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Double Diffusive Natural Convection in 
Power-Law Fluid Saturated Porous 
Medium with Soret and Dufour Effects 
The effects of double diffusive natural convection heat and mass transfer along a vertical 
plate embedded in a  power-law fluid saturated Darcy porous medium in the presence of 
Soret and Dufour effects are studied. The governing partial differential equations are 
transformed into ordinary differential equations using similarity transformations and then 
solved numerically. A parametric study of the physical parameters involved in the problem 
is conducted and a representative set of numerical results is illustrated graphically. 
Keywords: natural convection, boundary layer, Darcy porous medium, power-law fluid, 
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Introduction1 

The study of flow, heat and mass transfer about natural 
convection of non-Newtonian fluids in porous media has gained 
much attention from the researchers because of its engineering and 
industrial applications. These applications include design of 
chemical processing equipment, formation and dispersion of fog, 
distributions of temperature and moisture over agricultural fields 
and groves of fruit trees and damage of crops due to freezing and 
pollution of the environment, etc. Several investigators have 
extended the convection of heat and mass transfer problems to fluids 
exhibiting non-Newtonian rheology. Different models have been 
proposed to explain the behavior of non-Newtonian fluids. Among 
these, the power law model gained importance. Although this model 
is merely an empirical relationship between the stress and velocity 
gradients, it has been successfully applied to non-Newtonian fluids 
experimentally. Free convection from a horizontal line heat source 
in a power-law fluid-saturated porous medium was studied by 
Nakayama (1993). The study of free convection in boundary layer 
flows of power law fluids past a vertical flat plate with 
suction/injection was done by Sahu and Mathur (1996). They 
observed that the suction/injection has significant effect on the 
velocity and temperature fields. Free convection heat and mass 
transfer of non-Newtonian power law fluids with yield stress from a 
vertical flat plate in a saturated porous media was studied by Rami 
and Arun (2000). They concluded that the velocity, temperature, and 
concentration profiles as well as the local heat and mass transfer 
rates are significantly affected by the fluid rheology in addition to 
the buoyancy ratio and the Lewis number of the fluid. The flow of 
natural convection heat and mass transfer of non-Newtonian power 
law fluids with yield stress in porous media from a vertical plate 
with variable wall heat and mass fluxes was considered by Cheng 
(2006). He observed that the existence of threshold pressure 
gradient in the power law fluids tends to decrease the fluid velocity 
and the local Nusselt and Sherwood numbers. Also, an increase in 
the power law exponent increased the local Nusselt and Sherwood 
numbers. Free convection heat transfer from a vertical flat plate 
embedded in a thermally stratified non-Newtonian fluid saturated 
non-Darcy porous medium is analyzed by Kairi and Murthy (2009).  

Pantokratoras and Magyari (2010) considered the steady forced 
convection flow of a power-law fluid over a horizontal plate 
embedded in a saturated Darcy-Brinkman porous medium. They 
found that far away from the leading edge, the velocity boundary 
layer always approaches an asymptotic state with identically 
vanishing transverse component. Abdel-Gaied and Eid (2011) 
presented a numerical analysis of the free convection coupled heat 
and mass transfer for non-Newtonian power-law fluids with the 
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yield stress flowing over a two-dimensional or axisymmetric body 
of an arbitrary shape in a fluid-saturated porous medium. Their 
results showed that the existence and the increase of the 
dimensionless rheological parameter in the power-law fluids 
increase the thermal and concentration boundary layer thicknesses, 
in the opposite of the increasing power-law exponent. Further, the 
heat and mass transfer rates are strongly dependent on the high yield 
stress parameters. 

