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Non-destructive evaluation methods and signal edechniques are important steps in
structural health monitoring systems to assesssthecture integrity. This paper presents
a method for fault location in aluminum beams basedime of flight of Lamb waves. The
dynamic response signal captured from the structues processed using the discrete
wavelet transform. The information accuracy obtdifi®m the processed signal depends
on the correct choice of the mother wavelet. Tret bether wavelet was selected using
the Shannon’s entropy criterion. Numerical resutis a damage localized in different

positions are presented using the spectral finiement method, and an experimental
setup was used to assess the accuracy of the meled results showed that the
combination of the non-destructive evaluation téghe based on Lamb waves with the
discrete wavelet transform is effective in detectind locating faults in aluminum beams
whose results had errors less than 1%.

Keywords: structural health monitoring, fault detection afmtalization, Lamb waves,

Pablo Rodrigo de Souza

pablo@ifsp.edu.br
Instituto Federal de Sao Paulo
13414-155 Piracicaba, Sao Paulo, Brazil

Euripedes Guilherme de
Oliveira Nobrega

egon@fem.unicamp.br

Universidade Estadual de Campinas
Faculdade de Engenharia Mecénica
13083-860 Campinas, Sao Paulo, Brazil

discrete wavelet transform, spectral finite elenmapthod

Introduction

Mechanical structures commonly found in severalasref
engineering, for example, bridges, railroad trackséps and aircraft
fuselage, are subject to the natural wear and médlastresses that
result in their degradation. Structural Health Moring System
(SHM) aims to predict changes in structural behathat can result
in failures or severe damage. This task can bedéiviinto five
steps: detecting the existence of the damage, rdieiag its
location in the structure, identifying the type afamage,
determining its severity and estimating the renmgjrife time of the
structure. The constant monitoring of these stmestincreases their
level of security and helps to determine the rigime to perform
preventive maintenance.

Non-destructive evaluation (NDE) techniques arecrass for
SHM systems. Park et al. (2003) presented an awervof
piezoelectric impedance-based health monitorings Hpproach is
based on monitoring the variations of the struttureechanical
impedance, caused by the presence of damage, Ihroiog
measurement of the electrical impedance of a plezive patch
attached to the host structure. Lopes et al. (2p@&ented a SHM
technique which combines the piezoelectric impeddrased to
detect and locate a structural damage with aslficeural network to
estimate its severity. Mallet et al. (2004) progbsemethod using
scanning laser vibrometry for damage detectionlimaum plates.
Although this technique is effective in detectiaglfs in the structure,
the cost of equipment is high and it is not suédbl field inspection.
Wang et al. (1999) proposed a structural damagectitmh method
based on wavelet analysis of spatially distribugedctural response
measurements. A sensor array measures the disglatefrstructure
under static or dynamic loading. For a damagedtsire, the signals
measured by the sensors next to the damage chagigeesponses
indicating its presence. This method is not prattio monitor the
entire structure because a large number of seaseraeeded when
the damage location is unknown.

A common technique, which has been attracting &tterin the
last two decades, is based on the propagation afbLavaves
(Alleyne et al., 1992; Lu et al., 2008; Wang et 2008). Using the
pulse-echo configuration, piezoelectric actuatoemegate waves
that propagate throughout the structure and piezt@ sensors
measure their reflections, which occur in everyuctire
discontinuities, like connections, terminations]ad@nations, and
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cracks. The detection and approximate location aafit§ in the
structure using this technique is usually madediygaring the time
of flight (TOF) of the measured signal with the TQF the
structure’s benchmark signal. Signals from the mag system
need to be processed by specific algorithms toragp#nformation
from noise, regular reflections and other intenfiees. The Fourier
transform is not suitable because it is necessarpave a time
domain representation of the signal to determine TOF. The
Wavelet Transform has been used in various areasdtyze non-
stationary signals which require time-frequency dom
representation. Sun et al. (2002) used the wapealeitet transform
for damage assessment of structures, with goodtsesiowever, a
drawback of the wavelet package is the needed ctatipioal effort
and memory capacity to perform detail and approtiona
coefficients decompositions to each level. For ambedded
monitoring system this computational cost may lahitnitive.

