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Dynamics of Gas Bubble Growth in 
Oil-Refrigerant Mixtures under 
Isothermal Depressurization  
This paper proposes a numerical model to predict the growth of gaseous refrigerant 
bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal 
depressurization. The model considers an Elementary Cell (EC) in which a spherical 
bubble is surrounded by a concentric and spherical liquid layer containing a finite amount 
of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration 
gradient at the bubble interface and the refrigerant is transported to the bubble by 
molecular diffusion. After a sufficiently long time, the concentration gradient in the liquid 
layer and the bubble internal pressure reach equilibrium and the bubble stops growing, 
having attained its stable radius. The equations of momentum and chemical species 
conservation for the liquid layer, and the material balance at the bubble interface are 
solved via a coupled finite difference procedure to determine the bubble internal pressure, 
the refrigerant radial concentration distribution and the bubble growth rate. Numerical 
results obtained for a mixture of ISO VG10 polyolester oil and refrigerant HFC-134a 
showed that the bubble growth dynamics depends on model parameters such as the initial 
bubble and liquid layer radii, the initial refrigerant concentration in the liquid layer, the 
initial pressure in the liquid phase, the decompression rate and the EC temperature. 
Despite its simplicity, the model demonstrated to be a potential tool for predicting bubble 
growth and foaming that may occur as a result of cavitation in oil-lubricated bearings and 
refrigerant degassing from the oil sump during compressor start-up. 
Keywords: refrigeration compressor, oil-refrigerant mixtures, bubble growth, numerical 
modeling 
 
 
 

Introduction1 

The interaction between the lubricant oil and the refrigerant is a 
key aspect in the determination of the refrigeration hermetic 
compressor performance and reliability. Its importance stems from 
the fact that the oil stored in the compressor sump is kept in direct 
contact with the gas inside the crankcase. The refrigerant usually has 
a significant solubility in the oil, which depends on pressure and 
temperature, and thermodynamic equilibrium between the phases is 
generally attained by means of refrigerant absorption and/or release 
from the mixture in some regions inside the compressor. Gas release 
(desorption) is caused primarily by pressure reduction during 
compressor start-up, but it is also caused by fluid friction as 
refrigerant-saturated lubricant flows through the compressor 
channels and gaps. As a result, small gas bubbles are formed which, 
in turn, change the bulk lubricant properties. If the pressure 
reduction is fast enough, bubble nucleation is so intense that foam 
can be formed (Becerra, 2003). It has been argued that cavitation 
and degassing phenomena can affect the compressor performance 
parameters such as power consumption and volumetric efficiency, 
and also provoke noise and wear (Grando et al., 2006a). 

Gas evolution and foam formation in oil-refrigerant mixtures 
can affect the compressor tribological characteristics (Yanagisawa et 
al., 1991). Although the first studies concerning the lubrication of 
the compressor sliding parts neglected the presence of refrigerant 
dissolved in the oil (Prata et al., 2000; Rigola et al., 2003; Cho and 
Moon, 2005; Couto, 2006), they undoubtedly have set the 
foundations for the more recent class of lubrication models that 
considered the effect of a lubricant mixture composed of refrigerant 
and oil. Among these studies, Grando et al. (2006b) proposed 
simplified lubrication models for journal bearings considering the 
interaction between the oil and the refrigerant and the existence of a 
gas/liquid two-phase flow in the lubricant film. Grando et al. 
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(2006a) solved the piston dynamics for small reciprocating 
compressors. Their results indicated an increase of friction losses 
followed by a reduction in load capacity due to the presence of 
gaseous refrigerant dispersed in the lubricant film. 

The complex fluid flow behavior of oil-refrigerant mixtures 
imposes an additional difficulty to the development of more 
sophisticated lubrication models. Visual experiments of oil-rich 
mixtures flowing through long small diameter tubes carried out by 
Lacerda et al. (2000) and Castro et al. (2004) pointed out the 
existence of bubbly two-phase flow preceded by a significant region 
of metastable liquid flow. In these studies, after nucleation, as the 
pressure gradient departs from the constant value associated with 
single-phase flow and increases due to refrigerant outgassing, more 
bubbles are generated and become very closely spaced giving rise to 
a foamy structure. In the light of these findings, equilibrium models 
for oil-refrigerant two-phase flow were proposed by Grando and 
Prata (2003) and Dias and Gasche (2006), who modeled the 
homogeneous equilibrium two-phase bubbly and foam flow, and by 
Barbosa et al. (2004) and Castro et al. (2009) who correlated the 
two-phase frictional pressure drop. Without empirically-based 
corrections, homogeneous equilibrium models showed large 
discrepancies with respect to the experimental data of Lacerda et al. 
(2000) and Castro et al. (2004), indicating that a non-equilibrium 
analysis of oil-refrigerant two-phase flow is necessary. 

