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The entrainment of solid particles by a fluid flasvfrequently found in nature and in
industry. A better knowledge of this Is of impod& to understand the physical nature of
the phenomenon and to improve industrial proceBed:load occurs if the shear stresses
exerted by the fluid on the granular bed are bouhtte some limits: a mobile granular
layer takes place over the fixed part of the betek\the fluid is a liquid, the thickness of
this mobile layer is a few grain-diameters. Undéaede conditions, an initially flat
granular bed may be unstable, giving rise to rigpnd dunes. Some examples are the
dunes seen in deserts, but also the ripples appgan petroleum pipelines conveying
sand. This article presents a mathematical modetHe prediction of bed-load under a
turbulent boundary-layer of a liquid, and its nunicat implementation. The model, kept as
simple as possible, focuses on the mobile layghefgranular bed, reducing then the
computation domain. It is able to capture the petit physics involved, such as the
growing of instabilities on the granular bed, sathf employed together with the stability

analysis of Franklin (2010), it selects and presglittte evolution of most unstable modes.
Keywords: mathematical modeling, numerical simulations, tuemt boundary-layer, bed-

load, instability

Introduction

The granular media is of great importance in oustigiian, and
their transport by a fluid flow is frequently fourid nature and in
industry. It is present in the erosion of coastgions, in the
displacement of desert dunes, in sewerage systengs ia
hydrocarbon pipelines conveying sand, for instande.better
knowledge of this kind of transport is then of dgremportance to
both understand nature and improve related indligirocesses.

If the force due to the shear stresses exertedéoftuid flow on
the granular bed is small compared to the weighindfvidual
grains, but is able to move some grains, the flawnot transport
grains as a suspension. Instead, a mobile gratayear, known as
bed-load, takes place over the fixed part of the tfethe fluid is a
liquid, the thickness of this mobile layer is a fgnain-diameters
(Bagnold, 1941; Raudkivi, 1976).

Motivated by environmental and industrial issueangnstudies
concerning the bed-load were conducted in thedesades. Perhaps
the most comprehensive is Bagnold (1941), whiclktutises the
mechanisms of granular entrainment, proposes semirieal
expressions for the estimation of the flow rate grhins and
discusses the effects of the granular mobilityrenftuid flow (feed-
back effect). One of the main difficulties concegnbed-load is that
the mobile granular layer is not a continuous mestiethat the great
number of contact points determine the behaviothef system.
Dealing with this great number of contact pointaiés feasible and,
on the other hand, a rheology for the granular enatnot known at
present. As a consequence, there are many diffnentlations for
the bed-load flow rate and there isn’t a real cosge about it.

The growth of bedforms is another difficulty relhtéo the
modeling of the bed-load. These forms, initiallyotdimensional,
may grow and generate patterns such as ripplesrasd In nature,
one example is the aquatic ripples observed onr thegls, which
create a supplementary friction between the bed thedwater,
affecting then the water depth and being relateffotzd problems.
In industry, examples are mostly related to closedduit flows
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conveying grains, such as sewerage systems or jttiodarbon
pipelines conveying sand. In these cases, the bedfgenerate
supplementary pressure loss and pressure and #tevtransients
(Kuru et al., 1995; Franklin, 2008). In order toderstand the
growing of bedforms, many works on the stabilitygo&nular beds
sheared by a fluid were made in the last decadesar{&dy, 1963;
Reynolds, 1964; Engelund, 1970; Richards, 1980¢lHiki et al.,
2005; Claudin and Andreotti, 2006; for instancehg&und and
Fredsoe (1982) present a remarkable overview arstiiject.

Recently, Franklin (2010) discussed some physispkets of
the instability, explained its mechanisms and presk a linear
stability analysis. The stability analysis was madehe specific
case of granular beds sheared by turbulent bouddgeys of
liquids, without free surface effects. Differenbrn previous linear
stability analyses, Franklin (2010) showed that lgregth-scale of
the initial bedforms varies with the fluid flow oditions. In order to
understand the wavelength of ripples and dunesrebdén nature,
which usually have their wavelength predicted medr analyses
though they are clearly in a nonlinear phase, Himan{011)
presented a nonlinear stability analysis in the esasoope of
Franklin (2010). The employed approach was the lyeadnlinear
analysis (Landau and Lifchitz, 1994; Schmid and tilegson,
2001; Drazin and Reid, 2004; Charru, 2007), usefhknever a
dominant mode can be proved to exist. Franklin 2&howed that
the bed instabilities saturate after the initiabexential growth
(linear phase), i.e., they attenuate their growatle and maintain the
same wavelength.

In both Franklin (2010) and Franklin (2011) theules of the
analyses were compared to experimental data cangeripples in
closed-conduit flows (which is a case where fredase effects are
absent). In particular, the dependence of the bedfeavelength on
the fluid flow conditions and the saturation of theedform
amplitude were confirmed by experimental results.