Another issue that must be considered is the teaymer
influence in the measurement system. Lamb wavedbdHgE is
affected by two main concerns: the change of pieptic
transducer properties and the Lamb wave propagagbavior. Su
et al. (2009) investigated the effect of tempeetoin Lamb wave
propagation observing that when the ambient teniperancreases
from 25°C to 50°C the S0, A0 and SHO modes decrealyel.27%,
1.27% and 1.68%. Sihori et al. (2000) presentetudysabout the
changes in the piezoelectric properties of piezdeteelements as
strain sensors concluded that there is no needpply aspecial
corrections in sensor output over a moderate rasfgeperating
temperatures. However, if applications in which fdugt is so small
that the changes on the signal due to the damagevarwhelmed
by the temperature influence, or if the sensors kwor an
environment of elevated temperature, there arentqubs to
minimize the temperature influence as the optimalsetine
subtraction proposed by Konstantinidis et al. (3007

This paper presents a method for the first two sstep SHM
process, detecting and localizing faults in strreguthrough TOF of
Lamb wave and the Discrete Wavelet Transform (D\&fproach.
The spectral finite element model of a free-frearbes used to
predict the behavior of the Lamb wave propagatidre DWT and
the Hilbert transform are used to process the dymaesponse
signal of the structure, enhancing the visibilifytee wave packets.
The choice of the mother wavelet is made basednoanalysis of
Shannon’s entropy of the DWT coefficients. The TiSFobtained
by the measurement of the time interval betweerttioefirst peaks
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of the signal envelope. An experimental setup &lus validate the The spectral response of the structUi@) to the excitation
numerical simulation results. signal F(w) is the sum of the response for each componerteof t

Future work will implement the respective algorigynusing FFT of the time domain excitation sigrféll). For the time domain
modern devices such as Field Programmable Gatey AFRRGA), response of the structure, simply calculate theense Fourier
based on the signal processing techniques herdogede A low transform using the IFFT algorithm.

cost and good performance embedded system thataike the According to the Bernoulli-Euler beam theory (Dayl97),
detection, location and diagnosis of faults in natdbtal and civil the displacement(x,t) as a function of the applied foreg is
structures is the final goal of the work. given by
2 2 2
Nomenclature 9 EIM +pAa_u:q’ @)
u = time domain vertical displacement ax? x> o2
a = frequency domain vertical displacement
E  =Young’s Modulus whereEl is the flexural stiffness ang is the mass density per unit
| = moment of inertia length. The homogeneous differential equation canwhbitten in
q = force applied on the beam spectral form as
k = wave number
VvV =shear force 4n
M  =bending moment o%u -p4i=o0, @)
X = position on x axis, m ox*
t =time, s
s = frequency scale with
L =length, m
A = cross sectional area of the beant, m y
- : . s 2
D  =discrete wavelet transform maximum detaitlev B :[wz PA I&JOAJ @3)
d = discrete wavelet transform detail level El '
c = discrete wavelet transform coefficients
P = crack position, m

where 77 is the structural damping factor per unit volunide

Greek Symbols solutions of this equation can be obtained fromftitiewing pair of
T = translation in time, s equations:

w = mother wavelet function

n = damping factor 020G 020G

o  =angular frequency, rd/s — - B%i=0 and —t BXi=0. 4)
p  =mass density ox ox

y = continuous wavelet transform

Subscripts The co_mplete solutionu(x,t) for a beam of lengti. can be
c — relative to crack expressed in the form

u(x.t) = e kX 4 A o kX 4 A k(LX) 4 p oK(LX) i@ (5
Spectral Finite Element Method for Beam Modeling Get) Z(Al & & & )e ©)
Spectral Finite Element Method (SFEM) has been lyidsed  wherek is the wave number given by

for modeling wave propagation in mechanical strregu

(Gopalakrishnan, 2007). This method combines getenet k=p.