Non-equilibrium models are based on the existence of pressure, 
temperature or chemical potential differences between the gas and 
the liquid phases. For dispersed systems such as two-phase bubbly 
and foam flows, non-equilibrium models generally also take into 
account nucleation and growth of individual gas bubbles in the 
liquid phase. These models have been widely employed to describe 
the growth of bubble clusters and foam growth in polymers and 
viscoelastic fluids (Amon and Denson, 1984; Arefmanesh and 
Advani, 1991; Arefmanesh et al., 1992; Joshi et al., 1998) and in 
magmatic melts (Proussevitch et al., 1993; Proussevitch and 
Sahagian, 1996). 
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In spite of the significant number of papers in related fields, 
the physical mechanisms that govern bubble growth in oil-
refrigerant mixtures have never been studied from their first 
principles. This is, therefore, the main contribution of the present 
paper. Based on the works of Amon and Denson (1984) and 
Proussevitch et al. (1993), a numerical model to predict the growth 
of gas bubbles subjected to isothermal decompression is proposed, 
whereby the transient transport of refrigerant to the bubble is 
driven by molecular diffusion. The model considers an Elementary 
Cell (EC) formed by a spherical gas bubble surrounded by a 
concentric liquid layer with a finite amount of dissolved 
refrigerant. As the pressure reduces in the liquid layer, a 
concentration gradient at the expanding bubble interface induces a 
refrigerant mass flow into the bubble. After a sufficiently long 
period, the concentration gradient at the bubble interface vanishes, 
the bubble internal pressure reaches equilibrium and the bubble 
stops growing, having attained its final equilibrium radius. The 
equations of conservation of momentum and chemical species for 
the liquid layer are solved together with the bubble interfacial 
material balance via a coupled finite difference procedure to 
determine the bubble internal pressure, the refrigerant 
concentration distribution along the liquid layer and the bubble 
growth rate. It will be demonstrated quantitatively that, for a 
mixture of ISO VG10 polyol ester lubricant oil and refrigerant 
HFC-134a, the bubble growth process is characterized by three 
distinct periods. The first period is one of slow rate of growth 
(controlled by the effect of interfacial tension), the second period 
is one in which the bubble reaches its maximum radius (diffusion-
controlled growth), and the third period is characterized by a 
vanishing concentration gradient in the liquid layer, when the 
bubble reaches its stable radius. In general terms, the numerical 
model results show that the bubble growth dynamics depends on 
the initial bubble and liquid layer radii, the initial pressure and 
refrigerant concentration in the liquid layer, the decompression 
rate and the elementary cell temperature. 

Nomenclature 

AE = coefficient in Eqs. (31)-(36) 
AP = coefficient in Eqs. (31)-(36) 
AW = coefficient in Eqs. (31)-(36) 
B = coefficient in Eqs. (31)-(37) 
C = coefficient in Eq. (33) 
D = mass diffusivity of the refrigerant in the mixture, m² s-1 
M = mass, kg 
p = pressure, Pa 
psat     = refrigerant vapor pressure, Pa 
r = radial coordinate, m 
R = bubble radius, m 
S = liquid layer radius, m 
T = temperature of the Elementary Cell, °C 
t = time, s 
ur = liquid velocity in the radial direction, m s-1 
wr = refrigerant mass concentration in the mixture 
wsat = refrigerant solubility in the mixture 
Y0, = dimensionless parameter in Eq. (27) 
Y1, = dimensionless parameter in Eq. (27) 
Y2, = dimensionless parameter in Eq. (27) 
Y3, = dimensionless parameter in Eq. (27) 
Y4, = dimensionless parameter in Eq. (27) 
y = modified radial coordinate, m³ 
y* = modified radial coordinate, m³ 

Greek Symbols 

β = clustering parameter of the spatial grid 
ϕ = potential function, m-3 

µ    = dynamic viscosity, Pa s-1 
ρ    = density, kg m³ 
σ   = interfacial tension, N m-1 
τrr  = component of the spherical stress tensor, Pa 
τθθ   = component of the spherical stress tensor, Pa 
τφφ  = component of the spherical stress tensor, Pa 
ζ    = auxiliary coordinate for the radial direction, m-3 

Subscripts 

b  = relative to the bubble 
F = relative to the final (stable) bubble radius 
G = gas phase 
j = spatial grid index 
L = liquid phase 
oil = relative to the oil 
r = relative to the refrigerant in the liquid layer 
0 = relative to the initial instant 

Superscripts 

^      = relative to the normalized variables   

Mathematical Modeling 

Figure 1 shows a schematic diagram of the proposed physical 
model. It considers an EC in which a spherical bubble is surrounded 
by a concentric and spherical liquid layer with a finite amount of 
dissolved liquid refrigerant. At t = 0 the bubble and the liquid layer 
initial radii are R0 and S0, and the refrigerant concentration in the 
liquid layer is uniform (wr,0). This initial condition is one of 
mechanical and chemical equilibrium between the gas and the 
liquid, which is at a pressure pL,0. The bubble growth process is 
initiated when the pressure in the liquid layer is reduced according 
to a prescribed function pL(t). As the liquid pressure is reduced, the 
interfacial refrigerant concentration decreases and a refrigerant 
concentration gradient in the liquid layer drives the refrigerant flow 
into the bubble, increasing its size. At the same time, the liquid layer 
radius S(t) is allowed to expand together with the bubble, since no 
constraint is imposed at the outer surface of the liquid layer. It is 
worth mentioning that local thermodynamic equilibrium is assumed 
at the liquid-gas interface, and that the interfacial solubility, wsat, is 
calculated as a function of the EC temperature and of the bubble 
internal pressure pG(t). After a sufficiently long period (t → ∞), a 
significant fraction of the total amount of refrigerant initially in the 
liquid layer is present in the form of gas inside the bubble, which 
eventually reaches its final (stable) radius, RF, and its final internal 
pressure pG,F. 

 
 

 
Figure 1. Schematic representation of the bubble gr owth dynamics in an 
oil-refrigerant mixture. 
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Simplifying Assumptions 

The mathematical modeling is based on the following 
assumptions: 

 
• The bubble and the liquid layer are perfectly spherical and the 

origin of the system of coordinates is located at the center of the 
bubble; 

• The gas phase is composed only of refrigerant vapor (i.e., the 
vapor pressure of the oil is negligible) and the liquid phase 
behaves as an ideal mixture (Raoult’s law); 

• The fluids are Newtonian, with constant properties; 
• Temperature gradients in the EC are negligible; 
• The pressures in the bubble and in the liquid layer are uniform; 
• The refrigerant mass fraction at the bubble interface is the 

saturation concentration (solubility) at the bubble pressure and 
EC temperature; 

• The decompression rate imposed on the liquid phase is uniform.      

