New Numerical Method for the Photoelastic Technique

Pedro Américo A. M. Junior

pamerico @pucminas.br

Pontificia Universidade Catdlica de Minas Gerais
Departamento de Engenharia Mecénica

Av. Dom Jose Gaspar, 500, Coragao Eucaristico
30535-901 Belo Horizonte, MG, Brasil

Cristina Almeida Magalhaes

crisamagalhaes @hotmail.com
Centro Universitario Newton Paiva

New Numerical Method for the
Photoelastic Technique

The objective of this research is to find new eguatfor a novel phase-shifting method in
digital photoelasticity. Some innovations are pregw. In terms of phase-shifting, only the
analyzer is rotated, and the other equations arduded by applying a new numerical
technique instead of the usual algebraic techniquEsis approach can be used to
calculate a larger sequence of images. Each imagm@mesents a measurement of the
stresses present in the object. Every photograjphégie has errors and random noise, but
the uncertainties due to these effects can be exfuth a larger number of observations.
Keywords: photoelasticity, metrology, stress analysis, @dtineasurement

Coordenacdes das Engenharias
Rua José Claudio Rezende, 420, Estoril
30455-590 Belo Horizonte, MG, Brasil

Perrin Smith Neto

psmith @pucminas.br

Pontificia Universidade Catdlica de Minas Gerais
Departamento de Engenharia Mecanica

Av. Dom Jose Gaspar, 500, Coragao Eucaristico
30535-901 Belo Horizonte, MG, Brasil

Introduction

Photoelasticity is one of the oldest methods fapeexnental
stress analysis, but it has been overshadowedé¥ittite Element
Method for engineering applications over the pasb to three
decades. However, certain new and novel developmernid
applications have revived the use of photoelagticithe new
approach involves the use of hybrid methods in tvhite
advantages of both experimental and numerical rdethare
exploited. Nevertheless, recent industrial needschsas the
continuous on-line monitoring of structures, deteation of the
residual stresses in glass (plastics) and micrveleics materials,
rapid prototype production and dynamic visualizatiof stress
waves, have brought photoelasticity into the ligtelionce again
(Asundi, 2001).

The current trend of digitally imaging photoeledtinge patterns
indicates that image processing can be used toedédi the required
information from the fringe patterns. The phasétisigi method has
the most potential, particularly with respect toinde sign
determination. The method of photoelasticity makepossible to
obtain the principal stress directions and priricir@ss differences in
a model. The principal stress directions and thiecjpal stress
differences are provided by isoclinics and isoctatics, respectively
(Asundi, Tong and Boay, 2001). Isoclinics are the bf the points in
the specimen along which the principal stressesinliehe same
direction. Isochromatics are the loci of the poiatsng which the
difference in the first and second principal stremsains the same.
Thus, they are the lines that join the points \eilnal maximum shear
stress magnitudes (Fernandez, 2011).

The fringe patterns are nothing but the record tef phase
difference between light travelling in two diffeteoptical paths as
intensity variations. By varying the phase diffaenbetween the
beams involved, in known steps, it is possiblednegate a sufficient
number of equations to solve the parameters indolt@ general,
phase differences can be added by altering theabgtath length of
any one of the light beams. Usually, the phaséefreference light
beam is altered in known steps. Photoelasticitls fiito a special
category, in that the two light beams cannot batéxk separately, but
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rather always go together (Kihara, 2007). This rmearphase shift
introduced in one light beam will also introducecarresponding

phase shift in the other beam. This change in phasgractice, is

achieved by appropriately rotating the optical eeta of the

polariscope. A detailed study of the intensity oé tight transmitted

can help in relating the rotation of the opticaneénts to the change
in phase introduced (Huang and Sung, 2010).

Nomenclature

b,s = coefficients of the numerator in the new equagitor
calculating phase:, dimensionless

¢s = coefficients of the denominator in the new etpret for
calculating phase:, dimensionless

D  =diameter of the disk, m

E.E, = the components of electric field in light aloagd
perpendicular to the analyzer axis, N/C

E,.Es= average error, difference between values meakime
the experiments and the values calculated by theryhof
elasticity, rad

gs = coefficients of the numerator in the new equaitor
calculating phase, dimensionless

F = material fringe constant photoelastic, N/m

s = coefficients of the denominator in the new etpret for
calculating phase, dimensionless

—h

H = thickness of the disk, m

K = constant proportion of the maximum light intéyns
emerging from the analyzer, dimensionless

k = amplitude of light vector, N/C

= the output light intensity in the photograplimage,
dimensionless

M =number of pixels of the image, dimensionless

N = number of images, dimensionless

n = isochromatic fringe orders, dimensionless

P = diametrical compress load, N

r = integer counter, dimensionless

Step = integer values greater than or equal toiyahsionless

s = integer counter, dimensionless
X = horizontal distance from the origin at the camof disk, m
y = vertical distance from the origin at the centdrdisk, m
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Greek Symbols

