here is the 
rectangular rule, which results in  
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where uT,i is the velocity of the cavity lid at the x coordinate of 
each control volume i center; and 

YNiu , is the nodal velocity u at 

each real i control volume center, whose volume north face 
coincides with the cavity lid. 

• The numerical solution of Fs, defined by Eq. (5), is obtained 
analogously to Fn but with one point downstream (DDS) 
(Ferziger and Peric, 1999), resulting in 
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where ui,1 is the nodal velocity u at each real i control volume 
center, whose volume south face coincides with the cavity lower 
wall, whose u = 0. 
 
The Stokes 1.5 computational code was implemented in Fortran 

95, using Intel Fortran 9.1 compiler and double precision. The 
iterative process is repeated until the machine round-off error 
achievement. This is verified by monitoring the l1-norm (Kreyszig, 
1999), along the iterations, of the residue (R) sum of the three 
solved systems of Eqs. (1) to (3). The residue sum value of the three 
systems, in each outer iteration, is nondimensionalized by its value 
at the end of the first outer iteration (R1). 

Discretization Error 

The numerical error (E) can be defined as the difference 
between the exact analytical solution (Φ) of a variable of interest 
and its numerical solution (φ), i.e., 

 

φ−Φ=φ)(E  (9) 
 

The sources that cause numerical error can be split into four 
types (Marchi and Silva, 2002): truncation, iteration, round-off, and 
programming errors. When other sources of error are inexistent or 
much smaller in relation to truncation ones, the numerical error can 
also be called as discretization error. 

Considering the numerical model described in the previous 
section, the predicted asymptotic order (pL) of the discretization 
error is equal to two (Ferziger and Peric, 1999; Schneider, 2007) for 
all variables of interest, except for x and y coordinates of ψmin, umin, 
vmin and vmax, of which pL are unknown. In literature (Roache, 1998, 
1994), pL is also called formal order or accuracy order. 

In theory (Marchi, 2001), it is expected that pE (effective order) 
and pU (apparent order) → pL for h → 0. In other words, it is 
expected that the practical orders (pE and pU), which are calculated 
with the numerical solutions of each variable of interest, tend toward 
the asymptotic order (pL), foreseen a priori, when the size of the 
control volumes (h) tends toward zero. 

The effective order (pE) of the true error is defined by (Marchi, 
2001) 
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where E(φ1) and E(φ2) are true discretization errors of the numerical 
solutions φ1 and φ2 obtained, respectively, with fine (h1) and coarse 
(h2) grids; h = size of the control volumes (in this work, h = ∆x = 
∆y); and r = h2/h1 (grid refinement ratio). 

According to Eq. (10), the effective order (pE) is function of the 
true discretization error of a variable of interest. Thus, for problems 
which analytical solution is known, it can be used to verify a 
posteriori if, as h → 0, one obtains pL. When E is unknown, (pE) 
cannot be calculated. In this case, one can use the concept of 
observed or apparent order (pU) defined by (De Vahl Davis, 1983; 
Marchi and Silva, 2002) 
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where φ1, φ2 and φ3 = numerical solutions obtained, respectively, 
with fine (h1), coarse (h2) and supercoarse (h3) grids, and r =  h3/h2 = 
h2/h1. 

Some studies (Benjamin and Denny, 1979; Schreiber and Keller, 
1983; Erturk, Corke and Gökçöl, 2005) achieved excellent results 
when employing multiple Richardson extrapolations (MRE) to 
reduce the discretization error of ψmin. However, these authors used 
this process with at most four grids, resulting in up to three 
extrapolations for the finest grid they used. In the present work, this 
procedure was utilized with up to ten grids, resulting in up to nine 
extrapolations for the finest grid used (1024 x 1024), and applied to 
almost all variables of interest. This was done by means of 
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where φ1,m∞ is the numerical solution of the variable of interest (φ) 
with m extrapolations on the fine grid (h1); φ1,(m-1)∞ and φ2,(m-1)∞ are 
numerical solutions with (m-1) extrapolations on the fine (h1) and 
coarse (h2) grids; r = h2/h1 (grid refinement ratio); m = number of 
Richardson extrapolations, with m = 0 being the numerical solution 
obtained in grid h without any extrapolation; nm = number of 
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different grids with numerical solutions of φ without any 
extrapolation; pV(m) = true orders (Marchi and Silva, 2002) of the 
discretization error, with pV(1) = pL. For the numerical model used 
in this work, pV = 2, 4, 6 ... for all variables of interest, except for x 
and y coordinates of ψmin, umin, vmin and vmax, of which values of pV 
are unknown. 

In this work, Eq. (12) is applied to all variables of interest to 
reduce the discretization error, except to x and y coordinates of ψmin, 
umin, vmin and vmax, of which results are the ones obtained with the 
finest grid, of 1024 x 1024 nodes, without any extrapolation. In 
theory, the accuracy order of the results of u(0.5;05), v(0.5;0.5), M, 
Fs, Fn, vmin, vmax, umin and ψmin is 20, since they are obtained with 
nine extrapolations through Eq. (12). And, in the case of the profiles 
of u and v, it is 14, because they are obtained with six 
extrapolations. 

In practical situations, a numerical solution is obtained because 
the analytical solution is unknown. Hence, the true value of the 
numerical error is also unknown. Therefore, the numerical error 
must be estimated. The estimated discretization error (U) of 

∞−φ )1(,1 nm , i.e., of the numerical solution with the highest possible 

number of extrapolations in the finest grid, will be considered equal 
to 

 

∞−∞−∞− φ−φ=φ )2(,2)2(,1)1(,1 )( nmnmnmU  (13) 

 
which is the module of the difference with the highest number of 
extrapolations that can be calculated between the two finest grids. In 
the case of the x and y coordinates of ψmin, umin, vmin and vmax, one 
adopts 

 

51251210241024),( xxyxU φ−φ=  (14) 

 
where φ1024x1024 and φ512x512 are the numerical solutions obtained 
without extrapolation on 1024 x 1024 and 512 x 512 nodes grids.  