Momentum Conservation in the Liquid Layer 

The transient momentum transfer in the liquid layer in 
spherical coordinates, considering radial symmetry, is given by 
(Bird et al., 2002): 

 

ρL
∂ur

∂t
+ ur

∂ur

∂r









= − ∂p

∂r
+ 1

r 2

∂
∂r

r 2τ rr( ) −
τθθ +τφφ( )

r
            (1) 

 
where ρL is the liquid phase density, ur is the liquid velocity in the 
radial direction, p is the pressure, and τrr , τθθ and τφφ are the 
components of the spherical stress tensor given by 
 

τ rr = 2µL
∂ur

∂r
                             (2a) 

 

             (2b) 

 
where µL is the liquid phase dynamic viscosity. 

A refrigerant material balance at the bubble interface gives 
(Brennen, 1995): 

 

                (3) 

 

where R and ɺR are, respectively, the instantaneous bubble radius 
and its time derivative that represents the bubble growth rate. By 
substituting Eqs. (2) and (3) into Eq. (1), and taking advantage of 
the spherical symmetry of the problem (τθθ = τφφ), the following 
relationship is obtained: 
 

ρL
R2 ɺɺR+ 2RɺR2

r2
− 2R4 ɺR2

r5















= − ∂p
∂r

+
∂τ rr

∂r
+ 2

τ rr −τφφ( )
r

         (4) 

 

where ɺɺR is the bubble growth acceleration, i.e., the second 
derivative of the bubble radius with respect to time. The liquid 
density is assumed constant and Eq. (4) can be integrated between 
the limits R and S (see Fig. 1) to give 
 

ρL 1− R
S









 RɺɺR+ 2 ɺR2( ) − 1

2
ɺR2 R4

S4























=

            p(R)−τ rr (R) − p(S)+τ rr (S)+ 2
τ rr −τ φφ( )

r
dr

R

S

∫

            (5) 

 
The integral in Eq. (5) can be determined upon substitution of 

Eqs. (2) and (3), considering a uniform viscosity in the liquid layer. 
A change of variables is also introduced as follows: 

 

2
τ rr −τφφ( )

r
dr

R

S

∫ = −12R2 ɺR
µL

r4
dr

R

S

∫ =

                                                 −4R2 ɺR µL(ζ )dζ
ζ (R)

ζ (S)

∫
          (6) 

 
where ζ is an auxiliary coordinate defined by 
 

; ζ (R) = 1

R3
; ζ (S) = 1

S3
 (7) 

 
Also, the normal stresses at the two ends of the radial domain 

can be expressed as (Street, 1971): 
 

p(R) −τ rr (R) = pG − 2σ
R

            (8a) 

 
 

p(S) −τ rr (S) = pL              (8b) 

 
where σ is the interfacial tension between the liquid mixture and the 
gaseous refrigerant. Finally, the incorporation of Eqs. (6)-(8) into 
Eq. (5) results in 
 

pG − pL

Pressure
difference

��� ��
= 2σ

R
Interfacial

tension

�

− 4R2 ɺR µL(ζ )dζ
ζ (R)

ζ (S)
∫

Viscous forces
� ���� ����

+

                       ρL 1− R
S









 RɺɺR+ 2 ɺR2( ) − 1

2
ɺR2 R4

S4























Inertia forces
� ������� �������

            (9) 

 
The terms in Eq. (9) represent the various forces acting on the 

bubble during the growth process. The term on the left hand side is the 
driving force for bubble growth represented by the pressure difference 
between the gas inside the bubble and the liquid phase, while those on 
the right are the opposing forces, i.e, the resistance caused by the 
interfacial tension, the liquid viscous forces due to the interface 
motion and the resistance due the inertia of the liquid layer. 

Chemical Species Conservation in the Liquid Layer 

The refrigerant concentration profile in the liquid layer is 
calculated solving the chemical species conservation equation in 
spherical coordinates (Bird et al., 2002). Using Eq. (3) for the radial 
velocity of the liquid, the species mass balance can be written as: 
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∂wr

∂t
+ ɺR

R2

r2

∂wr

∂r
= 1

r 2

∂
∂r

ρLDr 2 ∂wr

∂r









            (10) 

 
where wr(r,t) is the refrigerant mass fraction profile and D is the 
mass diffusivity of the refrigerant in the liquid mixture, defined in 
terms of Fick’s law (see Appendix). Equation (10) requires initial 
and boundary conditions defined as 
 

wr (r,0)= wr ,0                    (11a) 

 

∂wr

∂r
r=S

= 0             (11b) 

 
wr (R,t) = wsat ( pG,T)            (11c) 

 
The three boundary conditions specified in Eqs. (11) refer, in 

this order, to (a) the uniform refrigerant concentration in the liquid 
layer at t = 0; (b) the absence of mass flux through the liquid layer 
external surface, and (c) that the liquid-vapor interface is at local 
thermodynamic equilibrium at the bubble internal pressure pG and 
EC temperature T. 

The geometry of the problem allows the following coordinate 
transformations: 

 

y = r3 − R3(t)             (12a)  
 

∂ϕ
∂t

= wr − wr ,0           (12b) 

 
where y is a modified radial coordinate that takes into account the 
movement of bubble interface and ϕ(y,t) is a potential function 
introduced to facilitate the solution of the mathematical model 
during the initial instants of bubble growth, due to the large 
concentration gradients at the vicinity of the interface (Amon and 
Denson, 1984). Substituting Eq. (12) into Eqs. (10) and (11) gives 
 

∂ϕ
∂t

= 9D y+ R3( )
4

3 ∂2ϕ
∂y2

            (13) 

 
ϕ( y,0)= 0            (14a) 
 

ϕ(S3 − R3,t) = 0            (14b) 
 

∂ϕ
∂y y=0

= wsat − wr ,0            (14c) 