Double-diffusive convection is referred to buoyancy-driven 
flows induced by combined temperature and concentration 
gradients. The study of double-diffusive natural convection in fluid-
saturated porous media has been motivated by its wide range of 
applications in many engineering fields such as evaporative cooling 
of high temperature systems, underground disposal of nuclear 
wastes, spread of pollutants, drying processes, contaminant transport 
in saturated soils and crystal growth from liquid phase. Hyun and 
Lee (1990) made a numerical study of double-diffusive convection 
in a rectangular cavity with combined horizontal temperature and 
concentration gradients. They imposed the boundary conditions at 
the vertical side walls in such a way that the thermal and solutal 
buoyancy effects are counteracting, resulting in an opposing 
gradient flow configuration. Numerical study of double-diffusive 
natural convection in a porous cavity using the Darcy Brinkman 
formulation was done by Goyeau et al. (1996). They observed that 
the strong influence of the Darcy number on heat transfer is more 
complex than in thermal convection, and then the behavior of the 
thermosolutal flow in porous media is different from the behavior 
already assessed for fluids. Mamou et al. (1996) have carried out 
analytical and numerical study of double diffusive convection in a 
vertical enclosure. In his analytical study, he applied a scale analysis 
to the two extreme cases of heat-transfer and mass-transfer-driven 
flows and then an analytical solution, based on the parallel flow 
approximation, is reported for tall enclosures. Cheng (2010) studied 
the double diffusive natural convection near an inclined wavy 
surface in a fluid saturated porous medium with constant wall 
temperature and concentration. Using a coordinate transformation 
the complex wavy surface was transformed to a smooth surface, and 
the obtained boundary layer equations are solved by the cubic spine 
collocation method.  

When heat and mass transfer occur simultaneously in a moving 
fluid, the relations between the fluxes and the driving potentials are 
of a more intricate nature. It has been observed that an energy flux 
can be generated not only by temperature gradients, but also by 
concentration gradients. The energy flux caused by a concentration 
gradient is termed the diffusion-thermo (Dufour) effect. On the 
other hand, mass fluxes can also be created by temperature gradients 
and this embodies the thermal-diffusion (Soret) effect. In most of 
the studies related to heat and mass transfer process, Soret and 
Dufour effects are neglected on the basis that they are of a smaller 
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order of magnitude than the effects described by Fourier’s and 
Fick’s laws. But these effects are considered as second order 
phenomena and may become significant in areas such as hydrology, 
petrology, geosciences, etc. The Soret effect, for instance, has been 
utilized for isotope separation and in mixture between gases of very 
light molecular weight and of medium molecular weight.  The 
importance of these effects in convective transport in clear fluids 
has been reported in the book by Eckert and Drake (1972). 
Dursunkaya and Worek (1992) studied diffusion-thermo and 
thermal-diffusion effects in transient and steady natural convection 
from a vertical surface. Kafoussias and Williams (1995) presented 
the same effects on mixed convective and mass transfer steady 
laminar boundary layer flow over a vertical flat plate with 
temperature dependent viscosity. They concluded that to predict 
more accurate results the variable viscosity effect and the thermal-
diffusion and diffusion thermo effects have to be taken into 
consideration in the fluid, heat and mass transfer flow. Postelnicu 
(2004) has analyzed the simultaneous heat and mass transfer by 
natural convection from a vertical flat plate embedded in an 
electrically conducting fluid saturated porous medium using the 
Darcy Boussinesq model in the presence of Dufour and Soret effects 
and made a remark that as magnetic parameter increases, thickness 
of the hydrodynamic/thermal/concentration boundary layer 
increases. Both free and forced convection boundary layer flows 
with Soret and Dufour have been addressed by Abreu et al. (2006). 
The effect of Soret and Dufour parameters on free convection heat 
and mass transfers from a vertical surface in a doubly stratified 
Darcian porous medium has been reported by Lakshmi Narayana 
and Murthy (2007). Mahdy (2010) presented a non-similar boundary 
layer analysis to study the flow, heat and mass transfer 
characteristics of non-Darcian mixed convection of a non-
Newtonian power law fluid from a vertical isothermal plate 
embedded in a homogeneous porous medium with the effect of 
Soret and Dufour and in the presence of either surface injection or 
suction. It was observed by him that increases in the Soret number 
tended to increase the local heat transfer rate while decreasing the 
mass transfer rate. Tai and Char (2010) numerically studied the 
combined laminar free convection flow with thermal radiation and 
mass transfer of non-Newtonian power-law fluids along a vertical 
plate within a porous medium in the presence of Soret and Dufour 
effects. They concluded from their study that when both heat 
diffusion and mass diffusion combine to drive the flow, the local 
Nusselt number increases with an increase in the power-law index n 
and the Soret number or a decrease in the radiation parameter and 
the Dufour number. 