A6 =increase given the angle of the analyzer in each
photographic image, rad

a = angle between the direction and the axisdfiorizontal
reference, rad

o0  =delay in the model given by the photoelastic
isochromatic fringes, rad

¢ =angle of the second quarter-wave plate in pcaasipe

relative to the horizontal axis x, rad

= mathematical constant that is the ratio of actifs

circumference to its diameter,

(3.141592653589793238462643), dimensionless

6  =angle of the analyzer in polariscope relativethe
horizontal axis x, rad

o, 0y = Cartesian components of normal stresses, Pa

01,0z = principal normal stresses, Pa

N

Iy = Cartesian shear stress component, Pa

w = angular frequency of light vector, rad
Subscripts

e = indicates the exact, analytical values

r = relative to the line counter index

S = relative to the column index counter

X = relative to the horizontal axis (Cartesian)

y = relative to the vertical axis (Cartesian)

v = relative to the number of restrictions in theane

mathematical model of linear programming

Phase-Shifting M ethods of Analysis

The optical arrangement to recognize and to idemibclinics
and isochromatics from photoelastic fringes israutar polariscope
set-up, shown in Fig. 1. In Fig. P, Q, R, and A represent the
polarizer, quarter-wave plate, retarder (stressedat) and analyzer,
respectively. The orientation of the element igten by a subscript,
which means the angle between the polarizing axid the

horizontal x axis. R, represents the stressed sample taken as a

retardationd and whose fast axis is at an anglevith the x axis

(Baek et al., 2002). TherefordqQssRys QusAs indicates the
following: a polarizer at 90°, a quarter-wave plaiéh a fast axis at
45°, a specimen as retardatidrwhose fast axis is at an angte
with thex axis, a quarter-wave plate with a fast axis4#°, and an

Junior et al.

Puig of
polarization

I Palarizer

First quater-wawe
plate

Ligth sourze

Foalyzer
Obzerver (zamera phota))

Figure 1. Optical arrangement of a circular polaris ~ cope (180° = mradians).

In Eq. (2),1 is the output light intensity, ané: andEyare the

complex conjugate oE, and E,, respectively. After the simple
operation of Eqg. (1) by Eq. (2), the output intepsif the circular
polariscope for the arrangemé®hQ,sR,, 5Q.45A¢ IS given by

=K [1-coq B) co$d)- cos @) she} dd)]

whereK is a proportional constant, i.e., the maximumtlighensity
emerging from the analyzer. These angle valueschmsen to
simplify the calibration of the polariscope usedtle experiments
measurements. For the phase measuring techniquantilea and

@)

analyzer até, With the Jones calculus (Collect, 2005) for thdhe relative retardatiod indicating the direction and the difference

arrangement oPgoQ4sR,.5 Q45”9 shown in Fig. 1, the components

of the electric field in light along and perpendauto the analyzer
cos @

axis (E, E)) are given as
E)_ 1—1><
E,) |sin@co® 1+4i
é’cosa+sifa (é"— ) simr cos | (j+1\[1 i(0 e
x| —=
(é”—l)sina comr €&° coka+ sfu ( 4 jL J[J

sirg coﬁ}{lﬂ

sifg | |1-i 1)

wherel =\ﬁ1, dand ¢ = —45° are the angles that the analyzer and

the second quarter-wave plate form with the refegex axis,

respectively. The symbolsandware the amplitude and the angular

frequency of the light vector, respectively.

| =E,E, + E,E, @
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of principal stresses, respectively, are the pararméo be obtained.

Figure 2. Sample under compression.

In the experiments, Fig. 2, the diameter and thektiess of the
disk used areD = 10.0 cm andH = 0.5 cm, respectively. A
diametrical compression load,= 50.0 N, is applied to the disk. The
material fringe constarft = 5.2500 N/cm is used. From the given
conditions, the theoretical value of isochromalirs related to two
principal stress components, ando,, as in Eqg. (4). In contrast, the
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theoretical isocline angle can be calculated by Eq.
componentsx, g, andz,.

2nH

o= - (0,-0,) “)
a= 1 tan'l( 2y J (%)
2 o.-0,

In the literature on the theory of elasticity (NKB97; Oh and
Kim, 2003), the exact value of the stress field, dofunction ofx
and y with its origin at the center of the disc is givey (the
superscript & indicates the exact, analytical values):

po= 2P (D/2-y) ¥ (D/2+y)¥ 1| (g
Yo [ +(Di2-yp] [@+(Di2+y?] D
ge==2P]_ (DI2my) (br+y) 1| @
T ([ +(Dr2-y?] [¢+(Di2+y?] D
e _ 2P (D/2—y)2x (D/2+ y)2 X ®)

Yot [+ (Dr2-y? ] [+ (Dr2+ vy

For comparison with the experimentally measuredies| the
following are used:

e e
e (UX + Uy)

oy =" —\/i (aj - 05)2 + (rjy)z C)
or-229), Mo o) w0
2 2 4 X y Xy

Then, with Eq. (11) and Eq. (12), the exact valoE8® and o®
can be calculated for each point of the@ndy coordinates in the
same manner as in Eq. (4) and Eq. (5):

5= o -a) D
2re
at = Etan‘1 s (12)
2 oy -0ay

Figures 3 and 4 show the result of applying thelydical
equations 11 and 12, the color change over a rahgk! radians in
order to simulate the formation of fringes. Theads to compare
these exact result®?(and o) obtained theoretically in the analysis
of stress with experimental measurements of ligterisities using
the proposed method énda).

New M athematical M oddl

By analogy to the equations of phase calculaticedusy other
authors and the mathematical model proposed in Mags, Neto
and Barcellos (2010), we had the idea to try a gemeral model for
the equations of phase in photoelasticity. Afterngpnalifferent
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(5) using stressittempts, a general equation for calculating thasphfor any

number N, of images is proposed:

N N
1 Zzbrslrls (13)
cr=§tan‘1 ': SN'
z Crs r s
N N
zz s r s (14)
-1 r=1 s=r
Z:];Z frs r's

whereN is the number of imageb, s ande, ¢ are coefficients of the
numeratorg, s andf, s are coefficients of the denominator, anand
s are the index of the sum (Magalhaes, Neto anddas; 2010).
Expanding the summations and allowing an arbitramynber of
lines yields

Figure 3. Analytical solution of & for a disc on compression, using Eq. (11).
The color change over a range of 2 m radians in order to simulate the
formation of fringes (Phase maps of isochromatics).