Bubble Material Balance 

For a spherical bubble, the material balance results in  
 

d
dt

R3ρG( ) = 3R2 ρLD
∂wr

∂r










r=R

            (15) 

 
After expanding the left hand side of Eq. (15) and applying the 

transformations of Eq. (12), the bubble growth rate equation becomes 
 

ɺR= dR
dt

= 3R2

ρG

ρLD
∂2ϕ
∂y2















y=0

− R
3ρG

d
dt

ρG( )            (16) 

Closure Relationships 

Equations (9), (13), (14) and (16) are the governing equations of 
the problem, which allow the calculation of the gas pressure inside 
the bubble, the refrigerant concentration profile in the liquid layer 
and the bubble growth rate as a function of time. However, some 
additional relationships are needed to provide closure for the model. 
These are as follows: 

Initial bubble radius: due to the interfacial force acting on the 
bubble at the first instant of growth, a minimum initial radius must 
be defined. This minimum initial radius can be expressed in terms of 
the refrigerant vapor pressure, psat, at the EC temperature by the 
Young-Laplace relationship as follows (Carey, 1992): 

 

R0 > 2σ
psat (T) − pL,0

             (17) 

 
Final bubble radius: Proussevitch et al. (1993) suggested the 

use of a total refrigerant material balance between the initial and 
final instants of bubble growth to estimate R (t→∞) in terms of the 
liquid and gas phase densities, ρL and ρG: 

 

ρGR3( )
t→∞

− ρGR3( )
t=0

=

                      S0
3 − R0

3( ) (ρLwr )t=0 − (ρLwsat )t→∞






          (18) 

 
Instantaneous liquid layer radius: as the EC is free to expand, 

the liquid layer radius can be calculated solving the following 
integral relationship for the instantaneous mass of liquid in the 
liquid layer, ML(t): 

 

M L(t) = 4π ρL(r ,t) r 2 dr
R(t)

S(t )

∫             (19) 

Numerical Solution Procedure 

A convenient way to solve the coupled non-linear system 
formed by Eqs. (9), (13), (14) and (16) involves the normalization of 
the variables in order to simplify the numerical solution. Thus, the 
normalized governing equations are given by 

 

p̂G − p̂L =
Y3σ̂
ɺ̂R

+Y1Y4R̂2 ɺ̂R
µ̂L

ŷ+Y1R̂
3( )

dŷ
0

1

∫ +

       ρ̂ 1−Y0
R̂

Ŝ


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




 Y2
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ɺ̂R2







− 1

2
Y2

ɺ̂R2 1− Y0
R̂

Ŝ











4































       (20) 

 

∂ϕ̂
∂t̂

= 9D̂Y1

2
3 ŷ+Y1R̂

3( )
4

3 ∂2ϕ̂
∂ŷ2

            (21) 

 

ϕ̂( ŷ,0)= 0            (22a) 
 

ϕ(1,t̂ ) = 0            (22b) 
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∂ϕ̂
∂ŷ ŷ=0

= wsat − wr ,0            (22c) 

 

ɺ̂R= dR̂
dt̂

= 3R̂2

ρ̂G

Y1 ρ̂LD̂
∂2ϕ̂
∂ŷ2















ŷ=0

− R̂
3ρ̂G

dρ̂G

d̂t
           (23) 

 
where the normalized parameters are defined as 

 

Ŝ= S
S0

; R̂= R
R0

; ŷ = y

S0
3 − R0

3
; ϕ̂ = ϕ

S0
3 − R0

3
          (24) 

 

t̂ = t
D0

R0
2

; ɺ̂R= ɺR
R0

D0

; ɺɺ̂R= ɺɺR
R0

3

D0
2

                                              (25) 

p̂ = p
pL,0

; D̂ = D
D0

; ρ̂ = ρ
ρG,0

; µ̂L =
µL

µL,0

; σ̂ = σ
σ0

              (26) 

Y0 =
R0
S0
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R0

3

S0
3 − R0

3
; Y2 =

ρG,0

pL,0

D0

R0











2

; 

                                    Y3 =
2σ0

R0pL,0

Y4 =
4µL,0D0

pL,0R0
2

                (27) 

where the subscript “0” denotes the initial condition. For the solution 
of Eq. (21), with the boundary conditions presented in Eq. (22), a 1-D 
finite difference-based procedure was used according to the gridding 
scheme presented in Fig. 2. 

 

 
Figure 2. Finite difference-based gridding scheme i n the liquid layer. 

 

In order to accelerate convergence, an additional coordinate 
transformation (Anderson et al., 1984) is used to refine the 
computational grid in the region near the bubble interface. The 
transformation is defined as follows (Proussevitch et al., 1993):  

 

ŷ y*( ) = β +1− β −1( ) β +1

β −1









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
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          (28) 
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          (29b) 
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d2y*

dŷ2
=
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
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

2
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
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






          (30b) 

 
in which 1 < β < ∞ is a clustering parameter. The gridding near the 
interface becomes finer as this parameter approaches unity. 
Therefore, the linear system of N algebraic equations assumes the 
following form for each one of N points of the domain inside the 
liquid layer, 
 

AWϕ̂ j−1+ APϕ̂ j + AEϕ̂ j+1 = B             (31) 

 
where for the intermediate points (1 < j < N), 
 

AP =
y j

* − y j−1
*( )2

C j∆t̂
+ 2

dy*

dŷ
          (32a) 

AE = −
y j

* − y j−1
*( )2

2

d2y*

dŷ2
− dy*

dŷ
          (32b) 

AW =
y j

* − y j−1
*( )2

2

d2y*

dŷ2
− dy*

dŷ
          (32c) 

 

B =
y j

* − y j−1
*( )2

ϕ j
o

C j∆t̂
           (33a) 

 