From the literature survey, it seems that the problem of Double-
diffusive natural convection heat and mass transfer from vertical plate 
in Darcy porous media saturated in power-law fluid with Soret and 
Dufour effects has not been investigated so far. Thus this work aims to 
study the effects of Soret and Dufour on Double-diffusive natural 
convection in a power-law fluid embedded in a Darcy porous medium 
with variable surface temperature and concentration. 

Nomenclature 

A  = dimensional constant 
B  = dimensional constant 
C  = concentration 
Cp = specific heat at constant pressure 
Cs  = concentration susceptibility 
Df  = Dufour number 
Dm = mass diffusivity in porous medium 
g   = gravitational acceleration 
K   = Darcy permeability 
kT  = thermal diffusion ratio 

Le  = Lewis number (diffusivity ratio) 
N  = Buoyancy parameter 
 n  = power-law index                                
Nux = local Nusselt number  
Shx  = local Sherwood number 
Sr  = Soret number 
T  = temperature 
T∞ = ambient temperature 
Tm  = mean fluid temperature 
Tw   = wall temperature 
u,v   = Darcian velocity component in x and y directions 
x,y  = coordinates along and normal to the plate 

Greeks 

αm  = thermal diffusivity in porous medium 
ΒC  = coefficient of concentration expansion 
ΒT  = coefficient of thermal expansion 
η   = similarity variable 
θ  = dimensionless temperature 
µ   = viscosity 
ρ  = density 
Φ  = dimensionless concentration 
Ψ  = stream function 

Superscript 

‘    = differentiation with respect toη  

Formulation of the Problem 

Consider the natural convection heat and mass transfer along a 
vertical plate in a non-Newtonian power-law fluid saturated Darcy 
porous medium. Choose the coordinate system such that x-axis is 
along the vertical plate and y-axis normal to the plate. The plate is 
maintained at variable surface temperature and concentration, 
Tw(x), and Cw(x), respectively. The temperature and concentration 
of the ambient medium are T∞ and C∞ respectively. Assume that 
the fluid and the porous medium have constant physical properties 
except for the density variation required by the Boussinesq 
approximation. The flow is steady, laminar, two dimensional. The 
porous medium is isotropic and homogeneous. The fluid and the 
porous medium are in local thermodynamical equilibrium. In 
addition, the Soret and Dufour effects are taken into consideration. 
Under these conditions, the governing equations describing the 
fluid flow can be written as follows: 
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where u and v are the Darcian velocity components along x and y 
directions, T is the temperature, C is the concentration, kT  is the 
thermal diffusion ratio, µ is the viscosity, ρ is the density, K is the 
permeability, g is the acceleration due to gravity, βT  is the coefficient 
of thermal expansion, βC is the coefficient of concentration expansion, 
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αm is the thermal diffusivity, Dm  is the mass diffusivity of the porous 
medium, Cp is the specific heat capacity, Cs is the concentration 
susceptibility, Tm is the mean fluid temperature and n is the power-law 
index. When n = 1, Eq. (2) represents a Newtonian fluid. Therefore, 
deviation of n from a unity indicates the degree of deviation from 
Newtonian behavior. For n < 1, the fluid is shear thinning and for n > 
1, the fluid is shear thickening. 

 

                                     
Figure 1.  Physical model and coordinate system. 

 
The boundary conditions are 
 
v = 0, T = Tw(x), C = Cw(x) at y = 0                                  (5a)          
                                        

∞→∞→∞→→ yasCCTTu ,,0                         (5b) 

 
where the subscripts w and ∞ indicate the conditions at the wall and 
at the outer edge of the boundary layer respectively. 