Figure 4. Analytical solution of  a® for a disc on compression, using Eg. (12).
The color change over a range of 0.5 radians in ord er to simulate the
formation of fringes (Phase maps of isoclinics).
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2
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2
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2
+e33| 3 +e3\4| 3| 4 N +e3,NI 3| N
2
44'4 . +e4,NI4IN
2
+eyn!
1 N,N'N
J=tan® (16)
fllll +f1,2|1|2 +f13| 1|3 +f1,4|1|4 +le|1|N
2
+f22|2 +f23|2|3 +f2,4|2|4 . +f2N|2|N
2
+f3\3|3 +f34|3|4 : +f3N3N
+f444 . +f4,N|4|N
2
+fNNIN

In contrast, emphasizing only the matrix of coeffits of the
numerator and the denominator:

bll
Num, =
N
a=ttan? [Num| -
2 |Den,| Cyy
Den, =
CH
Numy =
N
d=tan [Num N
|Den, fi,
Den; =

8. 83
&2 &
&3

— —h

33

b1,4 . bLN
b2,4 . bz,N
b3,4 e b3,N
b44 . bA,N
b
N 1(17)
Ciq Cin
C2,4 Cz,N
03,4 C3N
C4,4 4,N
CN,N
€4 - 8
€4 - Gy
€4 - By
€a - Gy
&l (18)
frg oo Ty
fon o fay
f3,4 - f3N
f4,4 - fd‘N
fN,N
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The display of the phase calculation equation iis tvay
permits the viewing of symmetries and the sparsegixadhe use of
the absolute value in the numerator and the deretonimestricts the
angle between 0 a2 radians, but avoids negative roots and also
eliminates false angles. Subsequent consideratwihkater remove
this restriction.

The shift from obtaining equations for calculatitlge phase
analytically to obtaining them numerically is arsfgcant innovation.

It breaks a paradigm that was hitherto used byrakeethors. After
several attempts at numerical modeling of the gmoblthe following

mathematical problem was identified (Eq. (19)):
N

Maximize ZZN:( bt e+ gt f)

r=1s=r
subject to
tan(angley Sqrt(|[Num|)/Sqrt(|Den|) Quaietst

D tart (20 zz(,s,s)j 33 (b,%1%) v=1.[N(N+1]

r=1 s=r r=1s=r

2) tar? @ (ZN:%( S)j ZN:ZN:( 1Y) V=L NN+

r=1 s=r r=1 s=r

3) -1<b <1, -Ikc <1 r=1N s=r .N
-l<e <1, —Lfrs_ r=1N s=r.N
4) b, ¢, are real numbers r= .M4,s=r N.
e, f¢are real numbers r= .M,s=r N.

where for each v
IJV:K“[l—cos( 29]) cosd’ ¥ co@(ﬁ’) s(ngg) siai“(])j,: .
KV 0O[0; 255] random and real

a’ 0[0; /4] random and real
o’ 0[0; m/2] random and real

L4 O e D -/ m
6’_2[Step—1j g =N 91'][ A’A}
6=—""__radians

2(Step-1)
Input with the integer valuesStep= 3 andNO[ 3,Step

Output with the real coefficienty; ¢ .6, ,f, ,r= N, s . N
(19)

The motivation for choosing this mathematical modelthe
success achieved in Magalhaes, Neto and Barcél@s0§ with a
similar model. The idea of the mathematical modeioi maximize
the coefficients I, Cs, &5, frs) SO that their values are large
enough (not close to zero) to make them significarthe equation
obtained Steprepresents integer values greater than or equaiNo
is the number of images, and it is an integer nurbleéveen 3 and
the value ofStep

The constraints 1 and 2 are made so that the cieffs b,
Gs € frs) generate correct values for the calculatioraadnd o.
To ensure that one has a hyperrestricted probtemsuggested that
the number of greater restrictions must be at leagtal to the
number of variables.

The constraints 3 and 4 are placed on the coefiigi@, s, ¢,
€ f ) that are not greater than one and are not smetiken
negative one, to avoid error propagation. For teeds evaluation
phase, these limiting factors will increase theueal of the
intensity of the observation$)(that contains errors due to noise in
the observations and excellent discretization imelsi and in
shades of gray.
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The v restrictions in the model are obtained by a randboice 01282 +J 4], -0.28
of values forK (constant proportion of the maximum intensity of ! 20 15|22 4 |3 1 '
light emerging from the analyzery, (delay in the model given by e 0 25|32 N N
the photoelastic isochromatic fringes) and(angle between the s i )
direction and the axis af; horizontal reference). In fact, the values  5=gn? —0.124, (23)
of K, 4 anda can be any real number, but to maintain compéiibil 0512 —J, AL, 4L,
with the problem, we chose to lint between 0 and 255 so that the 4052+, 4,
values ofl are between 0 and 255. In additienis limited between 4052 -1y,
0 andn/4 radians andd between 0 andi/2 radians so that the +0.5/2

tangents have positive values.

The angled is limited to -n/4 andn/4 radians and is equally
spaced wherstep= N. For other values dbtep the angled starts
with a value of-174 and is equally spaced, but it does not raddh
The choice of these angles is made based on tleeoéasilibration

In another example, wheéx = 3 andStep= 4, the angles of the
polariscope analyzerg[ are -45°, -15°, and 15°. The equations
obtained with the mathematical model are showndn ®24) and

in the polariscope used. Other values for the angém be used in Eq. (25).
the mathematical model.
Stepmust to be an integer number. The number of imgiyes —@9) +(2/3)), +(2/9] 4
should range from 3 to the value $fep Stepis used to vary the -3 +2/3)1] 4
angle with constant spacing in the polariscope yaeal For 1 —(1/9)2
example, for 8 imagesN(= 8) andStep= 10, the angles of the a=>tan (24)

analyzer polariscoped| are as follows=45°,-35°,-25°, -15°,-5°,
59, 15°, and 25°.

