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New Numerical Method for the 
Photoelastic Technique 
The objective of this research is to find new equations for a novel phase-shifting method in 
digital photoelasticity. Some innovations are proposed. In terms of phase-shifting, only the 
analyzer is rotated, and the other equations are deduced by applying a new numerical 
technique instead of the usual algebraic techniques. This approach can be used to 
calculate a larger sequence of images. Each image represents a measurement of the 
stresses present in the object. Every photographic image has errors and random noise, but 
the uncertainties due to these effects can be reduced with a larger number of observations. 
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Introduction1 

Photoelasticity is one of the oldest methods for experimental 
stress analysis, but it has been overshadowed by the Finite Element 
Method for engineering applications over the past two to three 
decades. However, certain new and novel developments and 
applications have revived the use of photoelasticity. The new 
approach involves the use of hybrid methods in which the 
advantages of both experimental and numerical methods are 
exploited. Nevertheless, recent industrial needs, such as the 
continuous on-line monitoring of structures, determination of the 
residual stresses in glass (plastics) and microelectronics materials, 
rapid prototype production and dynamic visualization of stress 
waves, have brought photoelasticity into the limelight once again 
(Asundi, 2001). 

 The current trend of digitally imaging photoelastic fringe patterns 
indicates that image processing can be used to delineate the required 
information from the fringe patterns. The phase-shifting method has 
the most potential, particularly with respect to fringe sign 
determination. The method of photoelasticity makes it possible to 
obtain the principal stress directions and principal stress differences in 
a model. The principal stress directions and the principal stress 
differences are provided by isoclinics and isochromatics, respectively 
(Asundi, Tong and Boay, 2001). Isoclinics are the loci of the points in 
the specimen along which the principal stresses lie in the same 
direction. Isochromatics are the loci of the points along which the 
difference in the first and second principal stress remains the same. 
Thus, they are the lines that join the points with equal maximum shear 
stress magnitudes (Fernandez, 2011). 

The fringe patterns are nothing but the record of the phase 
difference between light travelling in two different optical paths as 
intensity variations. By varying the phase difference between the 
beams involved, in known steps, it is possible to generate a sufficient 
number of equations to solve the parameters involved. In general, 
phase differences can be added by altering the optical path length of 
any one of the light beams. Usually, the phase of the reference light 
beam is altered in known steps. Photoelasticity falls into a special 
category, in that the two light beams cannot be treated separately, but 
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rather always go together (Kihara, 2007). This means a phase shift 
introduced in one light beam will also introduce a corresponding 
phase shift in the other beam. This change in phase, in practice, is 
achieved by appropriately rotating the optical elements of the 
polariscope. A detailed study of the intensity of the light transmitted 
can help in relating the rotation of the optical elements to the change 
in phase introduced (Huang and Sung, 2010). 

Nomenclature 

br,s = coefficients of the numerator in the new equations for 
calculating phase α, dimensionless 

cr,s = coefficients of the denominator in the new equations for 
calculating phase α, dimensionless 

D = diameter of the disk, m 
 Ex,Ey = the components of electric field in light along and 

perpendicular to the analyzer axis, N/C 
 Eα,Eδ = average error, difference between values measured in 

the experiments and the values calculated by the theory of 
elasticity, rad 

er,s = coefficients of the numerator in the new equations for 
calculating phase δ, dimensionless 

F = material fringe constant photoelastic, N/m 
fr,s = coefficients of the denominator in the new equations for 

calculating phase δ, dimensionless 
H = thickness of the disk, m 
K = constant proportion of the maximum light intensity 

emerging from the analyzer, dimensionless 
k = amplitude of light vector, N/C 
I = the output light intensity in the photographic image, 

dimensionless 
M = number of pixels of the image, dimensionless 
N = number of images, dimensionless 
n = isochromatic fringe orders, dimensionless  
P = diametrical compress load, N 
r =  integer counter, dimensionless 
Step = integer values greater than or equal to 3, dimensionless 
s = integer counter, dimensionless 
x = horizontal distance from the origin at the center of disk, m 
y = vertical distance from the origin at the center of disk, m 
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Greek Symbols 

∆θ = increase given the angle of the analyzer in each 
photographic image, rad 

α = angle between the direction and the axis of σ1 horizontal 
reference, rad 

δ = delay in the model given by the photoelastic 
isochromatic fringes, rad 

ϕ = angle of the second quarter-wave plate in polariscope 
relative to the horizontal axis x, rad 

π = mathematical constant that is the ratio of a circle's 
circumference to its diameter, 
(3.141592653589793238462643), dimensionless 