Literature (Roache, 1998) offers several discretization error 
estimators. The use of Eqs. (13) and (14) is justified based on an 
analysis of the problem presented in the next section. This problem 
is similar to the classical problem of square cavity with movable lid, 
but its analytical solution is known. Thus, it was possible to evaluate 
the performance of Eqs. (13) and (14), which resulted in reliable 
error estimates, i.e., U/|E| ≥ 1 for all variables of interest of the 
present work. 

Problem with Known Analytical Solution 

There is a variant of the classical problem of which analytical 
solution is known and is given by Shih, Tan and Hwang (1989). In 
this case, the source term (S) of Eq. (3) is different from zero, and is 

presented in Shih, Tan and Hwang (1989). The analytical solution of 
u and v is (Shih, Tan and Hwang, 1989) 

 

)24()2(8),( 3234 yyxxxyxu −+−=  (15) 
 

)()264(8),( 2423 yyxxxyxv −+−−=  (16) 
 

The lid velocity varies with x, according to Eq. (15) for y = 1. The 
other boundary conditions are shown in Fig. 1. The Reynolds 
number (Re) is one for Eq. (17). 

All numerical solutions in this work were obtained with ten 
different grids: 2 x 2, 4 x 4, 8 x 8 and so on up to 1024 x 1024 real 
control volumes. All simulations of this study were made in a Xeon 
Quad Core X5355 Intel processor, 2.66 GHz, using one core. The 
maximum RAM memory employed was 242 MB, for the 
simulations with 1024 x 1024 nodes grid. To obtain the numerical 
solutions, the initial estimate used for u, v and p was the analytical 
one for the problem given, respectively, by Eqs. (15) and (16) and 
by Shih, Tan and Hwang (1989). 

The column named as Shih, in Table 3, presents the main 
parameters of the iterative process involved in the problem solution 
for the 1024 x 1024 nodes grid. At this table: ∆t is the time interval 
used to further the iterative process; Itmax is the total number of 
outer iterations made; It(Eπ) is the approximate number of outer 
iterations made when the round-off error level is achieved; R1 is the 
l1-norm of the residue sum of the three solved systems after the first 
iteration; Rf/R1 is the l1-norm of the residue sum of the three solved 
systems at Itmax, made dimensionless based on the first iteration, 
showing how much the residue was reduced along the iterative 
process; Alg is the number of significant figures of the solution 
which does not have round-off errors after Itmax iterations; and 
tCPU is the CPU time needed to make Itmax iterations. The typical 
behavior of the residue drop along the iterations and the machine 
round-off error achievement are shown in Fig. 2 for the 256 x 256 
nodes grid. In that figure, Shih denotes the problem from this 
section, and Ghia the problem treated in the next section. 

Ideally, for the model used in this work, the value of the stream 
function (ψ) in y = 1 should be null for each of the 1024 control 
volumes at the cavity lid. Its absolute maximum value, which 
represents the mass conservation error, resulted in 1.4 x 10-14; which 
is very near the null value and is at the level of double precision 
used in this work. 

The velocity profiles in the two directions in the cavity center 
are shown in Fig. 3. The congruence between the analytical solution 
of Shih, Tan and Hwang (1989) and the numerical solution of the 
present work, with the 1024 x 1024 grid, can be considered 
excellent. 

 

 
 

Table 3. Parameters of the iterative process for th e 1024 x 1024 nodes grid. 

Shih ----------------------------- The classical problem --------------------------------- Variable 
Re = 1 Re = 0.01 Re = 10 Re = 100 Re = 400 Re = 1000 

∆t (s) 5.0e-4 1.0e-5 0.02 0.05 0.5 0.5 
Itmax 60,000 200,000 380,000 100,000 240,000 100,000 
It(Eπ) 45,000 150,200 362,700 80,900 202,300 85,300 

R1 3.8e-01 1.0e+04 1.6e+02 1.2e+02 1.2e+02 1.2e+02 
Rf/R1 2.8e-10 9.5e-13 5.9e-14 8.1e-15 3.3e-15 1.6e-15 
Alg 7(v) e 12 10 12 12 13 12 

tCPU 1d 9h 4d 10h 9d 1h 2d 9h 5d 16h 2d 12h 
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Figure 2. Residue versus iterations for the 256 x 2 56 nodes grid. 

 

Table 4. Results for the problem of Shih, Tan and H wang (1989). 

Variable pE φ E U/|E| 

ψmin 1.956996 -1.2500000e-1  2.0e-9 2.4e+2 

x(ψmin) Ind.  5.0e-1  0 Ind. 