The mathematical model is easy to solve becaugevdives
linear programming and a maximum global solutiom dae
obtained using the Simplex method. The processing for the
solution of this mathematical model is very fastew seconds on ~GIBIZ +QI,l, +A6),l,
personal computers.

HU3NZ -(213),),
+(1/3)12

- @212
For example, wherN = 3 and Step= 3, the angles of the Ak +(1/6)12
polariscope analyzeg) are-45°, 0° and 45°. The equations obtained 5= tan? el (25)
with the mathematical model are shown in Eq. (2@) Bg. (21). @3z =10,  +@3),l,
+(B/H1Z - W2l,l,
-02517 +1,0, +05,l, +(5/6)12
—12 41, (20)
o=t - 02517 In a different example, wheN = 7 andStep= 7, the angles of
- 0511, the polariscope analyzef)(are-45°,-30°, -15°, 0°, 15°, 30°, and
45°, Here the differences are in coefficients bémegers instead of
+ 0252 real; this was done by changing the mathematicalahfor integer
8 programming. The equations obtained with the matieal model
are shown in Eqg. (26) and Eq. (27).
I 1| 2
12 +1,l, (21) -217 +2,0, +20,0, +2 +20,0,
N "'Iz2 tlholy =l +lls +l,l
J=tan’ S22 o1l —ll, +ll +20
2 _ 3 34 3's 3'6 3'7
025l; +I|1|22 +_0i5||1|3 S22 =l,ly =1l + 20,1,
2 23 =212+l +2,
+ 0253 +12
I - -217
In another example, whe¥i = 4 andStep= 4, the angles of the 9 =31@" IR a—— .y (26)
polariscope analyzer §( are -45°, -15°, 15°, and 45°. The ! v ve s o v
equations obtained with the mathematical modelsam@vn in Eq. vor2 o 28 .
(22) and Eq. (23). 3 iy 3's +2|3 |7
4 4’7
+212 —14l,
-0.3787 +/J, H], +0.28,
-1 i, NE
-y,
-0.3787
a =%tan‘1 2 (22)

-0297 +), H]|, +0.5l,
087 -1J, A,

+0.52  +4,

-0.289;
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J=tan™

+21,0,

-212

+201,

+2,0, +20,0,

-2,

-2 -2 1
-212

2

+21

-2,
+20,1,

+21,

+21,
+20l,
-212

-2,

+212

=20, -2,

+20,1,

+212
+212

2
s

Table 1. Values of the real coefficients (

+21,1,

-2,
-2l
-2,

+212

@7)

Junior et al.

For example, with 10 imagehl = 10) andStep= 10, the angles
of the analyzer polariscopé)(are as followsA8 = 10°): 6, = -45°,
6, =-35°, 6, =-25°, 6, = -15°, 6, = -5°, G, = 5°,6, = 15°,4 = 25°,
& = 35° and Gy = 45° The equations obtained with the
mathematical model are shown in Table 1 with valoésthe
coefficients b, g, C s, & s fr.9).

For example, withN = 11 andStep= 11, the angles of the
analyzer polariscope are as followsf8= 9°): 6 = -45°,6, = -36°,
& =-27°0,=-18°6,=-9° 6,=0°,6, = 9°,65 = 18°,6 = 27°,6,o =
36°, andg; = 45°. The equations obtained with the mathemnlatica
model are shown in Table 2 with values of the doieffits ¢, G,
& frg). The coefficients are displayed with 5 decimalcels, but were
calculated in 19 decimal places of accuracy. Tivedges are shown
for purposes of direct use of the new equations emaference
implementation of the mathematical model.

brs, Crs, €rs, frs), when N =10 and Step = 10.

fr,s

T nnadinannnonaadinnnn
WWWWWWWWOWNRNNNNNNNNRRPRRRPRPRPRRRRPR

=T 3T 7T T YT YT YT YT YT YT Y YT YT YT YT YOy O

1
i

IgpIn(EyIeniuy/ainninyiny Ry Ry e Ny Ryl
hwsom\lmmbwmsom\lmm

1
© 00 ~NO O,

n unu nunnnoonnnoononnoonoonnnoonnnoonoononoonuon

I}
'_\
o

br,s Crs € s
-1.00000 -1.000p0 -1.00000
-1.00000 1.00000 -0.87367
1.00000 1.000¢0 1.00000
1.00000 1.000¢0 1.00000
1.00000 1.00000 1.004000
1.0000p -1.000p0 -1.00000
1.00000 1.000¢0 1.00000
1.00000 -0.1239%0 1.00000
0.5638p -1.000p0 1.00000
-1.00000 -1.000p0 -1.00000
-0.87625 0.722¢2 1.00000
1.00000 1.0000 1.00000
1.00000 -1.000p0 1.00000
1.00000 -1.000p0 1.00000
1.00000 -1.000p0 -1.00000
1.00000 1.000¢0 1.00000
1.00000 -1.000p0 1.00000
1.00000 -1.000p0 1.00000
1.0000p 1.00000 -1.00000
1.00000 1.000¢0 1.00000
-1.00000 1.0000 0.61212
-1.00000 -1.000p0 -1.00000
-1.00000 -0.67863 -1.00000
0.52638 1.000¢0 -1.00000
1.00000 1.00000 1.00000
1.00000 1.000¢0 1.00000
D

1.0000

-1.000p0 -1.00000

1.00
1.00
0.91
-1.0d
-1.04
-1.0d
-1.0d
1.00
1.00
1.00
1.00
-1.0d
-1.0d
-1.04
-1.0d
-1.0d
-1.0d
1.00
1.00
-1.0d
-1.0d
-1.0d
0.42
1.00
1.00
-0.73
-1.04