Bed-load numerical simulations are another appreschloyed
in an effort to understand the instabilities appearon granular
beds. The main problem is then the modeling ofgita@ular media:
it is a discrete media for which a lagrangian deson is not
feasible given the large number of discrete elemehd solve this
problem, it is usual to employ some semi-empirsgbressions for
the bed-load flow rate, such as those proposeddgnéd (1941)
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and Meyer-Peter and Mueller (1948). Another diffiguis the
computation of the fluid flow over a deformable pedhich perturbs
in its turn the fluid flow.

Amongst the works on mathematical modeling and migale
simulations of bed-load under turbulent boundayeta, there are
Kroy et al. (2002a), Kroy et al. (2002b) and Her$2804). These
models were all conceived for turbulent gas floasolian case),
and are based on four equations: (i) the sheasssttaused by the
fluid flow on the bed surface; (ii) a semi-empitieguation for the
bed-load flow rate; (iii) an equation accounting fbe relaxation
between the fluid flow and the granular flow; and) the mass
conservation of the granular bed.

Because the semi-empirical expressions for theldwesdl-flow
rate are based on the shear stress on the bed eKeby(2002a) and
Kroy et al. (2002b) proposed the direct employnafrén equation
for it, instead of computing the entire fluid flombove the bed. If
the deformation keeps a small aspect ratio, tharsteess caused
by the fluid flow on a deformed bed can be obtaiasdlytically by
Perturbation Methods. For example, this was donthéncase of
turbulent boundary-layers by Jackson et al. (19FE)nt et al.
(1988) and Weng et al. (1991). Kroy et al. (200&adl Kroy et al.
(2002b) simplified the results of Jackson et a@78), Hunt et al.
(1988) and Weng et al. (1991) and obtained an ezpe
containing only the dominant physical effects oé tshear stress
perturbation. Concerning the bed-load flow rateytemployed an
expression derived from the aeolian bed-load mofi@auermann
et al. (2001), whose constants were adjusted fequerénental data.
The employed equation accounting for the relaxabetween the
flow rate of grains and the fluid flow was also abed from
Sauermann et al. (2001). The model was then impitadein a
numerical code and some simulations of the aeotiase were
performed. From different initial conditions, theodel was able to
show the evolution from an initial bump to dunewdver, the
authors were not interested in the initial insiéies, and for that
they did not try to find a most unstable wavelengthich is the one
expected to give origin to dunes.

The model and the simulations presented in Her2@04() are
based on the same equations of Kroy et al. (2082d)Kroy et al.
(2002b). The main difference in Hersen (2004) & the work was
focused on the formation of the crescentic shapehlaa dunes.

This article presents a mathematical model fortthesport of
grains as bed-load by a turbulent boundary-laybemthe fluid is a
liquid. The model is kept as simple as possiblg, ibus able to
capture the pertinent physics involved, such as gtewing of
instabilities on the bed. Concerning the fluid floilvemploys an
analytical equation for the shear stress on the ge@n by
Perturbation Methods, which limits the model to laspect ratios of
the bedforms. Another restriction is that the masepplied only to
liquids. This restriction was not imposed in praxdanodels of this
kind (Kroy et al., 2002a; Kroy et al., 2002b; Hers2004), although
the bed-load characteristics in liquids are diffiefeom the aeolian
case (Raudkivi, 1976). To compute the bed-load flate, a semi-
empirical formula is employed. Concerning the bamcdondition,
it is assumed the existence of a flat granulardigtie upstream end
of the domain. As initial condition, the model ngsedn initial
bedform, which is taken as an undulated granuldrdfidow aspect
ratio. The implementation of the model in a nunedricode is
presented and the results of some simulations @arfanted to the
linear stability analysis of Franklin (2010) andexperimental data
previously published.

The main objective of this paper is to proposenapg model
that, if employed with the stability analysis ofaRklin (2010) as
initial condition, is able to predict the bed-lofldw rate and the
initial evolution of granular beds submitted toktulent boundary-
layers of liquids. The initial evolution of the fedms, based on the
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most unstable wavelengths,
numerical codes on this subject.

The next section discusses the involved physick mesents
the equations composing the model. The followirgises describe
the numerical implementation of the model in a catapional code,
and the main results from the numerical simulatiofibey are
followed by the conclusions section.