C j = 9Y1

2
3 ŷ y*( ) +Y1R̂

3






4
3           (33b)  

 
and for the boundary nodal points (1 and N), 

 
AP,1 = −1;   AE,1 =1;   AW,1 = 0            (34)   

 

B1 = y1
* (wsat − wr ,0)

dy*

dŷ















−1

            (35) 

 
AP,N =1;   AE,N = 0 ;   AW,1 = 0            (36)   

 

BN = 0                  (37) 

 
The model considered an oil-refrigerant mixture composed of 

polyol ester oil (ISO VG10) and refrigerant HFC-134a. The 
relationships used to calculate thermophysical properties of the 
mixture are listed in the Appendix. The thermophysical properties of 
the pure oil and of the pure refrigerant were obtained from Dias and 
Gasche (2006) and McLinden et al. (1998), respectively. A 
flowchart of the numerical procedure is shown in Fig. 3. 
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Figure 3. Flowchart of the numerical procedure for the solution of the bubble growth in oil-refrigeran t mixtures. 
 
 

Results and Discussion 
A total number of 24 numerical simulations were executed to 

analyze the model response under different bubble growth 
conditions. Table 1 shows all cases simulated in the present work, 
and lists the main input and output parameters of the model. All 
numerical results were obtained for a spatial computational grid 
with 51 nodes in the liquid layer region and a time step of 10 µs. 
These were observed to be the minimum values that produced 
numerical results independent from the number of discrete points of 
time and spatial grids.  Tolerances for the secondary and main loops 
were 10-6 and 99.9% of the calculated bubble final radius, 
respectively. 

In order to verify the validity of the results, Table 1 presents the 
material balance error represented in terms of the relative difference 
between the bubble mass gain and the refrigerant depletion in the 
liquid layer during the whole growth period. Mathematically, this 
error can be calculated as 

 

Err[%] =100
∆Mb − ∆M r ,L

∆Mb

            (38) 

 

where ∆Mb and ∆Mr,L are the bubble mass variation and the 
refrigerant mass variation in the liquid layer, respectively, given by 

 

∆Mb = 4

3
π ρG,0R0

3 − ρG,F RF
3( )             (39) 

 

∆M r ,L = 4

3
π wr ,0ρL,0 S0

3 − R0
3( ) − wr ,F ρL,F SF

3 − RF
3( )





          (40) 

 
where Eqs. (39) and (40) require knowledge of the parameters 
associated with the size of the bubble and of the liquid layer regions 
and refrigerant content at both the initial and final instants. As can 
be seen in Table 1, the majority of the simulations presented relative 
errors smaller than 1%. Also, the error tends to increase for cases 
where smaller quantities of refrigerant are transferred to the bubble, 
i.e., when both the initial thickness and the initial refrigerant mass 
concentration of the liquid layer are too small. 

Figure 4 shows the behavior of the bubble and liquid layer radii 
for Simulation 1. The model computes the liquid layer growth due 
to bubble expansion (depressurization). The results show that the 
bubble growth process is characterized by three distinct periods 
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Table 1. Main parameters and results obtained with t he mathematical model. 
 

Simulation 

Parameters (Input) Results (Output) 

S0 

[mm] 

R0  

[mm] 

pL,0 

[kPa] 

dpL dt  

[kPa/s] 

T  
[oC] 

wr ,0 

[%] 

tF  

[s] 

RF  

[mm] 

SF  

[mm] 

Material balance 
error [%] 

1 1.00 10-2 100.0 -100.0 60.0 5.0 1.65 4.99 5.17 0.41 
2 1.00 10-2 90.0 -100.0 80.0 1.0 3.96 3.70 3.79 0.15 
3 1.00 9.5×10-2 90.0 -100.0 80.0 1.0 3.84 3.70 3.79 0.15 
4 1.00 0.5 90.0 -100.0 80.0 1.0 3.65 3.61 3.72 0.23 
5 1.00 0.9 90.0 -100.0 80.0 1.0 1.39 3.06 3.24 0.96 
6 0.10 5.0×10-3 100.0 -100.0 80.0 5.0 0.90 0.52 0.85 6.19 
7 0.50 5.0×10-3 100.0 -100.0 80.0 5.0 1.06 2.56 2.88 0.96 
8 1.50 5.0×10-3 100.0 -100.0 80.0 5.0 1.95 7.54 7.79 0.17 
9 3.00 5.0×10-3 100.0 -100.0 80.0 5.0 5.40 15.00 15.40 0.07 
10 1.00 10-2 90.0 -100.0 80.0 0.95 3.84 3.63 3.72 1.98 
11 1.00 10-2 90.0 -100.0 80.0 3.0 1.49 5.45 5.55 0.17 
12 1.00 10-2 90.0 -100.0 80.0 5.0 1.17 6.54 6.67 0.21 
13 1.00 10-2 90.0 -100.0 80.0 10.0 0.97 8.37 8.56 0.28 
14 1.00 10-2 10.0 -100.0 80.0 5.0 0.46 6.55 6.63 0.16 
15 1.00 10-2 100.0 -100.0 80.0 5.0 1.27 6.54 6.67 0.21 
16 1.00 10-2 250.0 -100.0 80.0 5.0 2.78 6.55 6.69 0.24 
17 1.00 10-2 400.0 -100.0 80.0 5.0 4.25 6.55 6.70 0.24 
18 1.00 10-2 100.0 -10.0 80.0 5.0 12.7 5.07 5.48 0.66 
19 1.00 10-2 100.0 -50.0 80.0 5.0 2.55 5.05 5.34 0.39 
20 1.00 10-2 100.0 -100.0 80.0 5.0 1.66 5.10 5.30 0.31 
21 1.00 10-2 100.0 -100.0 25.0 5.0 7.50 4.75 4.91 0.99 
22 1.00 10-2 100.0 -100.0 35.0 5.0 5.31 4.83 4.99 0.67 
23 1.00 10-2 100.0 -100.0 50.0 5.0 3.48 4.93 5.10 0.48 
24 1.00 10-2 100.0 -100.0 100.0 5.0 1.55 5.21 5.43 0.27 