y(ψmin) 0  7.0703e-1  7.6e-5 6.4 

M 2.000252  9.3749999997e-2  2.7e-12 7.4 

Fs 1.999764  5.333333334e-1 -8.2e-11 1.8e+1 

Fn 1.638635  2.666678e+0 -1.1e-5 3.1 

umin 2.082329 -2.721659e-1  3.4e-7 1.1e+1 

y(umin) 1.071713  4.0869e-1 -4.4e-4 1.1 

vmin 2.583567 -2.886756e-1  4.2e-7 2.6 

x(vmin) 2.545598  7.8857e-1  1.0e-4 4.9 

vmax 2.566173  2.886756e-1 -4.2e-7 2.6 

x(vmax) 2.545598  2.1143e-1 -1.0e-4 4.9 

u(0.5;0.0625) 2.000029 -6.2011718741e-2 -8.5e-12 7.3 

u(0.5;0.125) 2.000029 -1.21093749988e-1 -1.2e-11 7.3 

u(0.5;0.1875) 2.000077 -1.74316406238e-1 -1.2e-11 7.4 

u(0.5;0.25) 1.999877 -2.18749999990e-1 -9.8e-12 7.3 

u(0.5;0.3125) 1.999951 -2.51464843745e-1 -5.4e-12 7.6 

u(0.5;0.375) 1.999963 -2.695312499997e-1 -2.8e-13 1.8e+1 

u(0.5;0.4375) 1.999966 -2.70019531254e-1  4.0e-12 6.2 

u(0.5;0.5) 1.999965 -2.50000000006e-1  5.9e-12 6.6 

u(0.5;0.5625) 1.999963 -2.06542968755e-1  4.6e-12 6.7 

u(0.5;0.625) 1.999960 -1.367187500006e-1  6.0e-13 6.7 

u(0.5;0.6875) 1.999961 -3.7597656248e-2 -2.0e-12 6.5 

u(0.5;0.75) 1.999970  9.3749999998e-2  2.0e-12 9.0 

u(0.5;0.8125) 1.999986  2.60253906243e-1  7.2e-12 7.8 

u(0.5;0.875) 2.000027  4.64843749987e-1  1.3e-11 7.5 

u(0.5;0.9375) 1.995103  7.10449218737e-1  1.3e-11 7.0 

v(0.0625;0.5) 1.999920  1.53808593744e-1  6.2e-12 7.1 

v(0.125;0.5) 1.999929  2.4609374999e-1  1.4e-11 7.1 

v(0.1875;0.5) 1.999935  2.8564453123e-1  1.5e-11 7.3 

v(0.25;0.5) 1.999942  2.81249999990e-1  1.0e-11 7.6 

v(0.3125;0.5) 1.999952  2.41699218747e-1  3.3e-12 7.6 

v(0.375;0.5) 1.999964  1.75781250002e-1 -2.3e-12 6.5 

v(0.4375;0.5) 1.999979  9.2285156254e-2 -3.7e-12 6.8 

v(0.5;0.5) 1.999762  2.3e-14 -2.3e-14 1.0e+1 

v(0.5625;0.5) 1.999963 -9.2285156254e-2  3.6e-12 6.9 

v(0.625;0.5) 1.999959 -1.75781250002e-1  2.1e-12 6.2 

v(0.6875;0.5) 1.999952 -2.41699218746e-1 -3.5e-12 7.7 

v(0.75;0.5) 1.999944 -2.81249999989e-1 -1.1e-11 7.0 

v(0.8125;0.5) 1.999938 -2.8564453123e-1 -1.5e-11 7.3 

v(0.875;0.5) 1.999934 -2.4609374999e-1 -1.4e-11 7.1 

v(0.9375;0.5) 1.999925 -1.53808593744e-1 -5.9e-12 7.1 
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Figure 3. u at x = ½ and v at y = ½ for the problem  of Shih, Tan and 
Hwang (1989). 

 
 
For each variable of interest, Tab. 4 presents: (a) the effective 

order (pE) calculated by Eq. (10), based on the true discretization 
error (E) of the numerical solutions (φ) without extrapolation, on the 
1024 x 1024 and 512 x 512 nodes grids, i.e., with r = 2; (b) the 
numerical solution (φ) on the 1024 x 1024 nodes grid, with 
extrapolation calculated by Eq. (12), except for x and y variables for 
which none extrapolation was employed; (c) the value of E 
calculated by Eq. (9); and (d) the ratio of the estimated 
discretization error (U) to the module of E. In this table and in the 
following ones, the notation 1.0e-3 and Ind. represent, respectively, 
1.0 x 10-3 and indefinite. 

In Tab. 4, it can be noted that for the velocity profiles of u and 
v, pE varies from 1.995 to 2.000, confirming the value of pL = 2, 
which was predicted a priori. For coordinate type variables, pE is 
indefinite or assumes values of null and close to unity or to two. For 
other variables, pE varies from 1.639 to 2.584, i.e., around pL. 

Table 4 indicates, for all variables of interest, that U/|E| ≥ 1 for 
U calculated by Eqs. (13) or (14) depending on the variable. In other 
words, the analytical solution is contained within the interval 
comprised by φ ± U. For the velocity profiles u and v, the U/|E| ratio 
varies between 6.2 and 18. For coordinate type variables, this ratio 
varies from 1.1 to 6.4. For other variables, the ratio varies between 
2.6 and 240. 

For the velocity profiles u and v, M and Fs, the |Eh/E| ratio 
varies from 1.6 x 103 to 3.8 x 106. This ratio represents the 
extension to which the discretization error of the solution without 
extrapolation (Eh), obtained on the 1024 x 1024 grid, is reduced 
with the use of multiple extrapolations through Eq. (12). This 
reduction was not so effective for the variables vmin, vmax, umin, Fn 
and ψmin, which reductions were, respectively, of 1.9, 2.0, 2.6, 4.6 
and 75. 

The magnitude of E and U may vary considerably along the 
velocity profiles. The ratio between the maximum and the minimum 
values of E is 652, and for U it is 478. 

Summarizing, in this section, for a two-dimensional flow 
problem with known analytical solution, we showed: (1) the 
importance of using multiple extrapolations to reduce the true 
discretization error (E); and (2) the discretization error estimated 
(U) with Eq. (13) or (14) reliability, i.e., U/|E| ≥ 1. In the next 
section, the same procedure is applied to the classical cavity flow 
problem of which analytical solution is unknown. 