is completely absent cumrent

Nomenclature

A =constant

= constant

= constant

= phase velocity, m’s

= mean grain diameter, m

= Fourier transform

= inverse Fourier transform

= acceleration of gravity, m%s

= amplitude of the initial bedform, m

= local height of the granular bed, m

= imaginary number

= wave-number, ih

= length-scale, m

= number of iterations

= volumetric flow rate of grains by unit of width the basic
state, st

q = local volumetric flow rate of grains by unitwidth, nf.s*

U. = shear velocity, m%
Us = grain settling velocity, ms
= i du
Re = settling Reynolds numbfrRes _ %)

OZr " ScIITQ@Tmmaeo O

S =ratio between the specific masggs- 0,/ o)
S = Standard deviation, m
t =time, s
X =longitudinal length of the computation domaim,
X = horizontal (longitudinal) coordinate, m
y = vertical coordinate, m
Yo  =rugosity height, m
Greek Symbols
A = interval (step)
6 = Shields numbef g _ r
(pp - ,o)gd
¥ =von Karman constant
A = wavelength of the initial instabilities, m
V] = dynamic viscosity, Pa.s
p = specific mass, kg.th
o =growthrate, &
T = shear stress, Pa
& = mean of the Gaussian function, m
o  =frequency, 3
¢ = concentration (volume fraction) of grains
Subscripts
d =relative to deposition
drag = inertial scale
k = Fourier space
max = relative to the most unstable (amplified) mod
0 = relative to the basic state
p = relative to grains
s = relative to settling
sat =relative to the saturated regime
X =real space
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Superscripts
N = perturbation

M athematical M odel

The present model follows the lines of Kroy et(2002a), Kroy
et al. (2002b) and Hersen (2004), and is also basdte following
four equations: (i) the shear stress caused byldf flow on the
bed surface; (i) a semi-empirical equation for thed-load flow
rate; (iii) an equation accounting for the relazatbetween the fluid
flow and the granular flow; and (iv) the mass cowagon of the
granular bed. However, these equations are worketdifferently
here, mainly with respect to relaxation effectsq avith respect to
the inclusion of gravity effects. Also, differentfyom Kroy et al.
(2002a), Kroy et al. (2002b) and Hersen (2004) ptlesent model is
applicable to turbulent liquid flows, and is focdsen the early
stages of the granular bed instabilities.

As the interest here is in the first stages oflikd instabilities,
the model is two-dimensional. This is justified tlye Squire’s
Theorem, which states that the most unstable madgzarallel
flows are two-dimensional (Schmid and HenningsdiQ12 Drazin
and Reid, 2004; Charru, 2007). The physical corceptd the
equations employed in the model are presented next.

- Shear stress on the bed

The perturbation of a turbulent boundary-layer bilh with
small aspect ratio was analytically found by Jaoksmd Hunt
(1975) and by Hunt et al. (1988). Their resultseMater applied to
forms with higher aspect ratio by Weng et al. ()9%hckson and
Hunt (1975), Hunt et al. (1988) and Weng et al.9@)9found that
the perturbed shear stress is shifted upstreamtthe crest. Kroy et
al. (2002a) and Kroy et al. (2002b) simplified tlesults of Weng et
al. (1991) and obtained an expression containirlg the dominant
physical effects of this perturbation, making cérahe reasons for
this upstream shift. For a two-dimensional hilltwé heighth(x), a

- Flow rate of grains in the basic state

In the basic state, the fluid flow and the transpbgrains are in
equilibrium: their flow rates are in a steady ste#gime without
spatial variations, so that the term “saturatedbfien employed.
However, as pointed out in the introduction, them® many
different formulations for the flow rate of grainsnd they are all
semi-empirical. The one employed here is from Md3eter and
Mueller (1948), based on exhaustive experimentsh witater
streams

qsat
(S-1)ga®

=8(6-4) )

where g is the volumetric flow rate of grains by unit ofidth
(saturated)Sis the ratio between the grains specific mgsand the
fluid specific masg, g is the acceleration of gravity, is the mean
grain diameterf is the Shields parameter (ratio of the entraining
force to the resisting force):

S 4)

(o, - pod

and 6, is the threshold Shields parameter (Buffington and
Montgomery, 1997).

- Relaxation between the flow rate of grains aredfthid flow

For fluid flows over undulated beds, the shearssten the bed is a
function of the position. It is then expected soinertial (or
relaxation) effect between the grains and the fls@that the flow
rate of grains will lag some distance with resgecthe fluid flow.
This distance is a characteristic length usualljeda“saturation
length”, Ls;e A simplified expression taking into account the
relaxation effect can be obtained from the erosiepesition model

surface rugosity, and a lengti2L between the half-heights (total of Charru et al. (2004):

length~ 4L), they showed that the perturbation of the lordjital
shear stress, in dimensionless form and in thei€ospace is

7, = AF{n}(| +iBk) @
wherek = 1 is the longitudinal wave-numbet is the wavelength),
i is the imaginary number, the subsctipis related to the Fourier
space,F is the Fourier operatox,is the longitudinal direction andl
andB are considered as constants, as they vary witlogfagithm of
L/yo. Equation (1) was obtained fe/L < 0.05, but Carruthers and
Hunt (1990) showed that reasonable results ardnglstavhen Eq.
(1) is applied to slopes up /L = 0.3.

The fluid flow over the bed can be written as aibatate flow,
unperturbed, plus a flow perturbation. The basitests defined as
the fluid flow, and the corresponding bed-load flmate, over a flat
granular bed. The shear stress on the bed surfagethen be
written, in the real space, as

r=r,(1+F}) (2
wherer, is the shear stress caused by the basic stateofiaive bed
andF is the inverse Fourier operator.

