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Numerical Prediction of Bed-Load and 
Surface Deformation on a Granular 
Bed Sheared by a Turbulent 
Boundary-Layer 
The entrainment of solid particles by a fluid flow is frequently found in nature and in 
industry.  A better knowledge of this is of importance to understand the physical nature of 
the phenomenon and to improve industrial processes. Bed-load occurs if the shear stresses 
exerted by the fluid on the granular bed are bounded to some limits: a mobile granular 
layer takes place over the fixed part of the bed. When the fluid is a liquid, the thickness of 
this mobile layer is a few grain-diameters. Under these conditions, an initially flat 
granular bed may be unstable, giving rise to ripples and dunes. Some examples are the 
dunes seen in deserts, but also the ripples appearing in petroleum pipelines conveying 
sand. This article presents a mathematical model for the prediction of bed-load under a 
turbulent boundary-layer of a liquid, and its numerical implementation. The model, kept as 
simple as possible, focuses on the mobile layer of the granular bed, reducing then the 
computation domain. It is able to capture the pertinent physics involved, such as the 
growing of instabilities on the granular bed, so that, if employed together with the stability 
analysis of Franklin (2010), it selects and predicts the evolution of most unstable modes. 
Keywords: mathematical modeling, numerical simulations, turbulent boundary-layer, bed-
load, instability 
 
 
 

Introduction1 

The granular media is of great importance in our quotidian, and 
their transport by a fluid flow is frequently found in nature and in 
industry. It is present in the erosion of coastal regions, in the 
displacement of desert dunes, in sewerage systems and in 
hydrocarbon pipelines conveying sand, for instance. A better 
knowledge of this kind of transport is then of great importance to 
both understand nature and improve related industrial processes. 

If the force due to the shear stresses exerted by the fluid flow on 
the granular bed is small compared to the weight of individual 
grains, but is able to move some grains, the flow cannot transport 
grains as a suspension. Instead, a mobile granular layer, known as 
bed-load, takes place over the fixed part of the bed. If the fluid is a 
liquid, the thickness of this mobile layer is a few grain-diameters 
(Bagnold, 1941; Raudkivi, 1976). 

Motivated by environmental and industrial issues, many studies 
concerning the bed-load were conducted in the last decades. Perhaps 
the most comprehensive is Bagnold (1941), which discusses the 
mechanisms of granular entrainment, proposes semi-empirical 
expressions for the estimation of the flow rate of grains and 
discusses the effects of the granular mobility on the fluid flow (feed-
back effect). One of the main difficulties concerning bed-load is that 
the mobile granular layer is not a continuous media, so that the great 
number of contact points determine the behavior of the system. 
Dealing with this great number of contact points is not feasible and, 
on the other hand, a rheology for the granular matter is not known at 
present. As a consequence, there are many different formulations for 
the bed-load flow rate and there isn’t a real consensus about it. 

The growth of bedforms is another difficulty related to the 
modeling of the bed-load. These forms, initially two-dimensional, 
may grow and generate patterns such as ripples or dunes. In nature, 
one example is the aquatic ripples observed on river beds, which 
create a supplementary friction between the bed and the water, 
affecting then the water depth and being related to flood problems. 
In industry, examples are mostly related to closed-conduit flows 
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conveying grains, such as sewerage systems or the hydrocarbon 
pipelines conveying sand. In these cases, the bedforms generate 
supplementary pressure loss and pressure and flow rate transients 
(Kuru et al., 1995; Franklin, 2008). In order to understand the 
growing of bedforms, many works on the stability of granular beds 
sheared by a fluid were made in the last decades (Kennedy, 1963; 
Reynolds, 1964; Engelund, 1970; Richards, 1980; Elbelrhiti et al., 
2005; Claudin and Andreotti, 2006; for instance). Engelund and 
Fredsoe (1982) present a remarkable overview on this subject. 

Recently, Franklin (2010) discussed some physical aspects of 
the instability, explained its mechanisms and presented a linear 
stability analysis. The stability analysis was made in the specific 
case of granular beds sheared by turbulent boundary-layers of 
liquids, without free surface effects. Different from previous linear 
stability analyses, Franklin (2010) showed that the length-scale of 
the initial bedforms varies with the fluid flow conditions. In order to 
understand the wavelength of ripples and dunes observed in nature, 
which usually have their wavelength predicted by linear analyses 
though they are clearly in a nonlinear phase, Franklin (2011) 
presented a nonlinear stability analysis in the same scope of 
Franklin (2010). The employed approach was the weakly nonlinear 
analysis (Landau and Lifchitz, 1994; Schmid and Henningson, 
2001; Drazin and Reid, 2004; Charru, 2007), useful whenever a 
dominant mode can be proved to exist. Franklin (2011) showed that 
the bed instabilities saturate after the initial exponential growth 
(linear phase), i.e., they attenuate their growth rate and maintain the 
same wavelength. 

In both Franklin (2010) and Franklin (2011) the results of the 
analyses were compared to experimental data concerning ripples in 
closed-conduit flows (which is a case where free surface effects are 
absent). In particular, the dependence of the bedform wavelength on 
the fluid flow conditions and the saturation of the bedform 
amplitude were confirmed by experimental results. 