θ = angle of the analyzer in polariscope relative to the 
horizontal axis x, rad 

σx,σy = Cartesian components of normal stresses, Pa 
σ1,σ2 = principal normal stresses, Pa 
τxy = Cartesian shear stress component, Pa 
�  = angular frequency of light vector, rad 

Subscripts 

e = indicates the exact, analytical values 
r = relative to the line counter index 
s = relative to the column index counter 
x = relative to the horizontal axis (Cartesian) 
y = relative to the vertical axis (Cartesian) 
� = relative to the number of restrictions in the new 

mathematical model of linear programming 

Phase-Shifting Methods of Analysis 

The optical arrangement to recognize and to identify isoclinics 
and isochromatics from photoelastic fringes is a circular polariscope 
set-up, shown in Fig. 1. In Fig. 1, P, Q, R, and A represent the 
polarizer, quarter-wave plate, retarder (stressed model) and analyzer, 
respectively. The orientation of the element is written by a subscript, 
which means the angle between the polarizing axis and the 
horizontal x axis. Rα,δ represents the stressed sample taken as a 
retardation δ and whose fast axis is at an angle α with the x axis 
(Baek et al., 2002). Therefore, P90Q45Rα,δ Q-45Aθ indicates the 
following: a polarizer at 90°, a quarter-wave plate with a fast axis at 
45°, a specimen as retardation δ whose fast axis is at an angle α 
with the x axis, a quarter-wave plate with a fast axis at −45º, and an 
analyzer at θ. With the Jones calculus (Collect, 2005) for the 
arrangement of P90Q45Rα,δ Q-45Aθ shown in Fig. 1, the components 
of the electric field in light along and perpendicular to the analyzer 
axis (Ex, Ey) are given as 
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where 1−=i , θ and ϕ = −45º are the angles that the analyzer and 
the second quarter-wave plate form with the reference x axis, 
respectively. The symbols k and ω are the amplitude and the angular 
frequency of the light vector, respectively. 
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Figure 1. Optical arrangement of a circular polaris cope (180º = ππππ radians).  

 
In Eq. (2), I is the output light intensity, and 

xE  and 
yE are the 

complex conjugate of Ex and Ey, respectively. After the simple 
operation of Eq. (1) by Eq. (2), the output intensity of the circular 
polariscope for the arrangement P90Q45Rα,δ Q-45Aθ is given by 

 

( ) ( ) ( ) ( ) ( )1 cos 2 cos cos 2 sin 2 sinI K θ δ α θ δ= − −        (3)  

 
where K is a proportional constant, i.e., the maximum light intensity 
emerging from the analyzer. These angle values are chosen to 
simplify the calibration of the polariscope used in the experiments 
measurements. For the phase measuring technique, the angle α and 
the relative retardation δ indicating the direction and the difference 
of principal stresses, respectively, are the parameters to be obtained. 

 

 

Figure 2. Sample under compression. 

 
In the experiments, Fig. 2, the diameter and the thickness of the 

disk used are D = 10.0 cm and H = 0.5 cm, respectively. A 
diametrical compression load, P = 50.0 N, is applied to the disk. The 
material fringe constant F = 5.2500 N/cm is used. From the given 
conditions, the theoretical value of isochromatic δ is related to two 
principal stress components, σ1 and σ2, as in Eq. (4). In contrast, the 
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theoretical isocline angle α can be calculated by Eq. (5) using stress 
components σx, σy, and τxy. 
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In the literature on the theory of elasticity (Ng, 1997; Oh and 

Kim, 2003), the exact value of the stress field, for a function of x 
and y with its origin at the center of the disc is given by (the 
superscript "e" indicates the exact, analytical values): 
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For comparison with the experimentally measured values, the 

following are used: 
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Then, with Eq. (11) and Eq. (12), the exact values of δe and αe 

can be calculated for each point of the x and y coordinates in the 
same manner as in Eq. (4) and Eq. (5): 
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Figures 3 and 4 show the result of applying the analytical 

equations 11 and 12, the color change over a range of π/4 radians in 
order to simulate the formation of fringes. The idea is to compare 
these exact results (δe and αe) obtained theoretically in the analysis 
of stress with experimental measurements of light intensities using 
the proposed method (δ and α). 

New Mathematical Model 

By analogy to the equations of phase calculation used by other 
authors and the mathematical model proposed in Magalhaes, Neto 
and Barcellos (2010), we had the idea to try a new general model for 
the equations of phase in photoelasticity. After many different 

attempts, a general equation for calculating the phase for any 
number, N, of images is proposed: 
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where N is the number of images, br,s and er,s are coefficients of the 
numerator, cr,s and fr,s are coefficients of the denominator, and r and 
s are the index of the sum (Magalhaes, Neto and Barcellos,  2010). 
Expanding the summations and allowing an arbitrary number of 
lines yields 

 

 

Figure 3. Analytical solution of δδδδe for a disc on compression, using Eq. (11). 
The color change over a range of 2 ππππ radians in order to simulate the 
formation of fringes (Phase maps of isochromatics).  