The shear stress caused by the fluid flow on tliesbeface can
be obtained directly from Eqgs. (1) and (2). Theagrmdvantage of
this method is that there is no need to computeflthié flow in
regions far from the surface, as it would be nemgssvith, for
example, a RANS (Reynolds Average Navier-Stokeghatk
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Osa: =9

L

0,q= ®)

sat

Kroy et al. (2002a), Kroy et al. (2002b) and Herg@004)
considered that the saturation length has an ahestigin, and is
proportional to the traveling distance of indivilggains, given by
Larag=d pp/p. According to this expressiohg,g is an inertial length-
scale obtained when the density of the granulaeriahis many times
larger than the density of the fluigh, >>p. It is then pertinent when
the fluid is a gas. When the fluid is a liquid, ewer, p,~p and it has
been argued by Charru (2006) and Franklin (20189 tiis length-
scale can no longer be applied. Instead, a retax&tingth based on
the deposition of an individual grain must be usgd,

U.
CsatLd :Csatd( %S)

whereu. is the shear velocity of the basic state flow,irded by
r, = puiand Us is the grain settling velocity. The order of

magnitude oflLg,, O(Lss), has been reported &HLy) < O(Lga) <
10.0(Ly) (Charru et al., 2004; Franklin, 2008), dependimgtioe
particular conditions of the liquid flowD(Lsa) = O(Ly) in hydraulic
smooth regimes an@®(Lsa) = 10.0(Lg) in hydraulic rough regimes.
Csat is then an adjustable constant that, followingitietia of the
boundary-layer at the grain scale, gives the ptapobetween_ g,

L..= (6)

sat
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andLy. For a large range of the settling Reynolds numBex €
pUsdly), the settling velocitysmay be evaluated as

_ o\
%zrlg{mﬂ}
3G, P

where Cp is the drag coefficient that may be evaluated Iy t
Schiller-Neuman correlation whéte; < 800 (Clift et al., 1978).

)

- Mass conservation of grains
The two-dimensional mass conservation applied & ghains
can be written as

9.h+19 q=0 ®
4

where ¢ is the concentration (volume fraction) of graims the
granular bed, considered as constant in the model.

- Gravity effects

As discussed in Franklin (2010), gravity weakerss titansport
of grains over positive slopes (upstream the crestd facilitates it
over negative slopes (downstream the crests), beingrsely
proportional to the slope of the bed. It can thenirzorporated in
the constanB of the shear stress perturbation (Eq. (1)).

- Summary

Computations employing the model are relatively &l easy.
First, there is no need to compute the fluid flowegions above the
bed because the model needs only the shear stregsheobed
surface, whose analytical solutions are known frBerturbation
Methods. Second, the set of equations to be savedincoupled,
and two of the four basic equations have analytcdlitions (the
others are first order differential equations)aif explicit scheme is
employed in Eg. (8), numerical solutions can bercead by
evaluating in sequence the presented equationsn @n upstream
condition (the boundary condition), and an initidform (initial
condition). The structure employed to perform themerical
computations is given next.

Numerical | mplementation

Erick de Moraes Franklin

- Fluid and grain properties (1.a): these conckenspecific masses
of the liquid and of the grain, the dynamic vistpsif the liquid, the
mean diameter of the grains and the threshold &hielumber
(Buffington and Montgomery, 1997).

- Initial condition (1.b): it is the initial formfahe bedh(x). For all
the simulations presented here the initial bedforas a Gaussian

Function
2

—

(x-¢

h(x)=He >

©

whereH is the initial amplitude (crest}, is the Gaussian mean and
s is the standard deviation. This form has the athgmof tending
to zero when the domain is large enough, meaniag ttre basic
state is expected to exist at the boundaries ofitineain. Another
advantage is that it can be easily adjusted toemdifft lengths,
positions and aspect ratios by varyigg ¢ andH. In order to be
coherent with Jackson and Hunt (1975), Hunt et(#988) and
Weng et al. (1991), it is considered here that s4 so that the total
length is approximatelys.

- Boundary condition (1.c): is the condition farstqgam the initial
bedform, over a flat bed, corresponding then tdésic state.

- Numerical parameters (1.d): they correspond ® nlumerical
constants necessary to the code functioning. Theythe spatial
resolutionx, the time stepit, the total number of iteration$ and
the numerical scheme to be employed in the nunies@ation of
Eq. (8).

- Computation of(x) (2.a and 2.b): it is divided in four steps. First,
a Fast Fourier Transform (FFT) operation is madb.drhen, fk is
evaluated by Eqg. (1) and an Inverse Fast Fourian§form (IFFT)
operation is made de Finally, z(x) is evaluated by Eq. (2).