 
(Proussevitch et al., 1993). The first period is marked by a slow 
growth of the bubble and liquid layer radii, which is generally 
attributed to the high interfacial tension. In this period, growth is 
controlled by the interfacial tension and normal viscous stresses 
that offer a resistance to growth associated with displacing the 
body of liquid around the bubble. At 1.2 seconds following this 
initial period, the growth rate increases up to a point of maximum. 
This marks the second period of bubble growth, which is called 
here the effective growth period. This period is controlled by mass 
diffusion, as the excess dissolved refrigerant that existed in the 
first period is transported into the bubble. The bubble and liquid 
layer reach stable radii in the third period, when the concentration 
gradient in the liquid layer vanishes. At the end of the process, the 
bubble and the liquid layer reach, respectively, around 500 and 5 
times their initial radii. 

An analysis of the forces that affect the bubble growth for 
Simulation 1 is presented in Fig. 5, which shows the force caused by 
the pressure difference between the gas and liquid phases (the 
growth driving force) and the forces resulting from interfacial 
tension, viscous stresses and liquid inertia. All forces are depicted in 
normalized form, as presented in Eq. (20), to facilitate the analysis. 
As can be verified for this case, the main opposing force for bubble 
growth is generated by the interfacial tension; almost no difference 
is observed between the pressure difference and interfacial tension 
curves at any given instant. Thus, the small resultant force 
associated with the pressure difference, interfacial tension and 
viscous forces is the net force that drives the bubble growth. This 
small difference is due to the small initial radius chosen for the 
bubble, which, in turn, determines the slow growth rate period 
pointed out previously. 
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Figure 4. Bubble and liquid layer growth behavior f or Simulation 1.  

 
Figure 6 analyzes the refrigerant transport by diffusion in the 

liquid layer by comparing the refrigerant concentration profiles in 
liquid layer at different instants for Simulation 1. Each instant is 
indicated in the figure as a fraction of the time necessary for the 
bubble to reach 99% of its final radius tF, and the liquid layer 
thickness is normalized to facilitate the comparison among the 
different instants considered. Starting from a uniform refrigerant 
concentration at t = 0, the first few instants after diffusion starts (until 
around 30% of tF) indicate that almost no change takes place in the 
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concentration profile far from the bubble interface. This period of time 
is also characterized by high concentration gradients near the 
interface. Then, as the bubble growth speed increases, refrigerant 
solubility at the interface decreases due to the decrease in gas 
pressure, and the gradient at the interface becomes smoother as the 
refrigerant in the liquid layer is transported towards the interface, thus 
reducing the total amount of refrigerant available in the liquid layer. 
Finally, after 1.65 s, when the bubble reaches 99.9% of its final radius, 
the interfacial concentration reaches equilibrium with the remaining 
liquid layer and the bubble stops growing. 
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Figure 5. Forces acting on the bubble during the gr owth period for 
Simulation 1. 
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Figure 6. Refrigerant mass fraction distribution al ong the liquid layer at 
different instants for Simulation 1. 

 
The terms on the right side of Eq. (16) represent the two main 

mechanisms that govern bubble growth. The first term represents 
the growth induced by refrigerant molecular diffusion from the 
liquid layer towards the bubble, while the second term is the portion 
of the growth due to expansion of the gas inside the bubble as the 
pressure in the liquid layer decreases. The effect of both terms on 
total bubble growth rate along the time for Simulation 1 is shown in 
Fig. 7. Right after the beginning of the bubble growth process, the 
growth rate is governed exclusively by bubble expansion, which 
decreases as the interfacial force acting on the bubble remains large. 
This behavior is consistent with the period of slow growth described 
earlier in Fig. 4. When the bubble reaches a sufficiently large size to 

overcome the opposing interfacial force, both gas expansion and 
refrigerant molecular diffusion effects increase rapidly and 
contribute equally to the growth rate that reaches its maximum 
value. Then, a sudden decrease of the molecular diffusion growth 
rate takes place indicating that the amount of excess refrigerant 
present in the liquid layer has extinguished, and the growth process 
is again governed by gas expansion effect, which vanishes slowly as 
the bubble reaches its final size. 

 

 
Figure 7. Bubble growth rates along the time for Si mulation 1. 

 
Figure 8 shows the effect of variation of the initial bubble radius 

on the bubble growth behavior. It can be observed that the smaller 
the initial radius, the longer the slow growth period will be due to 
the large interfacial force at the initial instants of bubble growth. 
Additionally, there is almost no difference between the bubble 
growth curves when the initial bubble radii were smaller than 
9.5×10-2 mm (Simulations 2 and 3). It is believed that this has to do 
with the fact that for these initial bubble diameters, the interfacial 
tension force is still quite large and, because the sizes of the bubbles 
are small, the amount of volatile material (refrigerant) in the liquid 
layer is very similar in both cases. Nevertheless, when the initial 
radius was set to 0.5 and 0.9 mm in Simulations 4 and 5, 
respectively, the final bubble radius and the time required to reach 
the stable size decreased because of the reduction in the liquid layer 
thickness that contained smaller amounts of liquid and volatile 
material. 

The result presented in Fig. 9 evaluates the influence of the 
liquid layer initial radius on the bubble growth behavior for 
Simulations 6-9. It can be noticed that, although the initial 
concentration of refrigerant was the same for all cases simulated 
(5% wt.), the liquid layer radius limits the final radius reached by 
the bubble. This is a consequence of the smaller amount of 
refrigerant initially in the liquid layer for the smallest liquid layer 
radii. Moreover, the influence of interfacial tension was more 
important as the liquid layer radius was decreased. This is clearly 
noticed in the result for Simulation 6, where bubble growth is slow 
for most of the time, until the stable radius is reached more abruptly. 