flexibility and competitive advantages of low-ordeethods, such
as finite element method (FEM), with the accuraeyd aapid
convergence of high order methods (spectral mejho@me
advantage of SFEM is that the number of elementessary to
model the structure is equal to the number ofdtgisns. Therefore,
a spectral element is equivalent to an infinite bam of

The first and third terms of Eq. (5) are wave sohs, while the
second and fourth are damped vibrations.
For a very slender beam, it may be considered that

conventional finite elements (Doyle, 1997). Figureshows the ‘D(X):au_(x) ) (6)
diagram to implement SFEM at a particular posit@mnthe beam ox

(Ostachowicz, 2008).
The vertical displacement and the rotat#i(x) can be written as

. ) o Dynamic
Time domain Dynamic stiffness . X .
e . ) h teristi f ~ — — — - — -
exciting signal > matrix p © ar:t(r:ui?jrg:so u()() = A.Le ikx + AZE kx + AJe 'k(L X) + Ane k(L X)
Y e U(@)=2U(e,) A mikx kX it p k(LX) -k(L-x)
D(x) = —ikAe™ +-kAye ™ +ikAge +kAe . (7)
v v y ) ) o R
Frequency domain Frequency domain Time domain C0n5|der|ng the boundary COﬂdItIOf‘S(O) =U, @ (O)= @,
icti ignal < luti luti ~ ~ . . .
A VoK (o Flon) o G(L)=0, and @ (L)= @, the above equations can be written in
matrix form as
Figure 1. SFEM flow diagram for wave propagation in structures. U=HA
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A=HU, 8
? M, (x)= El 0P, (x)
whereU is the vector of displacements and rotations imsx = 0 ox
andx = L.
For two degrees of freedom, the nodal loads canrligen as 92 (x)
V,(x)= EI1=—22,
020(x) o
V(x)=El 7
X
M,(x) = El —ac:Z(x) . (16)
X
M(x)=El 00(x) )
ox The boundary conditions for the cracked beam ﬁy(é):ﬁl,

Whereas the nodal loads at the ends of the beargizes by 210)=%w 05(0)- ty(Le) = OVa(Le), @o(0)-Po(Lo)=-OmMs(L),
V(0)=V4, V(L)=V,, M(0)=M, and M(L)=M,, the nodal loads vector Vy(L;)=V(0), Mi(L1)=M(0), G,(L-1;)=0, and ®,(L-Ly)= ..

F is given by the following matrix equation: Constantg; andd,, are related to crack flexibility for sliding and
tearing modes respectively. Details of how to chltmi these
F=EIGA . (10) constants can be found in Tada et al. (2000). Apglythe
boundary conditions in Eq. (16) and Eg. (15) resuh the
Substituting Eq. (8) into Eq. (10y,can be rewritten as following matrix equation:
F=EIGHU. 11) Uc=HA,
The d ic stiff trix is defined -
e dynamic stiffness matrix is defined as A =H, 1Uc- (17)
- -1
K =EIGH ~. (12) Whereas the ends of the beam nodal loads are diyen

) ) ) ) ) V(0)=V,, V(L)=V,, M(0)=M; and M(L)=M,, the following matrix
Having obtained the dynamic stiffness matrix, thecter of  equation is obtained:
displacements and rotations due to the nodal lcealbe calculated by
F. =EIG A.. (18)
U=KF. (13)
Substituting Eqg. (17) into Eq. (18j¢ can be rewritten as
For any position, the vertical beam displacemegtien by
. . Fe=EIGH U,. 19
0(x) = ok gkx e—lk(L—x) e—k(L—x) Hlu . (14) ¢ ¢'c ¢ (19)
The dynamic stiffness matrix for cracked beam finge as
For a cracked beam, the crack represents a discitytiof the
structure. In this case two elements are requoedgresent the part K =EIG.H."L 20
of the beam before and after the crack. For a befalengthL and c” c'c - (20)

with a crack in positiorL,, the vertical displacementél(x) and . .
The displacements and rotations vector due to tualnloads