- Computation ofq(x) (2.d): q(x) is evaluated by the numerical
integration of Eq. (5). An Upwind scheme is emphby®ith the
boundary conditiom(x = 0) = gsa(Xx = 0).

- Computation oh(x) for the new time step (2.el(x) is evaluated
by the numerical solution of Eq. (8). Ax) andgsa(X) are already
known, an explicit numerical scheme can be eagipleyed to
determineh(x) in the new time step. In the code, one can choose
from four schemes that were implemented: LAX + FTOBwind +
LAX, Upwind + First Order Euler, FTCS + First Ordeuler (Press

et al.,, 1992). Due to the very small phase shiétsvbenq(x) and
h(x) in some cases, the First Order Euler schemes tettker than
the LAX schemes:ithe schemes based on LAX become more

The model was implemented in a numerical code whosfependent on the spatial resolution because theylognspatial

structure is given below.
1. Entry:
a. Fluid and grain properties;
b. Initial condition (initialh(x));
c. Boundary conditiont);
d.Numerical parameters;
e.Computation of_¢, by Eq. (6).
2. Loop (until the desired number of iterations, ag thtal time is
achieved):

a. Fourier transform ofi(x) and computation ofk by Eq. (1);

b. Inverse Fourier transform cﬁk and computation afby Eq. (2);

c. Computation ofys,(x) by Eq. (3);
d. Computation ofy(x) by the numerical solution of Eq. (5);
e.Computation of the values df(x) at the new time step by
solving Eq. (8);
f. Storage of the data at the desired instants.
Post-processing:
a.Computation of the bedform growth rate;
b.Computation of the bedform celerity.
A brief explanation of some of the numerical stispgiven next.

3.

4 [/ Vol. XXXIV, No. 1, January-March 2012

averages on the preceding time steps. This phase ishthe
responsible for the stability or the instability dfie bedform
(Franklin, 2010). The use of an explicit scheme tfeg numerical
solution of Eg. (8) means that the Courant conditioust be
verified. This was assured for all the simulations.

- Computation of the bedform growth rate and oftibdform celerity
(3.a and 3.b): the growth rate and the bedform celeritg are
evaluated from the transversal and the longituditiaplacement
velocities of the bedform crest, respectively. Eha®locities are
evaluated by fitting the displacements as lineactions of the time.

Main Results

Simulations were performed employing the numericatle
described in the previous section, and the maialteeare presented
here. For the present simulations, the aspect w@ftithe initial
bedform, the mean diameter of the grains and thid fyroperties
(water) were fixed. In order to compare the nunarinodel with
the linear stability analysis of Franklin (2010t the length of the
initial bedform and the shear velocity were vari@the choice of
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these parameters is based on the main conclusibraoklin (2010)
that the length-scale of the most unstable modievavith the fluid
flow, which is different from previous stability alyses. Effects due
to gravity (slope) and to the grains diameter aediscussed in this
paper. The bedform evolution was then computed iendrowth
rate and celerity were evaluated.

experimentally (Kuru et al., 1995; Franklin, 2008),that the model
is able to predict the tendency of the bedform evanh, in the early
stages of the instability (or stability). Also froRig. 1, it is clear
that the growth rate and the celerity of the bedfoincrease with
the shear velocity of the basic flow.

Franklin (2010) showed from the mass conservatibgrains

Figure 1 shows three examples of bedform developmethat there is erosion in regions where the gradiérthe bed-load

predicted by the numerical code. The initial foshpwn in dashed
line, was the same for the three cases: a Gausiation withs; =

flow rate is positive, and deposition where it egative, so that the
phase lag between the flow rate of grains and #dfdom is a

0.1 mand aspect ratibl/(4sy) = 0.1. For the simulation presented instability criterion. In other words, if the maximuof the flow rate

Fig. 1, the total number of iterations wes= 10° with a time stepft
= 10°s, corresponding then to a total timelsf The total domain in
thex direction wasX = 2 m and it was discretized in intervals f
= 10° m. The saturation constant &, = 1, corresponding to a
hydraulic smooth regime. Figure 1.a corresponds¢e 0.04 m/s
Fig 1.b corresponds 18, = 0.08m/sand Fig. 1.c correspondsug
=0.16m/s

From Figs. 1.b and 1.c it is clear that the simedatases are
unstable: the bedform grows as the time increasgieise the form is
displaced to the right, showing a positive celeritiie same occurs
in Fig. 1.a, however the time-scale is too lardewsggrowth rate) to
be clear in the figure.

0.08

08 1 12
X (m)

0.6

0.08

0.08 (b)

£0.04

=
0.02

0

0.6

0.08

0,06}
004}
13
e

0.021

0

005,

0.8 1 12

x(m)
Figure 1. Evolution of an initial Gaussian bedform, with s4 = 0.1 m and
aspect ratio H/(4sq) = 0.1. The dashed line is the initial form and the
continuous lines correspond to the bedform at posterior times. The total
time for this simulation was 1 s. The saturation constant is Csat = 1. (@) Ux
=0.04 m/s, (b) ux =0.08 m/s and (c) us = 0.16 m/s.