Index [ brs [ Gs | &s [ fis
DO( r=44 s|-1.00000¢ -1.00000 -1.000p0 1.004q00
DO( r=4% sE1.0000¢ -1.00000 -1.000p0 1.00400
V91 r=4; sF@.0000Q -1.00000 -1.00000
00 r=4; sE4.0000Q 1.00000 -1.00000
00 r=4; sE8.03204 -1.00000 1.000¢0
0O r=49 s| 1.0000d -1.00000 1.00000
00 r=4 ;0sF1.0000d -1.00000 -0.356p2
DO r=5; sEA.0000Q -1.00000 -1.00000
DO r=5; sEd.0000Q 1.00000 -1.00000
DO rs57 -1.00000 1.00000 -1.00000
DO r=5; sEd.0000Q -0.841713 0.299%4
00 r=5; sE2.00000| 1.00000 1.000¢0
0O r=510s{F1.00000 -1.00040 1.00000
00 r=66 sF1.0000¢0 1.0000p -1.000P0
00 r=67 s|-1.00000 -1.00000 -1.000p0O
00 r=6; sEd.0000Q -1.00000 1.000¢0
00 r=69 sE1.0000q -0.75947 1.00000
DO r=6 ;0s£1.0000d -1.00000 1.000¢0
DO r=77 sfF1.00000 1.0000p -1.000p0
00 r=7; sEd.0000Q 1.00000 1.000¢0
00 r=79 sE1.0000d 1.0000p 1.00000
00 rsZ10 | 1.00000 1.0004J0 1.000pO
18 r=88 s| 1.0000d 1.0000p -0.842[13
DO r=8; sF2.00000 0.68111 -1.00000 -1.00¢00
DO r=8; sE1MO00Q -1.00000 1.000¢0
08 r=9; sE9.8112Q 1.00009 -1.00000 1.00d00
00, rs€j0 | -1.00000 -1.00000 1.000P0 1.00000
r=10; s=1¢ -1.000q40 1.000(£0 -0.61617 1.00o000

Thus, for each value ddtepgreater than or equal to 3 ahd
between 3 and the value 8tep the mathematical model of Eq. 19 generated random values Kfl[0, 255], & [0, 4], and 0[O0,
provides values of the real coefficients { ¢ s, &5 frs), Which
represents an unprecedented and new phase edicativand J.

Because the new equations were developed fromgbetams,
a numerical calculation, rather than an analytderinonstration of
trigonometric relations, is necessary to check thénis believed
that a large number of numerical tests can validateerify these

new equations or at least minimize the chance e$dhequations

being wrong or false. To test the usefulness ohthe equations for
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calculating the phase, a computer program was etteathich

12]. Using Eq. (3), the program calculatésvalues ofl;, one for
each value of]. With the values of;,, the new phase equations were
applied and tested to determine whether they prediube correct
values ofa andd. The values of; (luminous intensity of the image)
are calculated withy ranging from 1 td\. The new equations with
the values of; are applied, giving a targ] and a tand) that must
be compared with the value of randomly assignet gnd J)

ABCM



New Numerical Method for the Photoelastic Technique

values. This comparison involves the accuracy wérg small value of the tangent function. Sixteen tests were peréatmand the
because of the number of rounding errors that azsuroin the correct values ofr and dwere sought betweem andr, because the
calculations, that is, the precisiona’(|- al+|d - J)<10°. This experimental value and 4 are known (Arellano, 2008).
calculation was performed thousands of times (astlel00.000

times) for each equation in the phase calculationas generated at I, = K[L- coq26,)cos@) - coq2a)sin(26, )sin(d)]

least 99.999% of the time with an accuracy of®10The _ [ 5( 0 ) 5( ) . ( 0 ) . ]
mathematical model of Eq. (19) was successfullyetesintil Step I, = K[1-c09286, )cos@) - cod2a)sin(26, )sin(d)] (28)
and N equal 1801, the value at which the increm&étwould be

0.05°. Thus, it was believed that the chanceshfereguations to be I, = K[l—cos(ZHN )cos@') —Cos(2a)sin(2HN )sin(b')]

wrong or false have been minimized.

We obtaina and d between [, 1. The next step is to unwrap
the wrapped phase map. When unwrapping, severéheofphase

Because of the character of the evaluation equatimmy phase Vvalues should be shifted by an integer multipl@rfUnwrapping is
valuesa O [0, 4] and d O [0, 102] radians were calculated. For thus adding or subtracting 2 offsets at each discontinuity
unequivocal determination of the wrapped phaseevahgles] [-;,  e€ncountered in the phase data. The unwrapping guoeeconsists
T it was necessary to test valusd, -, and 9+ by combining N finding the correct field number for each phaseasurement
them with a, -a, @ -1, and @ +m using values of; and small (Estrada, Servin and Quiroga, 2011; Navarro e2all2).
systems in Eq. (28). The values were tested basdldeosymmetries

Before Unwrapping, Changeto [-&, n]

Table 2. Values of the real coefficients (  bys, Crs, €rs, frs), when N =11 and Step = 11.