0y (x) , and rotationg,(x) and®,(x) are given by: can be obtained by

0y (x) = AeT + A+ Ase—ik(Ll—x) + Ane—k(Ll—x) Ug =K IR, 1)

- -ikx , _ kX —ik(y—x) ~k(u—x) Finally, the vertical displacements for the twoesicbf the beam
= + + 17+ 1
®4(x) = -ikAe kAce ikAge kAe , are given by
Osxsly
' ‘ O, (x) =[x g™k ek(Lux) o KLx) g0 OH.U
iy (x) = Ase—lk(x+Ll) + Ase—k(x+L1) + Aye—lk[L—(x+Ll)] “ ¢ e

+ ABe—k[L—(x+L1)] 6,0 =[0000 o k(L) gklxrLy) grikL-(x+Ly)]
LGl g 2
: _ e H:U 22
®,(%) =_ikAJ_e—|k(x+Ll) +_k'%e—k(x+Ll)+ikA7e—|k[L—(x+L1)] ) JH: U (22)
TP G PV Discrete Wavelet Transform
. The wavelet transform is a signal processing tepmiused to
The nodal loads in the two parts of the beam are represent signal features in time and frequency ailasn
simultaneously. It has the ability to detect transicontained in the
aztbl(x) signal, unlike the Fourier transform which is peawtarly useful for

Vl(x)=E| ' analysis of periodic events in the signals. Thes@sients are

ax?
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detected through the similarity between its shapé¢ime domain
and a waveform known as mother wavelet. The contisuvavelet
transform (CWT) of a signad(t) is given by

psn) = [0S (et 23)

where * denotes complex conjugaseghe frequency scale armthe
translation in time. Equation (23) represents ttgggetion ofx(t) on
an orthonormal base of functions, dilated ognd translated by,
generated by a function called mother wavelet glwen

1

15

This approach fits well to analyze non-stationaignals,
because its spectral components vary along time pfbpagation of
Lamb waves is an example of signal with punctu@uo@nces. In
this case, the wavelet transform is used to extrectvave packages
related to the reflections of Lamb waves at beasudtitinuities.

Mallat (1989) presented an efficient method to iempént the
wavelet transform in discrete time, through muloleition
analysis and digital filter banks. This theory tefathe discrete
wavelet transform with a filter bank composed oftiand low
pass quadrature mirrored filters, through which #ignal is
decomposed into details and approximations. Thecxpation
is obtained as the output of the low pass filtedl &nrelated to the
smoothed signal. The output of the high pass filteovides the
details of the signal, related to transient evergstained in the
signal. Figure 2 shows the layout of the filter bacomposed of
high pass filter (H1) and low pass filter (HO), ftwo levels of
resolution. The symbol |2 represents down-sampling
decimation of the filtered signal.

W, (t) = (24)

or

Aq(n)

HO J2

Aq(n)

HO

b2

_Xin) | " A0

Dy(n)

H1 b2

Figure 2. Two level analysis filter bank for DWT.

Each decomposition level of the signal separatessgiectral
components at frequency bands, which depends orsamgpling
frequency (fs) of the signal acquired. Figure 3 vghothe
frequency response of high and low pass idealr§ilfer 3 level
decomposition DWT.

Higher frequency signal components are locatedwel level
details. Analyzing the signal decomposed into savetetails
provides information that could be hidden in thégioal signal,
probably masked by noise from the measurement raysiehe
subdivision of the signal spectrum in several fergry bands,
through the filtering process, is equivalent to $italing (s) of Eq.
(24). On the other hand, the translation) ¢f this equation is
obtained by convolution of the signal with thediltoefficients.