In view of the continuity equation (1), we introduce the stream 
function ψ by 
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Substituting Eq. (6) in Eqs. (2)-(4) and then using the following 

similarity transformations 
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we get the following nonlinear system of differential equations. 
Here A, B, E, and F are constants. 
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where primes denote differentiation with respect to η alone. 
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Making use of dimensional analysis, we get  
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The boundary conditions (5) in terms of f, θ, and φ  become  
 
f(0) = 0,  θ(0) = 1,  φ(0) =1                                   (13a) 
   
f’(∞ ) = 0,  θ(∞ ) = 0,  φ(∞ ) = 0                                  (13b) 
 
The parameters of engineering interest for the present 

problem are the Nusselt and Sherwood numbers, which are given 
by the expressions 
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Numerical Procedure 

The flow Eq. (8) coupled with the energy and concentration Eqs. 
(9) and (10) constitute a set of nonlinear non-homogeneous 
differential equation for which closed-form solution cannot be 
obtained. Hence the problem has been solved numerically using 
shooting technique along with fourth order Runge-Kutta integration. 
The basic idea of shooting method for solving boundary value 
problem is to try to find appropriate initial condition for which the 
computed solution “hit the target” so that the boundary conditions at 
other points are satisfied. Furthermore, the higher order non-linear 
differential equations are converted into simultaneous linear 
differential equations of first order and they are further transformed 
into initial valued problem applying the shooting method, 
incorporating fourth order Runge-Kutta method. The iterative 
solution procedure was carried out until the error in the solution 
became less than a predefined tolerance level.  

The non-linear differential equations (8)-(10) are converted into 
the following system of linear differential equations of first order by 
defining new dependent variables {f, f1,θ, θ1, φ, φ1}: 
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The boundary conditions in terms of f, f1,θ, θ1, φ, φ1 are 
 
f(0) = 0, θ(0) = 1, φ(0) = 1, f1(∞) = 0, θ(∞) = 0,  φ(∞) = 0     (16) 
 
Here, η at ∞ is taken as ηmax and chosen large enough so that the 

solution shows little further change for η larger than ηmax. 
As the initial values for f1, θ1 and φ1 are not specified in the 

boundary conditions (16), assume some values for f1(0), θ1(0) and 
φ1(0). Then Eqs. (15) are integrated using the 4th order Runge-Kutta 
method from η = 0 to η = ηmax over successive steps ∆η. The 
accuracy of the assumed initial values f1(0), θ1(0) and φ1(0) is then 
checked by comparing the calculated values of f1(0), θ1(0) and φ1(0) 
at η = ηmax with their given value at η = ηmax in (16). If a difference 
exists, another set of initial values for f1(0), θ1(0) and φ1(0) must be 
assumed and the process is repeated. This process is continued until 
the agreement between the calculated and the given condition at η = 
ηmax is within the specified degree of accuracy.   

In the present study, ηmax has been suitably chosen at each time 
such that the velocity, temperature and concentration profiles 
approach zero at the outer edge of the boundary layer. The effect of 
Soret and Dufour numbers and power law index parameter is 
studied on the heat and mass transfer rates for some selected 
combinations of parameter values. 

Results and Discussion 

To validate the accuracy of the present numerical scheme, a 
comparison of the heat and mass transfer coefficients for the case 
of Newtonian fluid flow (n = 1) in the absence of Soret and 
Dufour parameters is made with the previously published results 
of Yih (1999). The comparison is listed in Table 1 and found in 
excellent agreement. 

Table 1. Comparison of values of )(' 0θ−  and )(' 0φ−  for various 

values of N and Le. 