Index br,s Cs €&.s fr,s Index br,s Crs S fr,s
r=1; s=1 | -1.00000 1.00000 -0.84196 1.00p0( r=47 sF1.0000Q -1.0000p -1.00000 1.000p0
r=1; s=2 | -1.00000 1.00000 1.00000 1.00p0d r=4; sE8.0000d -1.0000p -0.04016 1.00090
r=1; s=3 1.0000p -1.00000 -1.00000 1.00p0( r=49 sgE1.00000( -1.0000p 1.00000 -1.00¢00
r=1; s=4 1.0000p -1.000p0 -1.00¢00 -1.0qOO0:! r=410s| 1.00000{ -1.00000 1.00040 -1.00900
r=1; s=5 1.0000p -1.000p0 1.00000 -1.0qOO! r=411s§F1.00000{ -1.00000 1.000d0 -1.00¢00
r=1; s=6 1.0000p -0.17627 1.00000 -1.0QOO! r=55 sF1.0000Qq 1.0000¢ -1.00000 1.000pO
r=1; s=7 1.0000p 1.0000 0.51373 -1.0qQOO0! r=5; sE@.0000q 0.42634 -1.00000 1.00090
r=1; s=8 1.0000p -1.000p0 1.00000 -1.0qOO! r=57 sF1.0000Q -0.49046 -1.00000 1.000p0
r=1; s=9 1.0000p -1.00000 1.00000 1.00pO:! r=5; sE8.0000d 1.0000Q -1.00000 1.00090
r=1; s=10| -0.227(09 -1.000p0 -1.00000 1.00PO rs59 | 1.00000] 1.00000 1.000Q0 -1.00900
r=1; s=11| -1.00000 -1.000p0 -1.00000 1.00PO rs5j0 | 1.00000 1.00000 -0.59913 -1.00p00
r=2; s=2 | -1.00000 1.0000 1.00dJ00 1.00pO r=5 ;1sE1.00000( -1.0000p 1.00000 -1.00¢0O0
r=2; s=3 1.0000p 1.0000 1.00000 -0.4324 r=6; sE@.0000d -1.0000p 1.00090
r=2; s=4 1.0000p 1.0000 1.00000 -1.0qOO0:! r=6; sF1.0000d -1.0000p 1.00090
r=2; s=5 1.0000p 1.000¢0 -1.00¢00 -1.0qOO! r=68 sF1.0000Q 1.0000d 1.000p0
r=2; s=6 1.0000p -1.000p0 1.00000 -1.0qOO0! r=69 sF0.9162Q 1.0000d -1.00¢00
r=2; s=7 1.0000p 0.36529 1.00000 -1.0qOO! r=6 ;0sEIL.00000| 1.0000d -1.00100
r=2; s=8 1.0000p 1.000¢0 -1.00¢00 -1.0qOO0:! r=611s{F1.00000{ 1.0000( -1.00000
r=2; s=9 1.0000p 1.0000 1.00000 -1.0qOO! r=7; sE1.0000d -0.8942 1.00090
r=2; s=10| 1.0000p 1.00000 1.00400 1.00PO r=7; sF&.0000J 1.0000d 1.00090
r=2; s=11| 0.4235p -1.000p0 -1.00000 1.00PO r=%29 s|-1.0000qQ -1.0000 0.785p7
r=3; s=3 0.74631L 1.0000 1.00000 -1.0dOO r=7 ;0sEILO0000| -1.0000 -1.00¢00
r=3; s=4 | -1.00000 -1.000p0 1.00000 -1.0qOO0:! r=%#11s| 1.00000( 1.0000: -1.00400
r=3; s=5 | -1.00000 -1.000P0 -1.00(¢00 -1.0qOO:! rs&8 |-1.00000 1.0000 1.00000
r=3; s=6 | -0.36945 1.000¢0 -1.00¢00 -1.0qOO0:! r=89 s|-1.0000Q -1.000 -1.00400
r=3; s=7 1.0000p 1.00000 1.00000 1.00p0( r=8; sEIL00000| -1.0000 -1.00Q0o0
r=3; s=8 1.0000p 1.00000 1.00000 0.86p6H r=8; sHELD0000| 1.0000! -1.00q0o0
r=3; s=9 1.0000p -1.000p0 1.00000 -1.0QOO® r=99 sg1.00000( -1.000 -1.00¢00
r=3; s=10| 1.0000Q -1.00000 1.000Dp0 1.00¢00q r=910sF1.00000| 1.0000 -0.88966
r=3; s=11| 1.0000Q -1.00000 -1.00Q00 0.66%464 r=811s| 1.00000| 0.7693 1.000p0
r=4; s=4 | -1.0000p -1.00000 0.894 1.00Q00] r=1610%-1.0000¢ 1.0000:! 1.000p0
r=4; s=5 | -1.0000p -1.000;{0 -1.00400 1.00}00 r=$611] -1.00000 -1.000Q0 1.000¢0 1.00d00
r=4; s=6 | -1.0000p 1.000 -1.00900 1.00400 rzlill.;-l.OOOO(T 1.0000¢ -1.000p0 1.000DO
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Testing and Analysis of Error

To assess the practical use of the method develaopetis
work, a stress-frozen disk under diametric compoes® = 100.0
mm in diameterH = 5.0 mm thick and made of epoxy, is used. The
pixel numbers, which are used for digitization, 4624x 1024. The
grey level of each pixel ranges from 0 to 255. Tiglet source used
in this experiment is white light from a sodium fnrFigure 5
shows diagram of the assembly of experiments vhiéhpolariscope
where only the analyzer is rotated (change theeaogleach photo).
Flowchart of processing applied to phase-shiftingthod in digital
photoelasticity is show in the Fig. 6.

The Figure 7 shows isochromatic fringe orders of th
experimental solution with new method. The fringdess () are
calculated by Eq. (29). Note in the picture thespree of noise and
defects due to imperfections of the photographsertakf the
photoelastic model (Wijerathne, Oguni and Hori, 00The
problem consists in the photographs having a haje of noise,
imperfections and uncertainties due to dust in dhre the whole
optical polariscope and camera lens, even afteanailg the
equipment before testing; mechanical vibratiorhia laboratory; the
variations in room temperature; the reflected lighecause the
laboratory was not completely dark; the errorshie phase shift of
images due to reduction of the areas to be analyeedr in the
positioning of optical elements, in relation to thght source,
specimen and the camera, which should be exactbaliin the
center; error in measuring the diameter and this&knef the
specimen; error of measurement of the load by dlael Icell, and
errors in the discretization image points and grales Several
sources of errors and uncertainties in photoelastmeriments are
cited in Ashokan and Ramesh (2009).

n=— (0,-0,) (29)

Diagram of the Assembly of Experiments Ligth Source
With Digital Photoelasficity i Polarizer N
s L/ Y4
Quater-wave N
Plate

Stressed Mode!