The slope of the upwind face (upstream the crestyahses,
while the slope of the lee face (downstream thstgiecreases. This
indicates that the initial Gaussian bedform tendlsattransverse
ripple, which has an upstream face of small slapel, a high slope
lee face (in fact an avalanche slope). This is thxadhat is verified
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of grains occurs upstream the bedform crests, deposnust occur
at the crests: the bed is unstable and bedformsgvdlv. On the

contrary, the bed is stable and bedforms tendgapgiear. Franklin
(2010) then discussed three reasons for the plaaseOne is the
fluid flow perturbation caused by the shape of Heel, which is

shifted upstream the bed and is an unstable meshadiackson et
al., 1975; Hunt et al.,, 1988; Weng et al., 1991hother one
concerns the relaxation effects related to thesprart of grains: the
grains lag some distance (or time) with respec¢héofluid flow, so

that the bed-load flow rate is shifted downstreamftuid flow and

is a stable mechanism (Valance and Langlois, 2@08, Charru,
2006, in the case of viscous flows; Franklin, 20it0the case of
turbulent flows). The last one is related to gnayglope effect): the
bed-load flow rate is larger over negative slopesthat it is shifted
downstream the fluid flow and is another stable fmag@ésm.

@

0.03}
E .02}
=
001}
0
004’5 08 1 12
X (m)
0.05

h (m)

005 0.8 1 1.2

X (m)
Figure 2. Evolution of an initial Gaussian bedform, with sq = 0.1 m and
aspect ratio H/(4s4) = 0.1. The dashed line is the initial form and the
continuous lines correspond to the bedform at posterior times. The total
time for this simulation was 1 s. The saturation constant is Cgy = 50. (@) U«

=0.04 m/s, (b) uxp = 0.08 m/s and (c) ux =0.16 m/s.
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In the present simulations we do not analyze sleffects, so
that the relaxation is the only stable one. In preverify if the
model is able to predict also stable solutions tf@ same initial
bedform, the relaxation effects can be increasednbseasing the

Erick de Moraes Franklin

(5) and (6)) and botle and s show variations that are lower than
U, indicating that relaxation effects are present.

The present model can be directly compared tolgtahnalyses
if the evolutions of bedforms with different initidengths are

value ofCg,. From experimentsCq, can be estimated to be of ordercomputed. The reason for this is that stabilitylgs®es are made on

10 in the transition to the hydraulic rough regi(eru et al., 1995;
Franklin, 2008). Figure 2 shows the bedform develept predicted
by the numerical code whebs, = 50. The initial form, shown in
dashed line, was the same as that of Fig. 1: aggaugunction with

a continuum spectrum of modes. For example, this d@ne by
Franklin (2010), who found a most unstable modestnamnplified
growth rate) of a given wavelength, and predictesl \tariations of
the growth rate and of the celerity for this specivavelength.

sy = 0.1 mand aspect ratibl/(4sy) = 0.1. Figure 2a corresponds to Franklin (2010) also showed the existence of aoffutvavelength,

uo = 0.04 m/s Fig 2.b corresponds to, = 0.08 m/s Fig. 2.c

corresponds tak, = 0.16 m/sand all the other parameters are the

same as in Fig. 1.

From Fig. 2b we observe that, due to the increaskkation
effect (increased phase shift betwegandqs,, as shown by Eq. 5),
the growth rate is smaller whéy,, = 50 in comparison withCg,, =
1 (Fig. 1.b). Figure 2.c shows that feg = 0.16 m/sthe relaxation
effects are even larger, being stronger than tistabie mechanism
and being responsible for the stabilization oftibd. The effect of a
greater relaxation (smaller growth rate) also ogdorFig. 2.a (in
comparison to Fig. 1.a); however, the time-scal®@slarge (slow
growth rate) to be clear in the figure.

The initial growth rate and the celerity of the fuech were
computed from the evolution predicted by the nucarcode. For

below which the bed is always stable.

Figure 3 compares the celerity predictions from timear
stability analysis of Franklin (2010) with the adte computed with
the present model. The lines correspond to Eq. @9Franklin
(2010) and the symbols to the celerity computed wlite model.
The dashed line and the circles corresponge 0.04 m/sand the
continuous line and the asterisks correspondito= 0.08 m/s
Figure 3.a presents the celeritas a function of the wave-number
and Fig. 3.b presents the celerity normalized leysittling velocity
c/Us as a function of the wave-number normalized bysgteration
lengthk.Ls,. Because of the Courant condition, the total tiovettie
number of iterations) had to be larger in ordeolitain the bedform
celerity, and this was done for only some wave-nensifjbut within
a large range in the spectrum). The celerity coegbutumerically

the present simulations, the growth ratewas evaluated as the from the bedform evolution agrees with the stapilanalysis

transversal displacement velocity of the crestddii by the total
length of the initial bedform, and the bedform ciéyec was
evaluated as the longitudinal displacement velooitythe crest.
Table 1 shows the celerityand the growth rate obtained in the
simulations of Figs. 1 and 2.