Bed-load numerical simulations are another approach employed 
in an effort to understand the instabilities appearing on granular 
beds. The main problem is then the modeling of the granular media: 
it is a discrete media for which a lagrangian description is not 
feasible given the large number of discrete elements. To solve this 
problem, it is usual to employ some semi-empirical expressions for 
the bed-load flow rate, such as those proposed by Bagnold (1941) 
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and Meyer-Peter and Mueller (1948). Another difficulty is the 
computation of the fluid flow over a deformable bed, which perturbs 
in its turn the fluid flow. 

Amongst the works on mathematical modeling and numerical 
simulations of bed-load under turbulent boundary-layers, there are 
Kroy et al. (2002a), Kroy et al. (2002b) and Hersen (2004). These 
models were all conceived for turbulent gas flows (aeolian case), 
and are based on four equations: (i) the shear stress caused by the 
fluid flow on the bed surface; (ii) a semi-empirical equation for the 
bed-load flow rate; (iii) an equation accounting for the relaxation 
between the fluid flow and the granular flow; and (iv) the mass 
conservation of the granular bed. 

Because the semi-empirical expressions for the bed-load flow 
rate are based on the shear stress on the bed, Kroy et al. (2002a) and 
Kroy et al. (2002b) proposed the direct employment of an equation 
for it, instead of computing the entire fluid flow above the bed. If 
the deformation keeps a small aspect ratio, the shear stress caused 
by the fluid flow on a deformed bed can be obtained analytically by 
Perturbation Methods. For example, this was done in the case of 
turbulent boundary-layers by Jackson et al. (1975), Hunt et al. 
(1988) and Weng et al. (1991). Kroy et al. (2002a) and Kroy et al. 
(2002b) simplified the results of Jackson et al. (1975), Hunt et al. 
(1988) and Weng et al. (1991) and obtained an expression 
containing only the dominant physical effects of the shear stress 
perturbation. Concerning the bed-load flow rate, they employed an 
expression derived from the aeolian bed-load model of Sauermann 
et al. (2001), whose constants were adjusted from experimental data. 
The employed equation accounting for the relaxation between the 
flow rate of grains and the fluid flow was also obtained from 
Sauermann et al. (2001). The model was then implemented in a 
numerical code and some simulations of the aeolian case were 
performed. From different initial conditions, the model was able to 
show the evolution from an initial bump to dunes. However, the 
authors were not interested in the initial instabilities, and for that 
they did not try to find a most unstable wavelength, which is the one 
expected to give origin to dunes. 

The model and the simulations presented in Hersen (2004) are 
based on the same equations of Kroy et al. (2002a) and Kroy et al. 
(2002b). The main difference in Hersen (2004) is that the work was 
focused on the formation of the crescentic shape barchan dunes.  

This article presents a mathematical model for the transport of 
grains as bed-load by a turbulent boundary-layer, when the fluid is a 
liquid. The model is kept as simple as possible, but it is able to 
capture the pertinent physics involved, such as the growing of 
instabilities on the bed. Concerning the fluid flow, it employs an 
analytical equation for the shear stress on the bed given by 
Perturbation Methods, which limits the model to low aspect ratios of 
the bedforms. Another restriction is that the model is applied only to 
liquids. This restriction was not imposed in previous models of this 
kind (Kroy et al., 2002a; Kroy et al., 2002b; Hersen, 2004), although 
the bed-load characteristics in liquids are different from the aeolian 
case (Raudkivi, 1976). To compute the bed-load flow rate, a semi-
empirical formula is employed. Concerning the boundary condition, 
it is assumed the existence of a flat granular bed at the upstream end 
of the domain. As initial condition, the model needs an initial 
bedform, which is taken as an undulated granular bed of low aspect 
ratio. The implementation of the model in a numerical code is 
presented and the results of some simulations are confronted to the 
linear stability analysis of Franklin (2010) and to experimental data 
previously published. 

The main objective of this paper is to propose a simple model 
that, if employed with the stability analysis of Franklin (2010) as 
initial condition, is able to predict the bed-load flow rate and the 
initial evolution of granular beds submitted to turbulent boundary-
layers of liquids. The initial evolution of the bedforms, based on the 

most unstable wavelengths, is completely absent in current 
numerical codes on this subject. 

 The next section discusses the involved physics and presents 
the equations composing the model. The following sections describe 
the numerical implementation of the model in a computational code, 
and the main results from the numerical simulations. They are 
followed by the conclusions section. 