 

Classical Problem with Unknown Analytical Solution 

In the classical problem (Kawaguti, 1961; Burggraf, 1966; 
Rubin and Khosla, 1977; Benjamin and Denny, 1979; Ghia, Ghia 
and Shin, 1982) of laminar flow inside a square cavity, the lid 
velocity (UT) is constant and has unitary value. The other boundary 
conditions are shown in Fig. 1. At lid corners, u = 0 on one side and 
u = 1 on the other. The source term (S) of Eq. (3) is null. The 
Reynolds number (Re) is defined by 

 

µ
ρ= L

UTRe  (17) 

 
where L = 1 m, dimension of the side of the square cavity; ρ = 1 
kg/m3, density; and µ is the viscosity in Pa.s, obtained from Eq. (17) 
for a given Re. Numerical solutions were obtained for Re = 0.01, 10, 
100, 400 and 1000. The initial estimate used was u = v = p = 0.  

Table 3 shows the main parameters of the iterative process 
involved in the problem solution achievement for the 1024 x 1024 
nodes grid. It is noted that the typical behavior of the residue drop 
along iterations and the achievement of the machine round-off error 
are shown in Fig. 2 for the 256 x 256 nodes grid. For these five 
values of Re and the 1024 x 1024 grid, CPU time varied from 2 
days and 9 hours to 9 days and 1 hour. The l1-norm of the residue sum 
of the three solved systems varied from 1.6 x 10-15 to 9.5 x 10-13. The 
obtained solutions present from 10 to 13 significant figures without 
machine round-off error. 

The stream function value (ψ) in y = 1, which should be null for 
each of the 1024 control volumes at the cavity lid, resulted in the 
following maximum values: 5.9 x 10-16, 1.7 x 10-15, 5.4 x 10-16, 1.0 x 
10-15 and 2.3 x 10-15, respectively, for Re = 0.01, 10, 100, 400 and 
1000. These values are very close to the null one, being at the level 
of double precision employed in this work. 

The velocity profiles in the two directions at cavity center are 
shown in Fig. 4. The congruence between the numerical solutions of 
Ghia, Ghia and Shin (1982), Botella and Peyret (1998) and Bruneau 
and Saad (2006), and the numerical solution of this work using the 
1024 x 1024 grid can be considered very good. 
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Figure 4. u at x = ½ and v at y = ½ for the classic al problem. 

 

Table 5. Apparent order (pU) for the classical prob lem. 

Variable Re = 0.01 Re = 10 Re = 100 Re = 400 Re = 1000 

ψmin  1.813490  1.329414  1.831320 2.001399 1.995930 

x(ψmin)  Ind.  Ind.  Ind. Ind. Ind. 

y(ψmin)  Ind.  Ind.  Ind. Ind. Ind. 

M  2.034916  2.028581  1.996948 2.006947 2.002034 
Fs  1.992172  1.994006  2.029269 1.332492 1.929611 

Fn -1.59e-6 -9.89e-5 -3.50e-4 5.21e-3 3.06e-2 
umin  2.181172  2.066232  2.075970 2.031114 1.997271 
y(umin)  1  1  Ind. Ind. Ind. 

vmin  1.621232  2.190969  1.101600 2.143075 2.125597 
x(vmin)  Ind.  1  Ind. Ind. 1 

vmax  1.634400  1.868090  1.997206 2.016770 1.972962 
x(vmax)  Ind.  Ind.  Ind. Ind. Ind. 

u(0.5;0.0625)  1.960768  1.968367  2.147456 1.984548 1.976726 
u(0.5;0.125)  1.958143  1.964883  1.868924 1.999443 1.993667 

u(0.5;0.1875)  1.923552  1.931919  1.978974 2.004525 2.005013 
u(0.5;0.25)  2.178329  2.126091  1.993379 2.007160 2.015676 

u(0.5;0.3125)  2.031881  2.026274  1.998071 2.009989 2.014781 
u(0.5;0.375)  2.015371  2.013097  2.000054 2.014118 2.017440 
u(0.5;0.4375)  2.008997  2.007837  2.000902 2.020004 2.027410 

u(0.5;0.5)  2.005441  2.004812  2.000935 2.028634 2.071716 
u(0.5;0.5625)  2.002936  2.002602  1.999763 1.988412 1.932956 

u(0.5;0.625)  2.000757  2.000613  1.995031 2.003845 1.981615 
u(0.5;0.6875)  1.998272  1.998354  2.085979 2.006704 1.991411 

u(0.5;0.75)  1.993929  1.994724  2.004496 2.007500 1.996045 
u(0.5;0.8125)  1.976978  1.980210  1.996234 2.007477 1.999568 

u(0.5;0.875)  2.057222  2.046188  1.986320 2.007307 2.002394 
u(0.5;0.9375)  2.019786  2.017118  1.986999 2.009975 2.010322 

v(0.0625;0.5)  2.218522  2.029222  1.990425 2.004249 2.005623 
v(0.125;0.5)  2.025451  2.012204  1.991731 2.005891 2.004193 
v(0.1875;0.5)  2.011352  2.007024  1.993743 2.006560 2.003540 

v(0.25;0.5)  2.006277  2.004850  1.996269 2.007214 2.000912 
v(0.3125;0.5)  2.003755  2.004056  1.999362 2.007830 1.996139 

v(0.375;0.5)  2.002376  2.004485  2.003797 2.007450 1.991814 
v(0.4375;0.5)  2.001669  2.008224  2.014244 1.901847 1.978584 

v(0.5;0.5)  1.973113  1.972879  1.759938 2.013626 2.345369 
v(0.5625;0.5)  2.001658  1.996774  1.981704 2.010731 2.027308 

v(0.625;0.5)  2.002371  1.999829  1.992687 2.008691 2.015160 
v(0.6875;0.5)  2.003753  2.002233  1.997319 2.007301 2.010284 
v(0.75;0.5)  2.006278  2.005644  2.000465 2.005482 2.006818 

v(0.8125;0.5)  2.011358  2.012787  2.003962 2.003772 2.009697 
v(0.875;0.5)  2.025481  2.043456  2.080131 2.007310 2.004484 

v(0.9375;0.5)  2.220438  1.919401  1.988282 2.002781 1.987050 
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Table 5 presents the apparent order (pU) for Re = 0.01, 10, 100, 
400 and 1000. This order was calculated using Eq. (11), based on the 
numerical solutions (φ) of each variable of interest, without 
extrapolation, on the 1024 x 1024, 512 x 512 and 256 x 256 nodes 
grids, i.e., with r = 2. For the u and v velocity profiles, pU varies from 
1.760 to 2.345, with most results very close to the value of pL = 2, 
which was predicted a priori. For coordinate type variables, pU is 
indefinite or assumes a unitary value. For other variables, pU can differ 
substantially from pL, varying from 1.102 to 2.191. 