Second
Quater-wave
Plate

Analyzer

Computer

Rotating
Analyzer

Figure 5. Arrangement of the experiments (circular
new method proposed.

polariscope) with the
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1) Digital photographic
images of the photoelastic
model.

Janior et al.

Output: Image Files (. JPG)

4) Calculation of o and &
wrapped using the
developed equations.

2) Select the area of interest
and conversion to grayscale.
Output: I, I, ... Iy (. RAW)

Output: Values of o and &
wrapped.

5) Conversion of
oe [0, /2] to [-m.m] and

3) Implementation of digital
filter to enhance the fringe.
Output: I, I, ..., In (. BMP)

ae [0,/ 4]to[-m, 7]
Output: Values of 6 and o
converts

8) Graphical display of
tensions in the object under
study.

6) Unwrapping algorithm.
Output: Values 6 and a
Unwrapplig.

v

Output: Image Files (. JPG).

Figure 6. Flowchart of processing with the outputs

7) Calculating the phase
maps, principal tensions and
normal and shear stresses.

Output: Values of oy, 6y and

Tyy-

and results of each stage.

Figure 7. Fringe orders ( n) obtained from experimental measurements.
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To test the new equations for the phase calculatioey were

Table 3. Average error in 10 * rad versus number of frames ( N) for angle a.

used with the technique of photoelasticity for &jeot with known

stress and to evaluate the average error using3Byjand Eqg. (31).
This process was started with three images, repesita four, then

five and so on. The idea was to show that withn@ngasing number
of images, the average error tends to decreasareé~R) shows an
example of this procedure.

Set of
Average | |mage

1 2 3 4 5

6

7

8 9

Error of
the a in

A8 45° [ 30°  18° | 15° | 10°

90

60

5¢ | 3°

10° rad

Step 3 4 6 7 10

11

16

19 | 31

-27°

9 278 45°

Figure 8. Set with 6 images of the photographs take  n of the photoelastic

model, A@equal to 18¢ the disk is under compression.

Number of Image (N)

4712 | 6879 | 9762 | 11256 | 16786
4005 | 6239 | 9562 | 11076
3955 | 5945 | 8654
3520 | 3645 | 4521
3290 | 3489
3132
2985
2845

RREBowwowNwouasrw

15
16
17

19
20

BRR

25
26
27

29

31

18342
16265
9698
4799
3845
3320
3255
2930
2602

22312
18003
12671
5210
4075
3821
3594
3278
2725
2503
2384
2241
2133
1921

27453 | 29601
22201 | 27298
15643 | 18964
7564 | 9863
6178 | 7843
5854 | 6582
5123 | 5987
4021 | 4388
3267 | 3678
3077 | 3333
2988 | 3167
2845 | 3011
2458 | 2637
2112 | 2353
1682 | 1976
1378 | 1734
1241 | 1667
1535
1402
1378
1320
1298
1204
1167
1076
1005
945
806
745

M

Average Error for a (E,):ﬁz

i=1

af-a| (30)

M
Average Error for & (I§)=ﬁ2|5f-d| (31)
i=1

whereM is the number of pixels of the image amBlandd® are the

exact values calculated by Egs. (6)-(12) for trekdirhe values of
a; and g are calculated by the new equation. In the arslgbithe

error, only the zones within the photos that wemarnbiguous and
contained no inconsistencies were considered (Asmoland

Ramesh, 2009).

To compare the new equations for calculating thasph nine
sets of photos witlstepset to 3, 4, 6, 7, 10, 11, 16, 19, and 31 wer
generated. In each set, the andlef the analyzer is varied\@):
45°, 30°, 18°, 15°, 10°, 9°, 6°, 5°, and 3°, réspebe. Each set was
computed using the average error of 3 to the nurab8tepimages
and using equations to evaluate the angtesnd &, The data are
shown below in Tables 3 and 4. Figures 9 and 1lQvstmat the
average error decreases when the number of imagesases. It
may be noted that for a number of images, the geerarror
increases when the variation of the an@ldetween the images
decreases.

It is important to note that for each equation deped, the
average errors found for the angfeare larger than the errors
found for the angler of the fringes isoclines. It is believed that
this occurs because the absolute value® afe higher than the
absolute values af.

Average Errorof the o

30000

27000

24000

21000

18000

15000

12000 1

9000 1

6000 1

3000 1

Average Error of the oo in 10°° rad

@zhm

345678 9101112131415161718192021 222324252627 28293031

Number of Image (N

=4=Sten3
==Stepd
=4=5tepb
==Sien]
==5en10
=§=Step11
==Step 16
==Step19
Step3l

Figure 9. A plot of the data from Table 3 with the
versus the number of frames ( N) for angle a.

average error in 10 ® rad
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Average Error of the & in 10° rad

Average Errorof the §

Number of Image (N)

34567891011121314151617181920212223 2425262728 293031

==Step3

=f=Stepd

=t=Stepb

=He=Step ]