Nomenclature 

A = constant 
B = constant 
C = constant 
c = phase velocity, m.s-1 
d = mean grain diameter, m 
F = Fourier transform 
F -1 = inverse Fourier transform 
g = acceleration of gravity, m.s-2 
H = amplitude of the initial bedform, m 
h = local height of the granular bed, m 
i = imaginary number 
k = wave-number, m-1 

L = length-scale, m 
N = number of iterations 
Q = volumetric flow rate of grains by unit of width, in the basic 

state, m2.s-1 
q = local volumetric flow rate of grains by unit of width, m2.s-1 

*u  = shear velocity, m.s-1 

US = grain settling velocity, m.s-1 

Res = settling Reynolds number 






 = ν

S
S

dURe  

S = ratio between the specific masses ( )ρρ pS =  

Sd = Standard deviation, m 
t = time, s 
X = longitudinal length of the computation domain, m 
x = horizontal (longitudinal) coordinate, m 
y = vertical coordinate, m 
y0 = rugosity height, m 
Greek Symbols 

∆ = interval (step) 

θ = Shields number 
( ) 














−
=

gdp ρρ
τθ  

κ = von Kármán constant 
λ = wavelength of the initial instabilities, m 
µ = dynamic viscosity, Pa.s 
ρ = specific mass, kg.m-3 

σ = growth rate, s-1 

τ = shear stress, Pa 
ξ = mean of the Gaussian function, m 
ω = frequency, s-1 
ϕ = concentration (volume fraction) of grains 

Subscripts 

d = relative to deposition 
drag = inertial scale 
k = Fourier space 
max = relative to the most unstable (amplified) mode 
0 = relative to the basic state 
p = relative to grains 
s = relative to settling 
sat = relative to the saturated regime 
x = real space 
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Superscripts 

^ = perturbation 

Mathematical Model 

The present model follows the lines of Kroy et al. (2002a), Kroy 
et al. (2002b) and Hersen (2004), and is also based on the following 
four equations: (i) the shear stress caused by the fluid flow on the 
bed surface; (ii) a semi-empirical equation for the bed-load flow 
rate; (iii) an equation accounting for the relaxation between the fluid 
flow and the granular flow; and (iv) the mass conservation of the 
granular bed. However, these equations are worked at differently 
here, mainly with respect to relaxation effects, and with respect to 
the inclusion of gravity effects. Also, differently from Kroy et al. 
(2002a), Kroy et al. (2002b) and Hersen (2004), the present model is 
applicable to turbulent liquid flows, and is focused on the early 
stages of the granular bed instabilities. 

As the interest here is in the first stages of the bed instabilities, 
the model is two-dimensional. This is justified by the Squire’s 
Theorem, which states that the most unstable modes in parallel 
flows are two-dimensional (Schmid and Henningson, 2001; Drazin 
and Reid, 2004; Charru, 2007). The physical concepts and the 
equations employed in the model are presented next. 

 
- Shear stress on the bed 

The perturbation of a turbulent boundary-layer by a hill with 
small aspect ratio was analytically found by Jackson and Hunt 
(1975) and by Hunt et al. (1988). Their results were later applied to 
forms with higher aspect ratio by Weng et al. (1991). Jackson and 
Hunt (1975), Hunt et al. (1988) and Weng et al. (1991) found that 
the perturbed shear stress is shifted upstream the dune crest. Kroy et 
al. (2002a) and Kroy et al. (2002b) simplified the results of Weng et 
al. (1991) and obtained an expression containing only the dominant 
physical effects of this perturbation, making clearer the reasons for 
this upstream shift. For a two-dimensional hill with a height h(x), a 
surface rugosity y0 and a length 2L between the half-heights (total 
length ≈ 4L), they showed that the perturbation of the longitudinal 
shear stress, in dimensionless form and in the Fourier space is 

 
 

{ }( )iBkkhAFk +=τ̂             (1) 

 
where k = λ-1 is the longitudinal wave-number (λ is the wavelength), 
i is the imaginary number, the subscript k is related to the Fourier 
space,  F is the Fourier operator, x is the longitudinal direction and A 
and B are considered as constants, as they vary with the logarithm of 
L/y0. Equation (1) was obtained for H/L < 0.05, but Carruthers and 
Hunt (1990) showed that reasonable results are obtained when Eq. 
(1) is applied to slopes up to H/L = 0.3. 

The fluid flow over the bed can be written as a basic state flow, 
unperturbed, plus a flow perturbation. The basic state is defined as 
the fluid flow, and the corresponding bed-load flow rate, over a flat 
granular bed. The shear stress on the bed surface can then be 
written, in the real space, as 
 

{ }( )kF τττ ˆ1 1
0

−+=             (2)  

 
where τ0 is the shear stress caused by the basic state flow on the bed 
and F -1 is the inverse Fourier operator. 

The shear stress caused by the fluid flow on the bed surface can 
be obtained directly from Eqs. (1) and (2). The great advantage of 
this method is that there is no need to compute the fluid flow in 
regions far from the surface, as it would be necessary with, for 
example, a RANS (Reynolds Average Navier-Stokes) method. 