The effect of the initial refrigerant concentration is shown in 
Fig. 10. A preliminary analysis of this result leads to the conclusion 
that the higher the amount of refrigerant dissolved in the liquid 
layer, initially, the higher the bubble final radius. However, the time 
required for a bubble to reach its final radius is smaller as the initial 
refrigerant concentration increases. This seems counter-intuitive 
considering the idea that a larger amount of dissolved refrigerant 
should take longer to flow into the bubble, thus also taking more 
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time for the final radius to be reached than in the case with less 
dissolved refrigerant. However, the cases with higher initial 
refrigerant concentrations presented the steepest slopes of the 
bubble radius variation in the first 0.8 s. This occurs due to the high 
concentration gradients generated in the liquid layer when the total 
amount of refrigerant dissolved in the liquid increases. Under these 
conditions, the solubility at the interface is the same for all 
simulations, and the net result is a higher mass flow rate of 
refrigerant into the bubble for the simulations with a higher initial 
refrigerant concentration in the liquid layer. 
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Figure 8. Influence of the initial bubble radius on  the bubble growth behavior. 
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Figure 11 presents an evaluation of the initial liquid phase 

pressure on the bubble growth behavior for Simulations 14-17. The 
main characteristic of these results is the fact that the duration of the 
first period increases with the initial pressure. This is so because the 
solubility is directly proportional to the pressure. Hence, an increase 
in the initial liquid pressure reduces the refrigerant supersaturation 
degree in the liquid layer. So, the observed behavior is a 
consequence of the reduction of the concentration gradient near the 
interface, which decreases the refrigerant mass flow rate into the 
bubble. It is also worth mentioning that the bubble final radius was 

the same for all simulations since the initial refrigerant 
concentration and the final pressure in the liquid layer were also 
kept the same for all simulations. 

 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3

4

5

6

7

8

9
w

r,0
 = 10% (Simulation 13)

w
r,0

 = 5% (Simulation 12)

w
r,0

 = 3% (Simulation 11)

B
ub

bl
e 

ra
di

us
 [m

m
]

Time [s]

w
r,0

 = 0.95% (Simulation 10)

 
Figure 10. Influence of the initial refrigerant con centration in the liquid 
layer on the bubble growth behavior. 
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Figure 11. Influence of the initial pressure in the  liquid phase on the 
bubble growth behavior. 

 
Differently from previous works that studied isothermal 

bubble growth in polymer solutions and volcanic magma (Amon 
and Denson, 1984; Proussevitch et al., 1993), in the present paper, 
a finite decompression rate was assumed in the liquid phase from 
both prescribed initial and final pressures in the liquid layer. This 
is a convenient approach to deal with oil-refrigerant mixtures, 
since this model can be coupled to existing macroscopic models 
aiming at a more complete characterization of non-equilibrium 
flows of oil-refrigerant mixtures. Figure 12 depicts the behavior of 
bubble growth for Simulations 18-20 considering different liquid 
phase decompression rates. The graphs indicate that, as the 
pressure in the liquid layer is reduced more slowly, more time is 
needed for the bubble to reach its final radius. This behavior 
occurs because bubble growth driven by gas expansion becomes 
slower than that due to interfacial refrigerant mass flow rate as the 
decompression rate decreases. 
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Figure 12. Influence of the decompression rate on t he bubble growth behavior. 
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Figure 13. Influence of the elementary cell tempera ture on the bubble 
growth behavior. 

 
Figure 13 presents an evaluation of the effect of the EC 

temperature on the bubble radius behavior as a function of time for 
Simulations 21-24. An increase of the EC temperature reduces the 
dynamic viscosity and increases the mass diffusivity of the mixture 
so that the combination of both effects leads to faster bubble growth 
rates since, as the EC temperature increases, viscous forces that 
resist to bubble growth are smaller and, at the same time, larger 
mass diffusivities contribute to improving refrigerant mobility inside 
the liquid layer. Another observation regarding the effect of EC 
temperature on bubble dynamics is the different final radius reached 
in each simulation. This occurs because the equilibrium 
concentration at the interface is inversely proportional to the EC 
temperature, which gives rise to a higher supersaturation degree in 
the liquid layer. So, a larger amount of refrigerant can flow into the 
bubble making its final radius larger. 

Conclusions 

This paper presented a transient model for a single gas bubble 
growing in an oil-refrigerant solution subjected to uniform and 
isothermal decompression. The model considered an elementary cell 
(EC) formed by a bubble surrounded by a liquid layer containing a 
finite amount of dissolved refrigerant. The pressure reduction in the 

liquid phase provokes an imbalance between the initial refrigerant 
concentration in the liquid layer and the equilibrium concentration at 
the interface. This, in turn, triggers the refrigerant mass diffusion from 
the liquid layer into the bubble, resulting, together with the expansion 
of the gas, in the bubble growth. After a certain period of time, the 
bubble tends to reach a stable radius as the decompression stops and 
the amount of refrigerant in the liquid layer decreases toward a new 
equilibrium condition. The system of coupled non-linear governing 
equations was solved numerically by the finite difference method to 
calculate the bubble internal pressure, the bubble growth rate and the 
refrigerant concentration profile in the liquid layer. 