Table 1. Bedform celerity ¢ and growth rate o for different values of the
saturation constant Cs; and different shear velocities of the basic state
flow uso.

AX

At N X Csal U«o Cc c

(m) | (9 (m) (mfs) | (m/s) (Us)

10% | 10°| 10° | 2 0.04| 0.0016 0.00068
10% | 10°| 10° | 2 0.08| 0.013Q 0.00540
10%| 10° | 10° | 2 0.16| 0.1155 0.04210
10%| 10°| 16| 2 | 50 | 0.04| 0.0019 0.00037
10%|10°| 10| 2 | 50| 0.08| 0.0126 0.0011D
10| 10°| 16| 2 | 50 | 0.16| 0.0805 -0.00840

The initial wavelength imposed was the same (sq = 0.1 m and aspect ratio
H/(4s4) = 0.1). Ax is the spatial interval (resolution), At is the time step, N is
the total number of iterations and X is the longitudinal length of the
computation domain.

From Table 1, whe,, = 1, variations of the shear velocity of
the basic flomus by a factorj imply variations in both the bedform
celerityc and in the growth rate by a factoij®. The variation ot
and of s, as Uy°, indicates thatc and o vary directly with the
saturated flow rate of grains in the basic statar(Kin, 2010): the
effect of the saturation length, is too weak to affect the celerity or
the growth rate. In fact, as discussed in FrankR010), the
modulation of length-scale, celerity and growtherdepends on the
phase shift between the fluid flow and the bed molpgy (unstable

predictions: the simulated pointgk) follow the analytical curve
c(k) given by Franklin (2010). Also, for all the mode@scluding the
most unstable one) the numerical model gives thérgg ¢ ~ u2

*0 !
as predicted by Franklin (2010).

0.12 ‘ ‘, ‘,
| |
01F @ T I
| |
008 - f
Q l ! !
EO006F~———--pf- v
© l l l
004r---f/-r----- o= T
| | |
| | | -
002 /-Gt
A :
0 10 20 30 40
k (1/m)
3 T T
| |
| |
2.5 (b) ‘r T‘
B S b
|
s P .
| |
| |
1 ---Sf - . 4o —ee — —
: . +-"O
05--A---- :;‘.L@S ,,4‘, ,,,,,,,,
_,—‘Q" | I
& hat L L
00 0.05 0.1 0.15
kL

eff_eCt) and on the phase shift between the bedfloadrate and t_he Figure 3. Bedform celerity ¢ as a function of the wave-number k: (a)
fluid flow (stable effect). WheiCs,;= 1, the latter, although exists, dimensional form; (b) normalized by the settling velocity Us and by the
seems too small (many times smaller than the foroeaffectc and  saturation length Ls,. The lines correspond to the analysis of Franklin
. Then,c ande vary only with the saturated flow rate of grains.(2010) and the symbols to the present model. The dashed line and the

L7 .., circles correspond to ux = 0.04 m/s and the continuous line and the
When the value oy is increased t&s, = 50, the phase shift sierisks correspond to u.=0.08 mis.

between the bed-load flow rate and the fluid flewnicreased (Eqs.
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Figure 4 compares the growth rate predictions ftbe linear Figure 4.b presents the growth ratas a function of the wave-
stability analysis of Franklin (2010) with the gritmrates computed numberk in dimensionless forms is normalized by the deposition
with the present model. Figure 4.a presents thevtyroateo as a timety = d/Us andk by the saturation lengths,. The symbols and
function of the wave-numbek in dimensional form. The lines the lines are the same as in Fig. 4.a. As the giaperties are the
correspond to the Eq. (17) of Franklin (2010) amelsymbols to the same for all the analyzed cases, the depositioe iEnthe same for

growth rates computed with the model. The dashed &nd the

both casest{= 8.1.10%), so that the ratio of the magnitudessds

circles correspond to,, = 0.04m/sand the continuous line and the maintained when comparing,= 0.04 m/sto u,= 0.08 m/s The

asterisks correspond te, = 0.08m/s

The bedform evolution predicted by the model agreits the
stability analysis, showing the existence of a masttable mode
(the growth rate has a maximum) and that it is faage instability:
bedforms increase (instability) if their initial wenumbers are
smaller than the cut-off wave-number, and bedforiesrease
(stability) otherwise. The value of the cut-off veamumber
predicted by the stability analysis is slightly lemywith the curve
o(Kk) decreasing (after the maximum) faster than thetp@omputed
with the model. This difference comes from the difigations in
the flow rate of grains done in Franklin (2010): ttie multiplier
factor was made equal to 1 and the threshold stvasseglected in
the equation for the flow rate of grains (Eq. (5)Foanklin, 2010);
and (i) the latter was linearized (Eq. (7) of Hdam 2010).
Concerning the most unstable mode the agreemegbasl: the
differences between the wave-number for the mostalle mode
knmax predicted from the stability analysis and the coted
numerically are less than 6&henu, = 0.04 m/sand less than 5%