 
- Flow rate of grains in the basic state 

In the basic state, the fluid flow and the transport of grains are in 
equilibrium: their flow rates are in a steady state regime without 
spatial variations, so that the term “saturated” is often employed. 
However, as pointed out in the introduction, there are many 
different formulations for the flow rate of grains, and they are all 
semi-empirical. The one employed here is from Meyer-Peter and 
Mueller (1948), based on exhaustive experiments with water 
streams 
 

( )
( ) 2

3

3
8

1
t

sat

gdS

q θθ −=
−

              (3) 

 
where qsat is the volumetric flow rate of grains by unit of width 
(saturated), S is the ratio between the grains specific mass ρp and the 
fluid specific mass ρ, g is the acceleration of gravity, d is the mean 
grain diameter, θ is the Shields parameter (ratio of the entraining 
force to the resisting force): 
 

( )gdp ρρ
τθ

−
=                (4) 

 
and θt is the threshold Shields parameter (Buffington and 
Montgomery, 1997). 
 
- Relaxation between the flow rate of grains and the fluid flow 
For fluid flows over undulated beds, the shear stress on the bed is a 
function of the position. It is then expected some inertial (or 
relaxation) effect between the grains and the fluid, so that the flow 
rate of grains will lag some distance with respect to the fluid flow. 
This distance is a characteristic length usually called “saturation 
length”, Lsat. A simplified expression taking into account the 
relaxation effect can be obtained from the erosion-deposition model 
of Charru et al. (2004): 
 

sat

sat
x L

qq
q

−
=∂                 (5) 

 
Kroy et al. (2002a), Kroy et al. (2002b) and Hersen (2004) 

considered that the saturation length has an inertial origin, and is 
proportional to the traveling distance of individual grains, given by 
Ldrag=d ρp/ρ. According to this expression, Ldrag is an inertial length-
scale obtained when the density of the granular material is many times 
larger than the density of the fluid,  ρp  >> ρ. It is then pertinent when 
the fluid is a gas. When the fluid is a liquid, however,  ρp ≈ ρ and it has 
been argued by Charru (2006) and Franklin (2010) that this length-
scale can no longer be applied. Instead, a relaxation length based on 
the deposition of an individual grain must be used, Ld: 

 







==

S
satdsatsat U

udCLCL 0*               (6) 

 
where u*0 is the shear velocity of the basic state flow, defined by 

2
0*0 uρτ = and Us is the grain settling velocity. The order of 

magnitude of Lsat, O(Lsat), has been reported as O(Ld) < O(Lsat) < 
10.O(Ld) (Charru et al., 2004; Franklin, 2008), depending on the 
particular conditions of the liquid flow: O(Lsat) = O(Ld) in hydraulic 
smooth regimes and O(Lsat) = 10.O(Ld) in hydraulic rough regimes. 
Csat is then an adjustable constant that, following the inertia of the 
boundary-layer at the grain scale, gives the proportion between Lsat 
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and Ld. For a large range of the settling Reynolds number (ReS = 
ρUSd/µ), the settling velocity Us may be evaluated as 
 

2
1

1

3

4















 −
=

ρ
ρρ p

D
S gd

C
U

              (7) 

 
where CD is the drag coefficient that may be evaluated by the 
Schiller-Neuman correlation when ReS < 800 (Clift et al., 1978). 
 
- Mass conservation of grains 

The two-dimensional mass conservation applied to the grains 
can be written as 

 

0
1 =∂+∂ qh xt φ

               (8) 

 
where ϕ is the concentration (volume fraction) of grains in the 
granular bed, considered as constant in the model. 
 
- Gravity effects 

As discussed in Franklin (2010), gravity weakens the transport 
of grains over positive slopes (upstream the crests) and facilitates it 
over negative slopes (downstream the crests), being inversely 
proportional to the slope of the bed. It can then be incorporated in 
the constant B of the shear stress perturbation (Eq. (1)). 
 
- Summary 

Computations employing the model are relatively fast and easy. 
First, there is no need to compute the fluid flow in regions above the 
bed because the model needs only the shear stress on the bed 
surface, whose analytical solutions are known from Perturbation 
Methods. Second, the set of equations to be solved are uncoupled, 
and two of the four basic equations have analytical solutions (the 
others are first order differential equations). If an explicit scheme is 
employed in Eq. (8), numerical solutions can be searched by 
evaluating in sequence the presented equations, given an upstream 
condition (the boundary condition), and an initial bedform (initial 
condition). The structure employed to perform the numerical 
computations is given next. 

Numerical Implementation 

The model was implemented in a numerical code whose 
structure is given below. 
1. Entry: 

a. Fluid and grain properties; 
b. Initial condition (initial h(x)); 
c. Boundary condition (u*0); 
d. Numerical parameters; 
e. Computation of Lsat by Eq. (6). 

2. Loop (until the desired number of iterations, or the total time is 
achieved): 

a. Fourier transform of h(x) and computation of 
kτ̂ by Eq. (1); 

b. Inverse Fourier transform of 
kτ̂  and computation of τ by Eq. (2); 

c. Computation of qsat(x) by Eq. (3); 
d. Computation of q(x) by the numerical solution of Eq. (5); 
e. Computation of the values of h(x) at the new time step by 

solving Eq. (8); 
f. Storage of the data at the desired instants. 

3. Post-processing: 
a. Computation of the bedform growth rate; 
b. Computation of the bedform celerity. 

A brief explanation of some of the numerical steps is given next.  