=¥=Step 10

=$=Stepll

Steplb

Step 19

Step3l

Figure 10. A plot of the data from Table 4 with the

versus the number of frames ( N) for angle &

average error in 10 *® rad

Table 4. Average error in 10 ® rad versus the number of frames (N for angle &

Set of
nverage | mase | 1 | 2| 3| 4|5 |6 |7 |80
Error of
the & in Ji\:] 45° | 30° | 18° | 15° | 10°| 9° | 6° | 5° | 3°
0°rad | gop | 3 | 4| 6| 7 [20]|121]16]19]31
3 | 10577] 15721 22985 | 28654 | 40250 42066 | 46327 | 47965 | 49443
a 9745 | 14383 | 22952 | 26124 | 39867 | 41233 | 46076 | 48346
5 9517 | 13469 | 20263 | 29838 | 31335 | 36435 | 46432
6 8259 | 8679 | 11108 | 14491 | 20801 | 24452 | 37333
7 8084 | 8473 | 9447 | 13012 | 19179 | 31055
8 7694 | 9057 | 10271 | 17332 | 25002
9 7301 | 7999 | 8780 | 12566 | 19710
10 6890 | 7035 | 8017 | 9881 | 12700
1 6293 | 6574 | 8007 | 9127
12 6155 | 7592 | 8180
13 5738 | 7356 | 7802
= 14 5476 | 6990 | 7412
1 15 5348 | 6039 | 6479
g 16 4866 | 5165 | 5781
5 17 4377 | 4852
F 18 3880 | 4261
£ 19 3541 | 4032
z 20 3821
21 3442
2 3386
23 3240
24 3152
25 2958
26 2867
27 2644
28 2412
29 2366
30 1907
31 1717
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Figure 11. Results obtained through experimental me  asurements using
the new equations with N = 6 and Step = 6 of: & a, fringe order( n), g1, 02,
von Mises stress( 0y), Oy, Oy and T,y.

To compare the present equations with the equatieasiced
by other authors, the equations were applied tattadysis of error
in the algorithm of Patterson and Wang (1991). ¥alwfE, =
2104x 10° rad andEs = 5312x 10° rad were obtained.

For the Patterson and Wang algorithm with six insaghe
average error is less than six images using the etpvations. It is
believed that the major distinction between theues of the phase
shifts is the reason why this improved result isaoted. However,
to obtain these images, it is necessary to roteehalyzer and the
second plate of the polariscope by a quarter-wave.

The average error of the algorithm of Wang anddPstin with
6 images is in the range of the average error fdond.1 images
using the new equations, but for more than 16 imadewer
average errors for the newly developed equationsbeaobserved,
indicating that a larger number of images yieldetakber errors.
Similar results were obtained with the algorithmspmsed by other
authors in Ramji and Prasath (2011), Ramji and RB&n{2008) and
Chang and Wu (2011).

The significant advantage of the methodology prefdos this
paper is that the method only changes the angteeofinalyzer in
the polariscope and that one can obtain equatmnsalculating the
phase for any number of images in various situation

More experiments were performed with other valudsad (P),
diameter of the diskY), the disk thicknessH), and material fringe
constant £) with very similar results. These new experimense
conducted to validate and confirm the proposed atkth

Figures 11 and 12 show the results obtained wittagiplication
of the new phase calculation equations developeddious values
of N and Step Note that there is little visual or graphic diface
between the results obtained using the three diffeequations.
This is due to high resolution graphics of photpdia images, and
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the good results achieved with the new equationgldped in the
research. Numerically, the equations with more iesabave less
uncertainty and therefore, they are more accurdtes, there was

New numerical equations are deduced to calculaelitections
of the tensions and delays (phase maps of theingscland
isochromatic fringes) for the full-field image auntatically, by

obtained the best values of stress with numbemafiesN = 31 and
Step= 31, than usin®yl = 6 andStep= 6.
Once obtained the value af and d unwrapping, apply digital

programming the phase shift method in digital pbktatsticity. With
these new equations, a larger number of imagesepétafied only
by rotation of the analyzer can be used, and the gan be
implementation of the shear difference techniquevibiole field calculated with lower uncertainties. Numerical noeth were
stress separation of 2-D problems of any geometrgwed in employed in an unprecedented way with the photbeléechnique
Ramesh (2000) and Ramji and Ramesh (2008abc). Thus, to obtain a methodology for deriving the new equai Until now,
calculates the values of the phase maps, printipsions ¢,, 0,) these equations were determined by algebraic aalgtammethods.
and normal §,, 0,) and sheart(,) stresses. The von Mises stress or ~ With the new equations, it was possible to develap
equivalent tensile stresm), a scalar stress value that can béhotoelastic system that moves the analyzer optiariscope at a
computed, too. Thereafter, graphical displays ofsiens in the constant speed while a camera takes many pictueggual intervals

object under study are shown.

Figure 12. Results obtained through experimental me  asurements using
the new equations with N =31 and Step = 31 of: & a, fringe order( n), 61, 02,
von Mises stress( Oy), Ox, Gy and Tyy.

Conclusion

This paper addresses the equations used for pledmgation
measurements with images using phase shifting igganThe new
equations are shown to be capable of processingptieal signal of
photoelasticity. These techniques are very preaasy to use, and
low cost. On the basis of the performed error asigjyit can be
concluded that the new equations are very goodepbakulation
algorithms. The metric analysis of the consideregstesn
demonstrated that its uncertainties of measuremepénd on the
frame period of the grid, on the resolution of msoin pixel and on
the number of frames. However, the uncertaintie®lued in the
measurement of the geometric parameters and thee [l require
attention. In theory, if we have many frames, theasurement
errors become very small. The measurement resbitsned by the

optical system demonstrate its industrial and esgimg
applications in experimental mechanics.
J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright

of times, like a film. With this technique, the abted
measurements are more precise, and there are fiewertainties.

Digital photoelasticity is an important optical mubgy follow-
up for stress and strain analysis using full-fididital photographic
images. Advances in digital image processing, datquisition,
procedures for pattern recognition and storageaigpanable use of
the computer-aided technique in automation and litktei
improvement of the digital photoelastic technig@kotoelasticity has
seen some renewed interest in the past few yetirsdigital imaging,
image processing and new methods becoming readifyiable.
However, further research is needed to improve abairacy, the
precision and the automation of the photoelastiorigue.
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