An unexpected behavior of pU, shown in Table 5, occurred for the 
variable Fn. For all five values of Re, pU varies between -3.50 x 10-4 
and 3.06 x 10-2. Based on pU versus h curves, it was found that pU → 0 
for h → 0. This means that the value of Fn diverges with grid 
refinement. In Nie, Robbins and Chen (2006), for the same problem 
studied in this work, it was shown that Fn cannot be obtained solely 
through continuum mechanics, i.e., with the Navier-Stokes equations. 
It is also necessary to consider the movement on microscopic scale. 
This problem is due to the discontinuity existing in the boundary 

condition of u, at lid corners: 0 on one side and 1 on the other. In 
Bruneau and Saad (2006), two other variables were found to diverge 
when h → 0, due to the discontinuity existing in the boundary 
condition of u. It should be noted that for Fs: (a) in all five values of 
Re, its value converges to h → 0; (b) it is calculated with the same 
types of numerical approximations as Fn; (c) its pU varies from 
1.322 to 2.029; and (d) its calculation does not involve 
discontinuities. 

Table 6 presents, for Re = 0.01, 10, 100, 400 and 1000, the 
numerical solution (φ) of each variable of interest. In the case of 
coordinate type variables, the solution is presented without 
extrapolations, obtained on the 1024 x 1024 nodes grid. For the 
remaining variables, the solution is the one obtained on the 1024 x 
1024 nodes grid with extrapolations through Eq. (12). No results are 
shown for Fn due to its divergence. The number of significant 
figures presented for each variable is defined by its respective U 
value from Table 7. 

 

Table 6. Numerical solution ( φφφφ) for the classical problem. 

Variable Re = 0.01 Re = 10 Re = 100 Re = 400 Re = 1000 

ψmin -1.0007622e-1 -1.001132e-1 -1.035212e-1 -1.1398887e-1 -1.18936708e-1 

x(ψmin)  5.0000e-1  5.1660e-1  6.1621e-1  5.5371e-1  5.3125e-1 

y(ψmin)  7.6465e-1  7.6465e-1  7.3730e-1  6.0547e-1  5.6543e-1 

M  5.89511561e-2  5.89995617e-2  6.6547335e-2  1.06628389e-1  1.1651428e-1 

Fs  3.20058670e+1  3.19974769e-2  3.2679321e-3  1.1943510e-3  7.980404e-4 

umin -2.077556e-1 -2.075765e-1 -2.140417e-1 -3.287295e-1 -3.885721e-1 

y(umin)  5.3564e-1  5.3467e-1  4.5850e-1  2.7979e-1  1.7139e-1 

vmin -1.844491e-1 -1.885062e-1 -2.53804e-1 -4.54058e-1 -5.27056e-1 

x(vmin)  7.9053e-1  7.9346e-1  8.1006e-1  8.6182e-1  9.0967e-1 

vmax  1.844415e-1  1.809117e-1  1.79572814e-1  3.0383231e-1  3.769471e-1 

x(vmax)  2.0947e-1  2.1240e-1  2.3682e-1  2.2510e-1  1.5771e-1 

u(0.5;0.0625) -3.85275436e-2 -3.85425800e-2 -4.1974991e-2 -9.259926e-2 -2.02330048e-1 

u(0.5;0.125) -6.9584425e-2 -6.96238561e-2 -7.7125399e-2 -1.78748051e-1 -3.478451e-1 

u(0.5;0.1875) -9.6906717e-2 -9.6983962e-2 -1.09816214e-1 -2.6391720e-1 -3.844094e-1 

u(0.5;0.25) -1.22595555e-1 -1.22721979e-1 -1.41930064e-1 -3.2122908e-1 -3.189461e-1 

u(0.5;0.3125) -1.47461728e-1 -1.47636199e-1 -1.72712391e-1 -3.2025109e-1 -2.456937e-1 

u(0.5;0.375) -1.71067124e-1 -1.71260757e-1 -1.98470859e-1 -2.6630635e-1 -1.837321e-1 

u(0.5;0.4375) -1.91535923e-1 -1.91677043e-1 -2.12962392e-1 -1.9073056e-1 -1.2341046e-1 

u(0.5;0.5) -2.05191715e-1 -2.05164738e-1 -2.091491418e-1 -1.15053628e-1 -6.205613e-2 

u(0.5;0.5625) -2.06089397e-1 -2.05770198e-1 -1.82080595e-1 -4.2568947e-2  5.6180e-4 

u(0.5;0.625) -1.85581148e-1 -1.84928116e-1 -1.31256301e-1  3.024302e-2  6.5248742e-2 

u(0.5;0.6875) -1.322092275e-1 -1.313892353e-1 -6.0245594e-2  1.0545601e-1  1.3357257e-1 

u(0.5;0.75) -3.2443684e-2 -3.1879308e-2  2.7874448e-2  1.8130685e-1  2.0791461e-1 

u(0.5;0.8125)  1.27054983e-1  1.26912095e-1  1.40425325e-1  2.5220384e-1  2.884424e-1 