- Fluid and grain properties (1.a): these concern the specific masses 
of the liquid and of the grain, the dynamic viscosity of the liquid, the 
mean diameter of the grains and the threshold Shields number 
(Buffington and Montgomery, 1997). 
- Initial condition (1.b): it is the initial form of the bed h(x). For all 
the simulations presented here the initial bedform was a Gaussian 
Function 

( )
2

2

2 )( ds

x

eHxh

ξ−
−

=                (9) 

 
where H is the initial amplitude (crest), ξ is the Gaussian mean and 
sd is the standard deviation. This form has the advantage of tending 
to zero when the domain is large enough, meaning that the basic 
state is expected to exist at the boundaries of the domain. Another 
advantage is that it can be easily adjusted to different lengths, 
positions and aspect ratios by varying sd, ξ and H. In order to be 
coherent with Jackson and Hunt (1975), Hunt et al. (1988) and 
Weng et al. (1991), it is considered here that L = sd so that the total 
length is approximately 4sd. 
- Boundary condition (1.c): is the condition far upstream the initial 
bedform, over a flat bed, corresponding then to the basic state. 
- Numerical parameters (1.d): they correspond to the numerical 
constants necessary to the code functioning. They are: the spatial 
resolution ∆x, the time step ∆t, the total number of iterations N and 
the numerical scheme to be employed in the numerical solution of 
Eq. (8). 
- Computation of τ(x) (2.a and 2.b): it is divided in four steps. First, 

a Fast Fourier Transform (FFT) operation is made on h. Then, kτ̂  is 

evaluated by Eq. (1) and an Inverse Fast Fourier Transform (IFFT) 

operation is made onkτ̂ . Finally, τ(x) is evaluated by Eq. (2). 

- Computation of q(x) (2.d): q(x) is evaluated by the numerical 
integration of Eq. (5). An Upwind scheme is employed, with the 
boundary condition q(x = 0) = qsat(x = 0). 
- Computation of h(x) for the new time step (2.e): h(x) is evaluated 
by the numerical solution of Eq. (8). As q(x) and qsat(x) are already 
known, an explicit numerical scheme can be easily employed to 
determine h(x) in the new time step. In the code, one can choose 
from four schemes that were implemented: LAX + FTCS, Upwind + 
LAX, Upwind + First Order Euler, FTCS + First Order Euler (Press 
et al., 1992). Due to the very small phase shifts between q(x) and 
h(x) in some cases, the First Order Euler schemes work better than 
the LAX schemes: the schemes based on LAX become more 
dependent on the spatial resolution because they employ spatial 
averages on the preceding time steps. This phase shift is the 
responsible for the stability or the instability of the bedform 
(Franklin, 2010). The use of an explicit scheme for the numerical 
solution of Eq. (8) means that the Courant condition must be 
verified. This was assured for all the simulations. 
- Computation of the bedform growth rate and of the bedform celerity 
(3.a and 3.b): the growth rate σ and the bedform celerity c are 
evaluated from the transversal and the longitudinal displacement 
velocities of the bedform crest, respectively. Those velocities are 
evaluated by fitting the displacements as linear functions of the time. 

Main Results 

Simulations were performed employing the numerical code 
described in the previous section, and the main results are presented 
here. For the present simulations, the aspect ratio of the initial 
bedform, the mean diameter of the grains and the fluid properties 
(water) were fixed. In order to compare the numerical model with 
the linear stability analysis of Franklin (2010), both the length of the 
initial bedform and the shear velocity were varied. The choice of 
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these parameters is based on the main conclusion of Franklin (2010) 
that the length-scale of the most unstable mode varies with the fluid 
flow, which is different from previous stability analyses. Effects due 
to gravity (slope) and to the grains diameter are not discussed in this 
paper. The bedform evolution was then computed and its growth 
rate and celerity were evaluated. 

Figure 1 shows three examples of bedform development 
predicted by the numerical code. The initial form, shown in dashed 
line, was the same for the three cases: a Gaussian function with sd = 
0.1 m and aspect ratio H/(4sd) = 0.1. For the simulation presented in 
Fig. 1, the total number of iterations was N = 105 with a time step ∆t 
= 10-5s, corresponding then to a total time of 1s. The total domain in 
the x direction was X = 2 m and it was discretized in intervals of ∆x 
= 10-3 m. The saturation constant is Csat = 1, corresponding to a 
hydraulic smooth regime. Figure 1.a corresponds to u*0 = 0.04 m/s, 
Fig 1.b corresponds to u*0 = 0.08 m/s and Fig. 1.c corresponds to u*0 
= 0.16 m/s. 

From Figs. 1.b and 1.c it is clear that the simulated cases are 
unstable: the bedform grows as the time increases, while the form is 
displaced to the right, showing a positive celerity. The same occurs 
in Fig. 1.a, however the time-scale is too large (slow growth rate) to 
be clear in the figure. 