N Le 

Yih (1999) 
with λ = 1/3 

Present results with  
Sr = 0, Df  = 0 and n = 1 

)(' 0θ−  )(' 0φ−  )(' 0θ−  )(' 0φ−  

1 1 0.9583 0.9583 0.9583 0.9583 
1 10 0.8053 3.3394 0.8053 3.3394 
1 100 0.7233 10.8298 0.7233 10.8298 
4 1 1.5153 1.5153 1.5153 1.5153 
4 10 1.0668 5.0070 1.0668 5.0070 
4 100 0.8126 16.0127 0.8126 16.0127 
 
In order to study the effects of Soret number Sr, Dufour number 

Df and power law index explicitly, computations were carried out by 
taking the buoyancy ratio N as 1.  The values of Soret number Sr and 
Dufour number Df are chosen in such a way that their product is 

constant according to their definition provided that the mean 
temperature Tm is kept constant. 

 

 
Figure 2. Variation of non-dimensional heat transfe r coefficient with Le for 
varying S r and D f for shear thinning fluids. 

 

 
Figure 3. Variation of non-dimensional heat transfe r coefficient with Le for 
varying S r and D f for Newtonian fluids. 

 

 
Figure 4. Variation of non-dimensional heat transfe r coefficient with Le for 
varying S r and D f for shear thickening fluids. 

 
The non-dimensional heat transfer coefficient (Nux) is plotted 

against Lewis number (Le) for different values of Soret number (Sr), 
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Dufour number (Df) in Figs. 2-4 with N = 1 for three different cases 
n = 0.5, n = 1 and n = 1.5 of power law index. It is observed that 
increasing the Lewis number Le decreases Nusselt number (Nux) for 
all values of power-law index n. It is clear that increasing the Soret 
number (decreasing of Dufour number) decreases the heat transfer 
coefficient. This is because either a decrease in concentration 
difference or an increase in temperature difference leads to an 
increase in the value of the Dufour parameter. Hence, decreasing the 
Dufour parameter Df decreases Nux.  

Figures 5-7 depict the variation of mass transfer coefficient 
(Sherwood number, Shx) with Lewis number (Le) for different 
values of Soret number, Dufour number, power-law index and N = 
1. It is observed from these figures that increasing Lewis number 
increases the Sherwood number for all values of power law index. 
Also, increasing the Soret number (decreasing of Dufour number) 
increases Shx. The Dufour effect enhances the mass fluxes and 
lowers the heat fluxes. Therefore, decreasing Df value increases the 
mass transfer coefficient. 

 

 
Figure 5. Variation of non-dimensional mass transfe r coefficient with Le 
for varying S r and D f for shear thinning fluids. 

 

 
Figure 6. Variation of non-dimensional mass transfe r coefficient with Le 
for varying S r and D f for Newtonian fluids. 

 
The effect of power-law index on Nusselt number for different 

values of Soret and Dufour numbers is displayed in Fig. 8. It is 
observed that the heat transfer coefficient increases with increasing 
the value of the power-law index (n). Figure 9 demonstrates the 
effect of power law index on Sherwood number for different values 

of Soret and Dufour numbers. It is noticed that increasing power law 
index increases the mass transfer coefficient. It is interesting to note 
that both the Nusselt number (Nux) and Sherwood number (Shx) for 
Newtonian fluids are more than that of shear thinning  fluids and 
less than shear thickening fluids. 
 

 
Figure 7. Variation of non-dimensional mass transfe r coefficient with Le 
for varying S r and D f for shear thickening fluids. 

 

 
Figure 8. Variation of non-dimensional heat transfe r coefficient with n for 
varying S r and D f for N = 1, Le = 1. 

 

 
Figure 9. Variation of non-dimensional mass transfe r coefficient with n for 
varying S r and D f for N = 1, Le = 1. 
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Conclusions 

In this paper, natural convection heat and mass transfer along a 
vertical plate embedded in a power-law fluid saturated Darcy porous 
medium in presence of the Soret and Dufour effects has been 
considered. The plate is maintained at variable surface temperature 
and concentration, Tw(x), and Cw(x), respectively. It can be 
concluded from the present analysis that increasing the Soret 
number (or decreasing the Dufour number) decreases the Nusselt 
number, but increases the Sherwood number for shear thinning, 
Newtonian and shear thickening fluids. 
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