One significant advantage of using the DWT apprdacisignal
processing is to design high and low pass filtersligital filters on
programmable logic devices, such as modern FPGAing it
possible to implement the algorithms directly irrdveare, which
leads to the high performance generally needeeah time signal
processing applications (Walker et al. (2003); Nitlee et al.
(2002); Chilo et al. (2008)).

518 / Vol. XXXIV, No. 4, October-December 2012

Pablo Rodrigo de Souza and Euripedes Guilherme de Oliveira Nobrega

IH]

HO; | H1,

fs/16 fs/8

IH]

HO, H1,

fs/8 fs/a

IH]

HO, H1,

fs/a4 fs/2 f

Figure 3. Frequency range of High and Low pass filt  ers for 3 levels of

decomposition.

Criteria for Selecting the Mother
Shannon's Entropy

Wavelet Using

Shannon's entropy measures the energy dispersion or
randomness within a process. The energy concesriratnplies
entropy lower values. This criterion may be usedhoose the best
mother wavelet among a group of orthogonal motherelet which
can be used to transform the signals (Li et alQ920Besides to
indicate the suitable mother wavelet for signallgsig, the entropy
also shows the level of detail that contains infation related to
reflections of Lamb wave in the structure disconities.

For the DWT of a signak(t), an orthogonal mother wavelet is
selected among several possibilities previously seho for
compatibility with the features to be extractednfréhe signal, for
example, Biorthogonals, Coiflets, Daubechies, Sisnl@iscrete
Meyer and others. Whereag; are coefficients of the DWT of{(t),
for a mother wavelet chosen arbitrarily the Shaneatropy of
detail leveld is given by:

(25)

whereD is the maximum level of detail used in the transfo

Figure 4 shows how the method can be used to igetite
best mother wavelet and the level of detail appgedprto separate
the information contained in a constructed signaisisting of a
Hanning windowed five cycle sine wave mixed withndam
noise. The mother wavelets used are Daubechies DH10{,
discrete Meyer and Symlet 20 with a maximum levEldetail
equal to 15. The best mother wavelet to be usetidsone that
presents the lowest Shannon entropy. For this kigha lowest
value of the entropy was obtained for mother wav8jamlet 20 to
the detail level 7. This is due to the main compurd# the signal,
i.e., the windowed sine. Low values of entropy aied for the
first level of detail of DWT, showed in Fig. 4, adee to the noise
contained in the signal, because noise has highequéncy
components than the signal.

ABCM
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Figure 4. (a) Analyzed Signal; (b) Shannon entropy  of DWT coefficients for

mother wavelets Db10, discrete Meyer and Symlet 20.

Amplitude

2 I I I I I I I I I

0.8 1
time(ms)

1.2 1.4 16 1.8 2

Figure 5. Detail level 7 coefficients of DWT with m  other wavelet Symlet 20.

Figure 5 shows the level 7 detail’s coefficientstaofed by
DWT with mother wavelet Symlet 20. It clearly enkes the
signal desired attributes. This result shows thatentropy curve
of DWT coefficients, for various detail levels, apable of
identifying which level contains the portion of teignal with high
concentration of energy.

Hilbert Transform

The Hilbert transform can be used to create anytioal signal
from a real signal (Feldman, 2011). Consigéj a real signal. The
analytic signak(t) is calculated as follows:

Xa(t) = x(©)+iH{x(t)} . (26)
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where H{x(t)} is the Hilbert transform of the real signal. An
effective approach to calculate the Hilbert transfés as follows:

1) Calculate the Fourier Transform of the signal;
2) Rotate the phase of the signal obtained at 90°;
3) Return to time domain calculating the inverse Furansform.

Writing the analytical signal in polar form, we teav

Xq(t) = re”’, (27)

wherer is the absolute value andl is the phase of analytical
signal. The absolute value of the analytical sigg@responds to
signal envelope.