 

 

 

 
Figure 1. Evolution of an initial Gaussian bedform, with sd = 0.1 m and 
aspect ratio H/(4sd) = 0.1. The dashed line is the initial form and the 
continuous lines correspond to the bedform at posterior times. The total 
time for this simulation was 1 s. The saturation constant is Csat = 1. (a) u*0 
= 0.04 m/s , (b) u*0 = 0.08 m/s  and (c) u*0 = 0.16 m/s . 

The slope of the upwind face (upstream the crest) decreases, 
while the slope of the lee face (downstream the crest) increases. This 
indicates that the initial Gaussian bedform tends to a transverse 
ripple, which has an upstream face of small slope, and a high slope 
lee face (in fact an avalanche slope). This is exactly what is verified 

experimentally (Kuru et al., 1995; Franklin, 2008), so that the model 
is able to predict the tendency of the bedform evolution, in the early 
stages of the instability (or stability). Also from Fig. 1, it is clear 
that the growth rate and the celerity of the bedforms increase with 
the shear velocity of the basic flow. 

Franklin (2010) showed from the mass conservation of grains 
that there is erosion in regions where the gradient of the bed-load 
flow rate is positive, and deposition where it is negative, so that the 
phase lag between the flow rate of grains and the bedform is a 
stability criterion. In other words, if the maximum of the flow rate 
of grains occurs upstream the bedform crests, deposition must occur 
at the crests: the bed is unstable and bedforms will grow. On the 
contrary, the bed is stable and bedforms tend to disappear. Franklin 
(2010) then discussed three reasons for the phase lag. One is the 
fluid flow perturbation caused by the shape of the bed, which is 
shifted upstream the bed and is an unstable mechanism (Jackson et 
al., 1975; Hunt et al., 1988; Weng et al., 1991). Another one 
concerns the relaxation effects related to the transport of grains: the 
grains lag some distance (or time) with respect to the fluid flow, so 
that the bed-load flow rate is shifted downstream the fluid flow and 
is a stable mechanism (Valance and Langlois, 2005, and Charru, 
2006, in the case of viscous flows; Franklin, 2010, in the case of 
turbulent flows). The last one is related to gravity (slope effect): the 
bed-load flow rate is larger over negative slopes, so that it is shifted 
downstream the fluid flow and is another stable mechanism.  

 

 

 

 
Figure 2. Evolution of an initial Gaussian bedform, with sd = 0.1 m and 
aspect ratio H/(4sd) = 0.1. The dashed line is the initial form and the 
continuous lines correspond to the bedform at posterior times. The total 
time for this simulation was 1 s. The saturation constant is Csat = 50. (a) u*0 
= 0.04 m/s , (b) u*0 = 0.08 m/s  and (c) u*0 = 0.16 m/s . 
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In the present simulations we do not analyze slope effects, so 
that the relaxation is the only stable one. In order to verify if the 
model is able to predict also stable solutions for the same initial 
bedform, the relaxation effects can be increased by increasing the 
value of Csat. From experiments, Csat can be estimated to be of order 
10 in the transition to the hydraulic rough regime (Kuru et al., 1995; 
Franklin, 2008). Figure 2 shows the bedform development predicted 
by the numerical code when Csat = 50. The initial form, shown in 
dashed line, was the same as that of Fig. 1: a Gaussian function with 
sd = 0.1 m and aspect ratio H/(4sd) = 0.1. Figure 2a corresponds to 
u*0 = 0.04 m/s, Fig 2.b corresponds to u*0 = 0.08 m/s, Fig. 2.c 
corresponds to u*0 = 0.16 m/s and all the other parameters are the 
same as in Fig. 1. 

From Fig. 2b we observe that, due to the increased relaxation 
effect (increased phase shift between q and qsat, as shown by Eq. 5), 
the growth rate is smaller when Csat = 50 in comparison with Csat = 
1 (Fig. 1.b). Figure 2.c shows that for u*0 = 0.16 m/s the relaxation 
effects are even larger, being stronger than the unstable mechanism 
and being responsible for the stabilization of the bed. The effect of a 
greater relaxation (smaller growth rate) also occurs in Fig. 2.a (in 
comparison to Fig. 1.a); however, the time-scale is too large (slow 
growth rate) to be clear in the figure. 

The initial growth rate and the celerity of the bedform were 
computed from the evolution predicted by the numerical code. For 
the present simulations, the growth rate σ was evaluated as the 
transversal displacement velocity of the crest divided by the total 
length of the initial bedform, and the bedform celerity c was 
evaluated as the longitudinal displacement velocity of the crest. 
Table 1 shows the celerity c and the growth rate σ obtained in the 
simulations of Figs. 1 and 2. 

 
Table 1. Bedform celerity c and growth rate σ for different values of the 
saturation constant Csat and different shear velocities of the basic state 
flow u*0. 

∆x ∆t N X Csat u*0 c σ 

(m) (s)  (m)  (m/s) (m/s) (1/s) 

10-3 10-5 105 2 1 0.04 0.0016 0.00068 

10-3 10-5 105 2 1 0.08 0.0130 0.00540 

10-3 10-5 105 2 1 0.16 0.1155 0.04210 

10-3 10-5 105 2 50 0.04 0.0019 0.00037 

10-3 10-5 105 2 50 0.08 0.0126 0.00110 

10-3 10-5 105 2 50 0.16 0.0805 -0.00840 

The initial wavelength imposed was the same (sd = 0.1 m and aspect ratio 
H/(4sd) = 0.1). ∆x is the spatial interval (resolution), ∆t is the time step, N is 
the total number of iterations and X is the longitudinal length of the 
computation domain. 