effect of normalizingk by L4 is to bring the two cases to the same
positions in the normalized abscissa, including tlemalized
wave-numbers for the most unstable mode and focth®ff. This
indicates that the most unstable mode scales whshaturation
length Lg,, in agreement with Franklin (2010), but also wilte
experimental results of Kuru et al. (1995) and klian(2008).
Experiments in the scope of this model were preskemt Kuru
et al. (1995) and in Franklin (2008). Kuru et dl995) performed
experiments on a i long, 31.1mmdiameter horizontal pipe, and
employed mixtures of water and glycerin as thedflmiedia and
glass beads as the granular media. Franklin (2@e8jormed
experiments on a 6 long, horizontal closed-conduit of rectangular
cross-section (12cnmwide by 60mm high), made of transparent
material, and employed water as the fluid and géass zirconium
beads as the granular media. In both works, thikoasitmeasured
the wavelengths of the initial bedforms (ripplegpearing on the
granular bed. Given the small time scales of th@blem and the
presence of high uncertainties, the celerity amdgttowth rate were

whenu,, = 0.08 m/s Also, the value of the growth rate of the mosmot reported.

unstable moderay is multiplied by a factor 2vhen the shear

In order to directly compare the experimental daith the

velocity uq is doubled. This means that the numerical modgdresent computations, Fig. 5 presents the dimelesisnmean

captures the scaling,,,~ U« predicted by Franklin (2010).

0.04

0.02

0

-0.02

o (Us)

-0.04

-0.06

-0.08

Figure 4. Growth rate o as a function of the wave-number k: (a)
dimensional form; (b) normalized by the deposition time ty and by the
saturation length Lsy. The lines correspond to the stability analysis of
Franklin (2010) and the symbols to the present model. The dashed line
and the circles correspond to ux = 0.04 m/s and the continuous line and
the asterisks correspond to u« = 0.08 m/s.
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wavelengthi/d of initial ripples as a function of the dimensiess$
shear velocityu./Us. From this figure, we can observe that the
dimensionless wavelength increases with the fllod fconditions,
and that the experimental data seems disperseddeoline. If we
take into account the relatively high uncertaintiefien present in
measurements of bedforms instabilities, the aligntmef the
experimental data in Fig. 5 supports the resultghef proposed
model (but also of Franklin, 2010): that~ Ly~ d u/Us for the
most unstable mode.

100

80

60

Ad

40

20

Figure 5. Dimensionless mean wavelength A/d of initial ripples as a
function of dimensionless shear velocity u+/Us. Filled circles, lozenges,
triangles and squares correspond to d = 0.3 mm and p=1cP, d =0.3 mm
and p=22cP,d=0.1mm and p=1cP and d = 0.1 mm and p = 2.1 cP,
respectively (experimental data of Kuru et al.,, 1995). Open lozenges,
circles, squares and asterisks correspond to d = 0.12 mm, d = 0.20 mm
and d = 0.50 mm glass beads (in water) and to d = 0.19 mm zirconium
beads (in water), respectively (experimental data of Franklin, 2008).

Finally, the numerical simulations with the presemidel agree
with the stability predictions concerning the grbwtate, the
celerity, the most unstable wavelength and theofutvavelength.
However, differently from the stability analysisetmodel does not
select the most unstable wavelength, so that idsie initial
bedform as an entry. If an appropriate routine dhasethe stability
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analysis is included in the model, it can selee thost unstable
mode as an entry. As the growth is exponentidhéninitial phase of
the instability, the most unstable mode prevaitsttsat the model
needs to compute the evolution of this sole mode.

Conclusions

This paper presented a simple and fast computirdehfor the
transport of grains as bed-load by a turbulent dawtlayer of a
liquid. Although simple, the model is able to captthe pertinent
physics involved, such as the growing of instaledit The main
differences from previous models are that it consespecifically
liquid flows and that it is focused on the earlgggs of the bedform
evolution. If employed together with the stabilipalysis, it can
predict the evolution of the most unstable modag as the aspect
ratio is small (smaller than 0.3): as the growtlxponential in the
initial phase of the instability, the most unstabiede prevails, so
that the model needs to compute the evolution isf $hle mode.
The proposed model agrees with the stability amalgs Franklin
(2010) and compares well with the available expental data of
Kuru et al. (1995) and Franklin (2008). The init@alolution of the
bedforms, based on the most unstable wavelengthspmpletely
absent in current numerical codes on this subjElce proposed
model can then be included in current numericalesoith order to
correctly predict the very first forms appearing the bed, giving
then a complete picture of the bedforms evolution.
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