u(0.5;0.875)  3.55228331e-1  3.54430364e-1  3.1055709e-1  3.1682969e-1  3.625454e-1 

u(0.5;0.9375)  6.51176326e-1  6.50529292e-1  5.97466694e-1  4.69580199e-1  4.229321e-1 

v(0.0625;0.5)  9.4572847e-2  9.2970121e-2  9.4807616e-2  1.85132290e-1  2.807057e-1 

v(0.125;0.5)  1.55984965e-1  1.52547843e-1  1.4924300e-1  2.6225126e-1  3.650418e-1 

v(0.1875;0.5)  1.82641889e-1  1.78781456e-1  1.74342933e-1  2.9747923e-1  3.678527e-1 

v(0.25;0.5)  1.78849493e-1  1.76415100e-1  1.79243328e-1  3.0096003e-1  3.0710428e-1 

v(0.3125;0.5)  1.51784706e-1  1.52055820e-1  1.69132064e-1  2.6831096e-1  2.3126839e-1 

v(0.375;0.5)  1.089092434e-1  1.121477612e-1  1.45730201e-1  2.0657139e-1  1.6056422e-1 

v(0.4375;0.5)  5.66144697e-2  6.21048147e-2  1.087758646e-1  1.30571694e-1  9.296931e-2 

v(0.5;0.5)  6.3677058e-6  6.3603620e-3  5.7536559e-2  5.2058082e-2  2.579946e-2 

v(0.5625;0.5) -5.66033951e-2 -5.10417285e-2 -7.748504e-3 -2.4714514e-2 -4.184068e-2 

v(0.625;0.5) -1.089027070e-1 -1.056157259e-1 -8.4066715e-2 -1.00884164e-1 -1.107983e-1 

v(0.6875;0.5) -1.51784274e-1 -1.51622101e-1 -1.63010143e-1 -1.82109238e-1 -1.816797e-1 

v(0.75;0.5) -1.78854716e-1 -1.81633561e-1 -2.27827313e-1 -2.80990219e-1 -2.533815e-1 

v(0.8125;0.5) -1.82650133e-1 -1.87021651e-1 -2.53768577e-1 -4.0004235e-1 -3.315667e-1 

v(0.875;0.5) -1.55992321e-1 -1.59898186e-1 -2.18690812e-1 -4.4901185e-1 -4.677756e-1 

v(0.9375;0.5) -9.4576294e-2 -9.6409942e-2 -1.23318170e-1 -2.70354943e-1 -4.5615254e-1 
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Table 7. Estimated discretization error (U) of the numerical solution ( φφφφ) for the classical problem. 

Variable Re = 0.01 Re = 10 Re = 100 Re = 400 Re = 1000 

ψmin  3.5e-7  1.5e-6  1.1e-6  3.1e-7  3.1e-8 

x(ψmin)  4.9e-4  9.8e-4  9.8e-4  9.8e-4  4.9e-4 

y(ψmin)  9.8e-4  9.8e-4  9.8e-4  4.9e-4  9.8e-4 

M  9.3e-9  8.3e-9  2.7e-8  8.6e-8  5.8e-7 
Fs  7.0e-6  7.8e-9  5.8e-9  8.0e-9  8.8e-9 

umin  1.7e-6  1.3e-6  1.6e-6  1.1e-6  3.8e-6 
y(umin)  4.9e-4  4.9e-4  4.9e-4  4.9e-4  4.9e-4 

vmin  1.9e-6  2.2e-6  1.1e-5  2.1e-5  6.2e-5 
x(vmin)  4.9e-4  4.9e-4  4.9e-4  4.9e-4  4.9e-4 
vmax  1.8e-6  1.1e-6  2.7e-8  2.5e-7  7.3e-6 

x(vmax)  4.9e-4  4.9e-4  4.9e-4  4.9e-4  4.9e-4 
u(0.5;0.0625)  5.8e-9  4.8e-9  4.5e-8  1.9e-7  5.4e-8 

u(0.5;0.125)  1.1e-8  9.0e-9  7.2e-8  5.6e-8  1.7e-6 
u(0.5;0.1875)  1.5e-8  1.3e-8  8.6e-8  2.6e-7  2.1e-6 

u(0.5;0.25)  2.0e-8  1.7e-8  8.6e-8  5.0e-7  1.6e-6 
u(0.5;0.3125)  2.4e-8  2.1e-8  7.3e-8  4.7e-7  1.4e-6 

u(0.5;0.375)  2.8e-8  2.5e-8  5.0e-8  2.8e-7  1.2e-6 
u(0.5;0.4375)  3.0e-8  2.8e-8  2.0e-8  1.2e-7  9.4e-7 
u(0.5;0.5)  3.0e-8  2.8e-8  8.6e-9  2.7e-8  6.4e-7 

u(0.5;0.5625)  2.4e-8  2.3e-8  2.8e-8  5.0e-8  3.6e-7 
u(0.5;0.625)  1.2e-8  1.2e-8  3.5e-8  1.2e-7  3.7e-8 

u(0.5;0.6875)  7.4e-9  6.4e-9  3.7e-8  2.2e-7  3.4e-7 
u(0.5;0.75)  3.2e-8  2.9e-8  4.6e-8  3.2e-7  7.8e-7 

u(0.5;0.8125)  5.4e-8  4.9e-8  7.1e-8  3.8e-7  1.4e-6 
u(0.5;0.875)  6.1e-8  5.6e-8  1.1e-7  3.3e-7  2.3e-6 

u(0.5;0.9375)  4.1e-8  3.9e-8  9.5e-8  2.3e-8  3.6e-6 
v(0.0625;0.5)  2.4e-8  2.0e-8  7.2e-8  6.5e-8  2.9e-6 