 
From Table 1, when Csat = 1, variations of the shear velocity of 

the basic flow u*0 by a factor j imply variations in both the bedform 
celerity c and in the growth rate σ by a factor j3. The variation of c 
and of σ, as u*0

3, indicates that c and σ vary directly with the 
saturated flow rate of grains in the basic state (Franklin, 2010): the 
effect of the saturation length Lsat is too weak to affect the celerity or 
the growth rate. In fact, as discussed in Franklin (2010), the 
modulation of length-scale, celerity and growth rate depends on the 
phase shift between the fluid flow and the bed morphology (unstable 
effect) and on the phase shift between the bed-load flow rate and the 
fluid flow (stable effect). When Csat = 1, the latter, although exists, 
seems too small (many times smaller than the former) to affect c and 
σ. Then, c and σ vary only with the saturated flow rate of grains. 
When the value of Csat is increased to Csat = 50, the phase shift 
between the bed-load flow rate and the fluid flow is increased (Eqs. 

(5) and (6)) and both c and σ show variations that are lower than 
u*0

3, indicating that relaxation effects are present. 
The present model can be directly compared to stability analyses 

if the evolutions of bedforms with different initial lengths are 
computed. The reason for this is that stability analyses are made on 
a continuum spectrum of modes. For example, this was done by 
Franklin (2010), who found a most unstable mode (most amplified 
growth rate) of a given wavelength, and predicted the variations of 
the growth rate and of the celerity for this specific wavelength. 
Franklin (2010) also showed the existence of a cut-off wavelength, 
below which the bed is always stable. 

Figure 3 compares the celerity predictions from the linear 
stability analysis of Franklin (2010) with the celerity computed with 
the present model. The lines correspond to Eq. (19) of Franklin 
(2010) and the symbols to the celerity computed with the model. 
The dashed line and the circles correspond to u*0 = 0.04 m/s and the 
continuous line and the asterisks correspond to u*0 = 0.08 m/s. 
Figure 3.a presents the celerity c as a function of the wave-number k 
and Fig. 3.b presents the celerity normalized by the settling velocity 
c/Us as a function of the wave-number normalized by the saturation 
length k.Lsat. Because of the Courant condition, the total time (or the 
number of iterations) had to be larger in order to obtain the bedform 
celerity, and this was done for only some wave-numbers (but within 
a large range in the spectrum). The celerity computed numerically 
from the bedform evolution agrees with the stability analysis 
predictions: the simulated points c(k) follow the analytical curve 
c(k) given by Franklin (2010). Also, for all the modes (including the 
most unstable one) the numerical model gives the scaling 2

0*~ uc , 

as predicted by Franklin (2010). 
 

 
 

 
Figure 3. Bedform celerity c as a function of the wave-number k: (a) 
dimensional form; (b) normalized by the settling velocity Us and by the 
saturation length Lsat. The lines correspond to the analysis of Franklin 
(2010) and the symbols to the present model. The dashed line and the 
circles correspond to u*0 = 0.04 m/s and the continuous line and the 
asterisks correspond to u*0 = 0.08 m/s . 
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Figure 4 compares the growth rate predictions from the linear 
stability analysis of Franklin (2010) with the growth rates computed 
with the present model. Figure 4.a presents the growth rate σ as a 
function of the wave-number k in dimensional form. The lines 
correspond to the Eq. (17) of Franklin (2010) and the symbols to the 
growth rates computed with the model. The dashed line and the 
circles correspond to u*0 = 0.04 m/s and the continuous line and the 
asterisks correspond to u*0 = 0.08 m/s. 

The bedform evolution predicted by the model agrees with the 
stability analysis, showing the existence of a most unstable mode 
(the growth rate has a maximum) and that it is long-wave instability: 
bedforms increase (instability) if their initial wave-numbers are 
smaller than the cut-off wave-number, and bedforms decrease 
(stability) otherwise. The value of the cut-off wave-number 
predicted by the stability analysis is slightly lower, with the curve 
σ(k) decreasing (after the maximum) faster than the points computed 
with the model. This difference comes from the simplifications in 
the flow rate of grains done in Franklin (2010): (i) the multiplier 
factor was made equal to 1 and the threshold stress was neglected in 
the equation for the flow rate of grains (Eq. (5) of Franklin, 2010); 
and (ii) the latter was linearized (Eq. (7) of Franklin, 2010). 
Concerning the most unstable mode the agreement is good: the 
differences between the wave-number for the most unstable mode 
kmax predicted from the stability analysis and the computed 
numerically are less than 6% when u*0 = 0.04 m/s and less than 5% 
when u*0 = 0.08 m/s. Also, the value of the growth rate of the most 
unstable mode σmax is multiplied by a factor 2 when the shear 
velocity u*0 is doubled. This means that the numerical model 
captures the scaling σmax ~ u*0 predicted by Franklin (2010). 