 

 

Figure 4. Analytical solution of ααααe for a disc on compression, using Eq. (12). 
The color change over a range of 0.5 radians in ord er to simulate the 
formation of fringes (Phase maps of isoclinics).   
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In contrast, emphasizing only the matrix of coefficients of the 

numerator and the denominator: 
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The display of the phase calculation equation in this way 

permits the viewing of symmetries and the sparse matrix. The use of 
the absolute value in the numerator and the denominator restricts the 
angle between 0 and π/2 radians, but avoids negative roots and also 
eliminates false angles. Subsequent considerations will later remove 
this restriction. 

The shift from obtaining equations for calculating the phase 
analytically to obtaining them numerically is a significant innovation. 
It breaks a paradigm that was hitherto used by several authors. After 
several attempts at numerical modeling of the problem, the following 
mathematical problem was identified (Eq. (19)): 
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The motivation for choosing this mathematical model is the 

success achieved in Magalhaes, Neto and Barcellos (2010) with a 
similar model. The idea of the mathematical model is to maximize 
the coefficients (br,s, cr,s, er,s, fr,s) so that their values are large 
enough (not close to zero) to make them significant in the equation 
obtained. Step represents integer values greater than or equal to 3. N 
is the number of images, and it is an integer number between 3 and 
the value of Step. 

The constraints 1 and 2 are made so that the coefficients (br,s, 
cr,s, er,s, fr,s) generate correct values for the calculation of α and δ. 
To ensure that one has a hyperrestricted problem, it is suggested that 
the number of greater restrictions must be at least equal to the 
number of variables. 

The constraints 3 and 4 are placed on the coefficients (br,s, cr,s, 
er,s, fr,s) that are not greater than one and are not smaller than 
negative one, to avoid error propagation. For the needs evaluation 
phase, these limiting factors will increase the values of the 
intensity of the observations (I) that contains errors due to noise in 
the observations and excellent discretization in pixels and in 
shades of gray. 
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The ν restrictions in the model are obtained by a random choice 
of values for K (constant proportion of the maximum intensity of 
light emerging from the analyzer), δ (delay in the model given by 
the photoelastic isochromatic fringes) and α (angle between the 
direction and the axis of σ1 horizontal reference). In fact, the values 
of K, δ, and α can be any real number, but to maintain compatibility 
with the problem, we chose to limit K between 0 and 255 so that the 
values of I are between 0 and 255. In addition, α is limited between 
0 and π/4 radians and δ between 0 and π/2 radians so that the 
tangents have positive values. 

The angle θ is limited to −π/4 and π/4 radians and is equally 
spaced when Step = N. For other values of Step, the angle θ starts 
with a value of −π/4 and is equally spaced, but it does not reach π/4. 
The choice of these angles is made based on the ease of calibration 
in the polariscope used. Other values for the angles can be used in 
the mathematical model. 

Step must to be an integer number. The number of images (N) 
should range from 3 to the value of Step. Step is used to vary the 
angle with constant spacing in the polariscope analyzer. For 
example, for 8 images (N = 8) and Step = 10, the angles of the 
analyzer polariscope (θ) are as follows: −45º, −35º, −25º, −15º, −5º, 
5º, 15º, and 25º. 

The mathematical model is easy to solve because it involves 
linear programming and a maximum global solution can be 
obtained using the Simplex method. The processing time for the 
solution of this mathematical model is very fast, a few seconds on 
personal computers. 

For example, when N = 3 and Step = 3, the angles of the 
polariscope analyzer (θ) are −45º, 0º, and 45º. The equations obtained 
with the mathematical model are shown in Eq. (20) and Eq. (21). 
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In another example, when N = 4 and Step = 4, the angles of the 

polariscope analyzer (θ) are −45º, −15º, 15º, and 45º. The 
equations obtained with the mathematical model are shown in Eq. 
(22) and Eq. (23). 
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In another example, when N = 3 and Step = 4, the angles of the 

polariscope analyzer (θ) are −45º, −15º, and 15º. The equations 
obtained with the mathematical model are shown in Eq. (24) and 
Eq. (25). 
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In a different example, when N = 7 and Step = 7, the angles of 

the polariscope analyzer (θ) are −45º, −30º, −15º, 0º, 15º, 30º, and 
45º. Here the differences are in coefficients being integers instead of 
real; this was done by changing the mathematical model for integer 
programming. The equations obtained with the mathematical model 
are shown in Eq. (26) and Eq. (27). 