v(0.125;0.5)  3.6e-8  2.9e-8  1.0e-7  1.9e-7  3.0e-6 
v(0.1875;0.5)  3.5e-8  2.8e-8  9.7e-8  3.1e-7  1.9e-6 
v(0.25;0.5)  2.6e-8  2.2e-8  7.9e-8  3.5e-7  8.6e-7 

v(0.3125;0.5)  1.6e-8  1.5e-8  5.5e-8  2.8e-7  4.0e-7 
v(0.375;0.5)  7.6e-9  9.2e-9  2.9e-8  1.5e-7  1.1e-7 

v(0.4375;0.5)  2.8e-9  5.9e-9  3.7e-9  4.5e-8  2.2e-7 
v(0.5;0.5)  3.7e-12  3.8e-9  2.0e-8  2.7e-8  5.2e-7 

v(0.5625;0.5)  2.8e-9  1.2e-9  4.8e-8  7.3e-8  7.8e-7 
v(0.625;0.5)  7.6e-9  3.9e-9  5.3e-8  9.4e-8  1.0e-6 

v(0.6875;0.5)  1.6e-8  1.3e-8  5.0e-8  8.0e-8  1.2e-6 
v(0.75;0.5)  2.6e-8  2.4e-8  5.2e-8  7.7e-8  1.5e-6 

v(0.8125;0.5)  3.5e-8  3.4e-8  7.3e-8  3.7e-7  1.7e-6 
v(0.875;0.5)  3.6e-8  3.6e-8  8.7e-8  5.5e-7  1.9e-6 
v(0.9375;0.5)  2.4e-8  2.4e-8  5.8e-8  7.3e-8  5.9e-7 

 
 
Table 7 presents the discretization error estimated (U) through 

Eqs. (13) or (14) for the solution of Table 6. As can be seen, for 
profiles of u and v, roughly, the magnitude of U grows with Re. In 
the case of the remaining variables, this influence of Re on U seems 
to be absent. For the same Re, the magnitude of U differs 
considerably among several variables of interest, which can be 
divided into three distinct sets: (1) U is generally much lower for 
profiles of u and v, M and Fs; (2) vmin, vmax, umin and ψmin have a 
slightly higher U; and (3) the coordinate type variables have the 
highest U. The magnitude of U may vary largely along the velocity 
profiles: the ratios between the maximum and the minimum values 
of U are 16,000, 47, 30, 24 and 97, respectively, for Re = 0.01, 10, 
100, 400 and 1000. 

Tables 8 to 13 list the results of this work and those of several 
other authors for the variables of interest, where Ref. indicates the 
works cited in Table 1. Among all results of the sixteen works 
reported in literature and cited here, those of Botella and Peyret 
(1998) are probably the most accurate. However, considering the 
estimated error (U) reported by Botella and Peyret (1998) and the 
tolerance they adopted in the iterative process, the results of the 
present work are probably more accurate than those of Botella and 
Peyret (1998). Keeping in mind that, in the present work, U is 

presented in Tab. 7 and its value probably overestimates the true 
error; moreover, the iterative process was repeated until the 
achievement of machine round-off error. Among all variables of 
interest compared in Tables 8 to 13, the results of Botella and Peyret 
(1998) are probably more accurate than those of the present work 
only for the following variables: vmin for Re = 100 and 1000; and 
vmax for Re = 1000. 

It is worth noting the congruence among all results of the 
present work, which are compared to those of Botella and Peyret 
(1998). The results of Botella and Peyret (1998) lie within the 
interval comprised between φ ± U of this work results. For example, 
the result of Botella and Peyret (1998) for vmax in Re = 1000 is 
0.3769447, which is between 0.3769398 and 0.3769544, given in 
the present work. An exception is ψmin, for which Botella and Peyret 
(1998) report the result of -0.1189366, which is not comprised the 
interval of -0.118936739 and -0.118936677 of this work, presenting 
a very slight difference of 7.7 x 10-8. 
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Table 8. Comparisons of ψψψψmin with other authors for the classical problem. 

--------------- Re = 100 --------------- --------------- Re = 400 -------------- ----------------- Re = 1000 ---------------- Ref. 
-ψmin x y -ψmin x y -ψmin x y 

2 0.1022   0.1017      

3 0.1034      0.114   

4       0.1193   

5 0.103423 0.6172 0.7344 0.113909 0.5547 0.6055 0.117929 0.5313 0.5625 

6 0.10330 0.61667 0.74167 0.11399 0.55714 0.60714 0.11894 0.52857 0.56429 

7 0.1034 0.6188 0.7375 0.1136 0.5563 0.6000 0.1173 0.5438 0.5625 

9 0.103506 0.6094 0.7344    0.119004 0.5313 0.5625 

10 0.1030 0.6196 0.7373 0.1121 0.5608 0.6078 0.1178 0.5333 0.5647 

11 0.103519 0.6157 0.7378    0.118821 0.5308 0.5659 

12       0.1157   

13 0.10330   0.11389   0.118930   

14       0.1189366 0.5308 0.5652 

15 0.103511 0.617187 0.734375    0.118806 0.531250 0.562500 

17 0.103 0.6125 0.7375 0.113 0.5500 0.6125 0.117 0.5250 0.5625 

16       0.118942 0.5300 0.5650 

18       0.11892 0.53125 0.56543 

Present 0.1035212 0.61621 0.73730 0.11398887 0.55371 0.60547 0.118936708 0.53125 0.56543 

Re = 10, Ref. 2: -ψmin = 0.0999; Present: -ψmin = 0.1001132 

 
 

Table 9. Comparisons of u(0.5;0.5) and v(0.5;0.5) with other authors for the classical prob lem. 