 

 
Figure 4. Growth rate σ as a function of the wave-number k: (a) 
dimensional form; (b) normalized by the deposition time td and by the 
saturation length Lsat. The lines correspond to the stability analysis of 
Franklin (2010) and the symbols to the present model. The dashed line 
and the circles correspond to u*0 = 0.04 m/s and the continuous line and 
the asterisks correspond to u*0 = 0.08 m/s . 

Figure 4.b presents the growth rate σ as a function of the wave-
number k in dimensionless form: σ is normalized by the deposition 
time td = d/Us and k by the saturation length Lsat. The symbols and 
the lines are the same as in Fig. 4.a. As the grains properties are the 
same for all the analyzed cases, the deposition time is the same for 
both cases (td = 8.1.10-3s), so that the ratio of the magnitudes of σ is 
maintained when comparing u*0= 0.04 m/s to u*0= 0.08 m/s. The 
effect of normalizing k by Lsat is to bring the two cases to the same 
positions in the normalized abscissa, including the normalized 
wave-numbers for the most unstable mode and for the cut-off. This 
indicates that the most unstable mode scales with the saturation 
length Lsat, in agreement with Franklin (2010), but also with the 
experimental results of Kuru et al. (1995) and Franklin (2008). 

Experiments in the scope of this model were presented in Kuru 
et al. (1995) and in Franklin (2008). Kuru et al. (1995) performed 
experiments on a 7 m long, 31.1 mm diameter horizontal pipe, and 
employed mixtures of water and glycerin as the fluid media and 
glass beads as the granular media. Franklin (2008) performed 
experiments on a 6 m long, horizontal closed-conduit of rectangular 
cross-section (120 mm wide by 60 mm high), made of transparent 
material, and employed water as the fluid and glass and zirconium 
beads as the granular media. In both works, the authors measured 
the wavelengths of the initial bedforms (ripples) appearing on the 
granular bed. Given the small time scales of the problem and the 
presence of high uncertainties, the celerity and the growth rate were 
not reported. 

In order to directly compare the experimental data with the 
present computations, Fig. 5 presents the dimensionless mean 
wavelength λ/d of initial ripples as a function of the dimensionless 
shear velocity u* /Us. From this figure, we can observe that the 
dimensionless wavelength increases with the fluid flow conditions, 
and that the experimental data seems dispersed around a line. If we 
take into account the relatively high uncertainties, often present in 
measurements of bedforms instabilities, the alignment of the 
experimental data in Fig. 5 supports the results of the proposed 
model (but also of Franklin, 2010): that λ ~ Lsat ~ d u* /Us for the 
most unstable mode. 

 

 
Figure 5. Dimensionless mean wavelength λ/d of initial ripples as a 
function of dimensionless shear velocity u*/Us. Filled circles, lozenges, 
triangles and squares correspond to d = 0.3 mm  and µ = 1 cP, d = 0.3 mm  
and µ = 2.2 cP, d = 0.1 mm  and µ = 1 cP and d = 0.1 mm  and µ = 2.1 cP, 
respectively (experimental data of Kuru et al., 1995). Open lozenges, 
circles, squares and asterisks correspond to d = 0.12 mm , d = 0.20 mm  
and d = 0.50 mm  glass beads (in water) and to d = 0.19 mm  zirconium 
beads (in water), respectively (experimental data of Franklin, 2008). 

 
Finally, the numerical simulations with the present model agree 

with the stability predictions concerning the growth rate, the 
celerity, the most unstable wavelength and the cut-off wavelength. 
However, differently from the stability analysis, the model does not 
select the most unstable wavelength, so that it needs an initial 
bedform as an entry. If an appropriate routine based on the stability 
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analysis is included in the model, it can select the most unstable 
mode as an entry. As the growth is exponential in the initial phase of 
the instability, the most unstable mode prevails, so that the model 
needs to compute the evolution of this sole mode. 

Conclusions 

This paper presented a simple and fast computing model for the 
transport of grains as bed-load by a turbulent boundary-layer of a 
liquid. Although simple, the model is able to capture the pertinent 
physics involved, such as the growing of instabilities. The main 
differences from previous models are that it concerns specifically 
liquid flows and that it is focused on the early stages of the bedform 
evolution. If employed together with the stability analysis, it can 
predict the evolution of the most unstable mode as long as the aspect 
ratio is small (smaller than 0.3): as the growth is exponential in the 
initial phase of the instability, the most unstable mode prevails, so 
that the model needs to compute the evolution of this sole mode. 
The proposed model agrees with the stability analysis of Franklin 
(2010) and compares well with the available experimental data of 
Kuru et al. (1995) and Franklin (2008). The initial evolution of the 
bedforms, based on the most unstable wavelengths, is completely 
absent in current numerical codes on this subject. The proposed 
model can then be included in current numerical codes in order to 
correctly predict the very first forms appearing on the bed, giving 
then a complete picture of the bedforms evolution. 
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