The numerical results showed that, in general terms, the bubble 
growth process can be divided into three distinct periods: a first 
period, of slow growth rate at the initial instants due to the 
opposing effect of the interfacial tension force, a second period, of 
rapid bubble expansion followed by a third period characterized by 
stabilization of the bubble radius. During the entire growth period, 
the bubble interfacial tension was the predominant force against the 
driving force that resulted from the pressure difference between the 
liquid and the gas phases. Also, the effect of gas expansion inside 
the bubble showed to be more predominant than the refrigerant 
molecular diffusion effect on bubble growth rate during most part 
of the total growth period. The refrigerant mass fraction profiles 
along the liquid layer presented sharper gradients at the interface 
region during the initial instants. On the other hand, for the final 
instants, the gradient becomes smoother in the liquid layer as the 
amount of dissolved refrigerant is extinguished. A parametric 
analysis of the model showed that the bubble behavior can be 
affected by several parameters. An increase of the bubble initial 
radius implies a decrease of the bubble stable radius and of its total 
growth time. A large amount of dissolved refrigerant in the liquid 
layer decreases the time required for a complete growth of the gas 
phase into a stable bubble with a larger radius. Moreover, a 
decrease of the initial liquid layer radius limits the final radius that 
can be reached by the bubble, as well as the time taken to reach the 
final size. On the other hand, for a fixed final bubble size, 
increasing the liquid layer initial pressure contributes to an increase 
of the first period only (slow growth). An evaluation of the 
influence of the decompression rate (the main contribution of the 
present analysis, in comparison to previous works) shows that, for 
slower decompression rates, the total growth period tends to 
increase because of the delay in the bubble expansion due to the 
gas compressibility effect. Finally, increasing the EC temperature 
leads to a faster bubble growth and in a larger stable radius. This 
can be explained by the influence of the temperature on the mixture 
viscosity and on the (molecular) mass diffusivity. 
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Appendix: Properties of the Oil-Refrigerant Mixture  

Solubility 

The solubility of refrigerant HFC-134a in polyol ester oil ISO 
VG10 was adjusted from data provided by the oil manufacturer as a 
function of the pressure, p, and the temperature T, 

 

wsat =
a1+ b1p+ c1T + d1p2 + e1T

2 + f1Tp

a2 + b2p+ c2T + d2p2 + e2T
2 + f2Tp

         (A.1) 

 
where the coefficients are: a1 = 0.68247268; b1 = 0.0700619; c1 = 
0.06991081; d1 = -0.00012087; e1 = -0.00171566; f1 = 0.00241240; 
a2 = 1; b2 = -0.00313147; c2 = 0.05031545; d2 = 1.05413714 × 10-6; 
e2 = 0.00136449; f2 = -6.40745705 × 10-5. This correlation is valid 
for the ranges 0 < p < 100 kPa and 0 < T < 100°C. 

Density 

The density of the mixture HFC134a- ISO VG10 ester oil is 
calculated using the ideal mixture hypothesis (i.e., additive 
volumes). Thus, the density can be calculated by 

 

ρL =
ρoil

1+ wr
ρoil
ρr

−1










           (A.2) 

 
where wr is the refrigerant mass fraction in the mixture, and ρoil and 
ρr are the oil and liquid refrigerant densities, respectively. 

Dynamic viscosity 

The correlation for the dynamic viscosity of the liquid mixture 
composed of refrigerant HFC-134a and ISO VG10 ester oil was also 
obtained from data fitting provided by the oil manufacturer as follows: 

 

µL =1.0×10−6ρL
m1 + n1T + o1wr + p1T

2 + q1wr
2 + r1Twr

m2 + n2T + o2wr + p2T
2 + q2wr

2 + r2Twr

         (A.3) 

 
where wr is the refrigerant mass fraction, T is the temperature and the 
coefficients are: m1 = 38.31853120; n1 = 0.03581164; o1 = 
−0.55465145; p1 = −6.02449153 × 10-5; q1 = 7.67717272 × 10-4; r1 = 
−2.82836964 × 10-4; m2 = 1; n2 = 0.05188487; o2 = 0.02747679; p2 = 
9.61400978 × 10-4; q2 = 4.40945724 × 10-4; r2 = 1.10699073 × 10-3. 
The intervals in which the correlation is valid are 0 < T < 100°C and 
0 < wr < 1. 

Interfacial tension 

For the interfacial tension, Conde (1996) suggests the use of a 
simplified version of a correlation proposed by Sprow and Prausnitz 
(1966) for binary mixtures of non-polar fluids given by 

 

σ = 1−ψr ,i( )σ oil +ψr ,iσ lr − A
2RT

σ oil −σ lr( )2
ψr ,i 1−ψr ,i( )        (A.4) 
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where σoil and σlr are the oil and the liquid refrigerant interfacial 
tensions, respectively. ψr,i is the refrigerant mole fraction at the bubble 
interface, T is the absolute temperature, R is the universal gas constant 
(8314.1 J/mol.K) and A is the molar partial area calculated by 
 

A= 1

2

M
r

ρlr









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
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2/3

+
M

oil

ρoil
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
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N0

1/3          (A.5) 

 
where Mr and Moil are the refrigerant and oil molecular weight and 
N0 is the Avogadro number (6.023 × 1026 kmol-1).  

Mass diffusivity of the refrigerant in the liquid mixture 

The mass diffusivity of the refrigerant in the liquid mixture is 
calculated using a semi-empirical correlation proposed by Hayduk 

and Minhas (1982) for non-aqueous binary solutions, assuming 
infinite dilution of the refrigerant. Thus, 

 

D =1.55×10−8 ɶvoil
0.27

ɶvlr
0.42

T1.29

µoil
0.92

σ oil
0.125

σ lr
0.105

          (A.6) 

 
where D is the mass diffusivity at infinite dilution [cm2/s], ɶvoil  and 

ɶvlr  are the oil and liquid refrigerant molar volumes [cm3/mol] at 

the oil and liquid refrigerant normal boiling temperatures, 
respectively, T is the mixture absolute temperature, µoil is the oil 
dynamic viscosity [cP], and σoil and σlr are the oil and liquid 
refrigerant interfacial tensions [dyn/cm]. 

 

 
 
 
 