---------------------------- u(0.5;0.5) --------------------------- ------------------------- v(0.5;0.5) ------------------------ Ref. 
Re = 100 Re = 400 Re = 1000 Re = 100 Re = 400 Re = 1000 

5 -0.20581 -0.11477 -0.06080 0.05454 0.05186 0.02526 

14   -0.0620561   0.0257995 

16   -0.0620   0.0258 

18   -0.06205   0.02580 

Present -0.2091491418 -0.115053628 -0.06205613 0.057536559 0.052058082 0.02579946 

 
 

Table 10. Comparisons of u(0.5;0.0625) and v(0.0625;0.5) with other authors for the classical p roblem. 

------------------------- u(0.5;0.0625) ------------------------- ----------------------- v(0.0625;0.5) ----------------------- Ref. 
Re = 100 Re = 400 Re = 1000 Re = 100 Re = 400 Re = 1000 

5 -0.04192 -0.09266 -0.20196 0.09233 0.18360 0.27485 

14   -0.2023300   0.2807056 

18   -0.20227    

Present -0.041974991 -0.09259926 -0.202330048 0.094807616 0.185132290 0.2807057 

 
 

Table 11. Comparisons of umin with other authors for the classical problem. 

----------- Re = 100 ----------- ----------- Re = 400 ---------- ---------- Re = 1000 ---------- Ref. 
umin y umin y umin y 

5 -0.21090 0.4531 -0.32726 0.2813 -0.38289 0.1719 

7 -0.213 0.4578 -0.327 0.2797 -0.387 0.1734 

14 -0.2140424 0.4581   -0.3885698 0.1717 

Present -0.2140417 0.45850 -0.3287295 0.27979 -0.3885721 0.17139 

 
 

Table 12. Comparisons of vmin with other authors for the classical problem. 

----------- Re = 100 ---------- ---------- Re = 400 ---------- ---------- Re = 1000 ---------- Ref. 
vmin x vmin x vmin x 

5 -0.24533 0.8047 -0.44993 0.8594 -0.51550 0.9063 

14 -0.2538030 0.8104   -0.5270771 0.9092 

Present -0.253804 0.81006 -0.454058 0.86182 -0.527056 0.90967 
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Table 13. Comparisons of vmax with other authors for the classical problem. 

----------- Re = 100 ----------- ----------- Re = 400 ---------- --------- Re = 1000 --------- Ref. 
vmax x vmax x vmax x 

5 0.17527 0.2344 0.30203 0.2266 0.37095 0.1563 

14 0.1795728 0.2370   0.3769447 0.1578 

Present 0.179572814 0.23682 0.30383231 0.22510 0.3769471 0.15771 

 

Conclusion 

In this work, numerical solutions were obtained for laminar flow 
inside a square cavity of which lid moves at variable velocity and 
analytical solution is known (Shih, Tan and Hwang, 1989). Results 
were presented for 42 variables of interest (φ) in the 1024 x 1024 
nodes grid. It was found that: 
1. For all variables of interest, the discretization error estimated 

(U) with Eqs. (13) and (14), proposed here, is reliable. In other 
words, U/|E| ≥ 1, where E is the true discretization error. 

2. The use of multiple Richardson extrapolations (MRE) with Eq. 
(12) reduced E between 1.6 x 103 and 3.8 x 106 times for 
velocity profiles u and v, M and Fs. This reduction was not so 
effective for variables vmin, vmax, umin, Fn and ψmin, which 
reductions were of 1.9, 2.0, 2.6, 4.6 and 75 times, respectively. 
For coordinate type variables, this procedure does not apply. 

3. For 34 variables, the effective order value (pE) is very close 
(1.96 to 2.08) to the theoretical asymptotic order (pL) = 2 
predicted a priori. For coordinate type variables, pE seems to 
tend towards unity. For other variables, pE varies from 1.64 to 
2.58, i.e., around pL. 
 
The main focus of this work was to solve the problem of laminar 

flow inside a square cavity of which lid moves at a constant velocity 
and analytical solution is unknown (Kawaguti, 1961; Burggraf, 
1966; Rubin and Khosla, 1977; Benjamin and Denny, 1979; Ghia, 
Ghia and Shin, 1982). Results were presented for 42 variables of 
interest (φ), and their estimated discretization errors (U) on a grid of 
1024 x 1024 nodes and Reynolds numbers (Re) = 0.01, 10, 100, 400 
and 1000. It was found that: 
• Among all results of the sixteen works reported in literature and 

cited here, those of Botella and Peyret (1998) are probably the 
most accurate. However, considering the estimated error (U) 
reported by Botella and Peyret (1998) and the tolerance they 
adopted in the iterative process, the results of the present work 
are probably more accurate than those of Botella and Peyret 
(1998). Among all variables of interest compared in Tables 8 to 
13, the results of Botella and Peyret (1998) are probably more 
accurate than those of the present work only for the following 
variables: vmin for Re = 100 and 1000; and vmax for Re = 1000. 
There is a notable consistency among all results of the present 
work, comparing them with those of Botella and Peyret (1998): 
the results of Botella and Peyret (1998) fall inside the interval 
comprised between φ ± U of the results of the present work. 

• For velocity profiles u and v, the apparent order (pU) varies from 
1.76 to 2.34, with most of the results very close to the 
theoretical value of pL = 2 which was predicted a priori. For 
coordinate type variables, pU seems to tend towards unity. In 
only five cases out of more than 200, the value of pU varied 
from 1.10 to 1.63, remaining distant from pL. An exception is 
the variable Fn: its value does not converge with the grid 
refinement, causing pU to tend towards zero. This is apparently 
due to the discontinuity in the boundary condition (B.C.) of u at 
lid corners. For Fs, which does not present discontinuities in the 
B.C., the solution converges with the grid refinement, with pU 
varying from 1.33 to 2.03 for the five values of Re. 
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