Numerical Results by SFEM Beam Model

The method for detecting faults in structures udiagb waves
and DWT was applied to analyze signals obtainednfiISFEM
model of aluminum beams with length 0.8 m, widtB3@ m and
thickness 0.0031 m. A benchmark beam, with no damnamd
damaged beams, with a transverse open and nongatipg crack
localized at 0.2 m, 0.4 m and 0.6 m with 0.3 crdelpth/section
height ratio were investigated.

A Hanning windowed five cycle sine tone burst of5LkHz and
sampling frequency of approximately 87 kHz was ugedenerate
the Lamb waves. For the sake of getting a morest&akignal, a
biased random noise was added to the wave propagatgnal
obtained from the model, resulting in a 7 dB sigimahoise ratio.
Figure 6 shows the results obtained by SFEM modéh w
normalized amplitude.
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Crack at L=0.4m
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Figure 6. Wave propagation signal obtained by SFEM
without and with crack at positions L=0.2m, L =

Shannon Entropy
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Figure 7. Shannon entropy of the DWT coefficients f
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To determine the best mother wavelet and the lefveétail that
contains the portion of the signal due to Lamb wprepagation,
the DWT coefficients with mother wavelets Coiflet (€0if3)
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Biortogonal 6.8 (Bior6.8) and Daubechies 40 (dbd®@)e obtained
for a maximum level of detail of 10. Figure 7 shothe Shannon
entropy of the DWT coefficients for the benchmadaim and the
damaged with a crack at 0.6 m. The results fortweebeams were
similar, i.e., for all cases, the detail curveatdl 2 shows the lowest
level of entropy for the DWT using the mother watedb40. This
result is important because it shows that it issgide to determine
the optimal mother wavelet and the level of deraiin the healthy
structure.

The DWT coefficients of second level using the neotivavelet
db40 and its envelopes are shown in Figs. 8 arebSectively. The
curves in Fig. 8 show that after processing thenaigusing the
DWT, the noise and the bias were extracted. Thkgedated to the
reflections of Lamb wave at beam discontinuitiesuidaries and
crack) are much more evident in the processed lsigna

The beam length and the crack position are prapuatito the
time interval between the first two peaks of thegnsi,
corresponding to the excitement and the first ctibe of Lamb
wave. This is called time of flight (TOF). From Fig, the TOF for
the beam without crack was 1.22 ms. This time isivadent to
twice the beam length, because the reflection scatithe end of
the beam. The crack position can be determinedobyparing the
TOF of the beam without crack with the TOF of tlacked beam,
using the following equation:

L toF,

wcC

P (28)

whereP is the position of the discontinuity, is the length of the
beamt,. is the time of flight of the benchmark beam and~Ti®the
time of flight of the beam under test.

Table 1 shows the TOF for beams without and witicky the
estimated crack position and the error betweencthek position
obtained from the proposed method and its actusitipo.

Table 1. TOF, crack position estimative and error f  or numerical model signals.

Crack positiol Without cracl| 0.2m | 0.4m | 0.6m
TOF (ms) 1.22 0.296 0.611 0.888
Estimated crack . 0.104| 0.401 0.582
position (m)

Error (%) - 3.00| 0.25/ 3.00

These results prove the effectiveness of the metbodetect
crack position in beams.

Experimental Validation

To validate the results obtained by the SFEM, messants
were made using two similar aluminum beams of len@8 m,
width 0.3 m and thickness 0.031 m. The first beara regular one
and the second presents a cut simulating a cracélized at 0.6 m
or 0.2 m, depending on the side used to excite rmrdsure the
Lamb wave reflections. These correspond to the beamdeled,
with an exception of the damaged beam with thekctacalized at
0.4 m. To excite the beam, a Hanning windowed €iyele sine tone
burst of 14.3 kHz was used. The experimental setuysists of two
circular buzzers of 2 cm diameter placed side D sit one end of
the beam, one to excite the beam and the othee#&sune the Lamb
wave; an Agilent 33120A arbitrary waveform generat@
homemade power and an instrument amplifier; anrutestim FA-
3050 DC power supply; and an Agilent 54622A ossiilape used to
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acquire and to transmit data to a personal compuibere it
processed and analyzed using Mat|as illustrated in Fig. 10.
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Figure 9. Envelope of level 2 DWT coefficients with
beams without and with crack at positions L =0.2 m

mother wavelet db40 for
,L=04mandL=0.6m.
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Figure 11. Experimental measurements of beams witho  ut and with crack
at positions 0.2 m and 0.6 m.
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Figure 12. Shannon's entropy of the DWT coefficient s for beam (a) without
crack; (b) with crack at 0.6 m.

Figure 11 shows three measured signals for the besing the
above conditions. These signals were measured avitampling
frequency of 100 kHz. It is very difficult to deeishe crack position
in the damaged beam, and even to be sure of teerre of the crack.
The only clear possible conclusion is that the agmobtained from
the damaged beam are different from the regulanbea

Figure 12 shows the Shannon entropy of DWT coedfits
using mother wavelets biortogonal 6.8 (Bior6.8),fleb 3 (Coif3)
and Daubechies 40 (db40). From these results, #s &ignal
decomposition by DWT is obtained with the motherelat db40
and the second level coefficients presented thedowntropy, both
to the benchmark and the damaged beam.
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Figure 13 shows the second level DWT coefficieritls thhe mother Table 2 shows the TOF, the estimated crack posd#culated
wavelet db40 and Fig. 14 their envelope. Compahegurves of Figs. from Eq. (28) and the error between the crack fowsibbtained
11 and 13, the Lamb wave package due to reflecoarthe crack is from the proposed method and its actual position.
much more evident in the processed signal and fteenenvelopes The results shown on Table 2 presented less tharrid6 for
shown in Fig. 14 the TOF can be measured with agliracy. the crack position estimation in these beams. ihfoeces the

expected good accuracy obtained with the proposstod.
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Figure 13. DWT coefficients of level 2 using the mo  ther wavelet db40 for time (ms)

beams without and with crack at positions L =0.2 m andL=0.6m. ) o )
Figure 14. Envelope of level 2 DWT coefficients wit h mother wavelet db40

for beams without and with crack at positions L =0 2mandL=0.6m.

Table 2. TOF, crack position estimative and errorf  or numerical model signals.

Conclusions

Crack position Without crack 0.2 06m This work presented a complete method to detectlacalize
TOF (ms) 1.43 0.36 1.07 damage in beam type structures based on Lamb wesieg the
- pulse echo configuration and the discrete wavettsform. Two
Estimated crack . 0201 | 0598 aluminum beams, one without damage and another avithack
position (m) type fault were modeled and simulated using thetsakelement
Error (%) . 05 0.3 method, and an experimental analysis was conductezbnfirm
’ the numerical results. The application of DWT ahé Hilbert

transform on the measured signals improved the racguin
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determining the instants that occurred the sigreslkp to obtain
the TOF. Furthermore, Shannon’s entropy approacwet the

best mother wavelet and the level of decompositienessary to
extract the desirable signal features. Numericsillts obtained by
SFEM modeling were very close to the measured &gna

damaged beam with the crack at different positimas analyzed
to demonstrate the method effectiveness. The ebalsed on the
experimental signals showed that, choosing appatelyi the

mother wavelet and level of detail of the discretavelet

transform, it is possible to achieve an error lgsmn 1% for the
estimation of the crack position. In the currersiggt of this work,
the proposed method was applied to evaluate onBmbéke

structures. Further simulations and experimentsh wihore

complex structures like plates and framed panets rereded to
confirm the effectiveness of the proposed method.
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