 





















































+

−+
+−
−−+

−
−−+−

−
+

++−
+−−−
++−−−

++−++
++++−

= −

2
7

75
2
5

74
2
4

7353
2
3

62

71514131
2
1

2
7

2
6

7565
2
5

746454
2
4

73635343
2
3

62524232
2
2

71514131
2
1

1

2

2

22

2

2

2

22

22

22

22222

tan
2

1

I

III

III

IIIII

II

IIIIIIIII

I

I

IIIII

IIIIIII

IIIIIIIII

IIIIIIIII

IIIIIIIII

α

 

(26)

  
 
 



Júnior et al. 

536 / Vol. XXXIV, No. 4, October-December 2012   ABCM  





















































+
−

−+
−+
−+

+−
+−−−

−
++
+−

−−
+−
+−+
−++++−

= −

2
7

2
6

75
2
5

74
2
4

73
2
3

62
2
2

71514131
2
1

2
7

76
2
6

75
2
5

64
2
4

73
2
3

7242
2
2

7161513121
2
1

1

2

22

22

22

2

22222

2

22

22

2

22

222

222222

tan

I

I

III

III

III

III

IIIIIIIII

I

III

III

III

III

IIIII

IIIIIIIIIII

δ (27)  

 
 

For example, with 10 images (N = 10) and Step = 10, the angles 
of the analyzer polariscope (θ) are as follows (∆θ  = 10º): θ1 = −45º, 
θ2 = −35º, θ3 = −25º, θ4 = −15º, θ5 = −5º, θ6 = 5º, θ7 = 15º, θ8 = 25º, 
θ9 = 35º, and θ10 = 45º. The equations obtained with the 
mathematical model are shown in Table 1 with values of the 
coefficients (br,s, cr,s, er,s, fr,s). 

For example, with N = 11 and Step = 11, the angles of the 
analyzer polariscope (θ) are as follows (∆θ = 9º): θ1 = −45º, θ2 = −36º, 
θ3 = −27º, θ4 = −18º, θ5 = −9º, θ6 = 0º, θ7 = 9º, θ8 = 18º, θ9 = 27º, θ10 = 
36º, and θ11 = 45º. The equations obtained with the mathematical 
model are shown in Table 2 with values of the coefficients (br,s, cr,s, 
er,s, fr,s). The coefficients are displayed with 5 decimal places, but were 
calculated in 19 decimal places of accuracy. These values are shown 
for purposes of direct use of the new equations and conference 
implementation of the mathematical model. 

 

Table 1. Values of the real coefficients ( br,s, cr,s, er,s, fr,s), when N = 10 and Step = 10. 

 
 

 

Thus, for each value of Step greater than or equal to 3 and N 
between 3 and the value of Step, the mathematical model of Eq. 19 
provides values of the real coefficients (br,s, cr,s, er,s, fr,s), which 
represents an unprecedented and new phase equation for α and δ. 

Because the new equations were developed from the algorithms, 
a numerical calculation, rather than an analytical demonstration of 
trigonometric relations, is necessary to check them. It is believed 
that a large number of numerical tests can validate or verify these 
new equations or at least minimize the chance of these equations 
being wrong or false. To test the usefulness of the new equations for 

calculating the phase, a computer program was created, which 
generated random values of K∈[0, 255], α’∈[0, π/4], and δ’∈[0, 
π/2]. Using Eq. (3), the program calculates N values of I j, one for 
each value of θj. With the values of I j, the new phase equations were 
applied and tested to determine whether they produced the correct 
values of α and δ. The values of I j (luminous intensity of the image) 
are calculated with j ranging from 1 to N. The new equations with 
the values of I j are applied, giving a tan (α) and a tan (δ) that must 
be compared with the value of randomly assigned (α’  and δ’ ) 

Index br,s cr,s er,s fr,s Index br,s cr,s er,s fr,s
 r=1 ;  s=1 -1.00000 -1.00000 -1.00000 1.00000  r=4 ;  s=4 -1.00000 -1.00000 -1.00000 1.00000
 r=1 ;  s=2 -1.00000 1.00000 -0.87367 1.00000  r=4 ;  s=5 -1.00000 -1.00000 -1.00000 1.00000
 r=1 ;  s=3 1.00000 1.00000 1.00000 0.91797  r=4 ;  s=6 -1.00000 -1.00000 -1.00000 1.00000
 r=1 ;  s=4 1.00000 1.00000 1.00000 -1.00000  r=4 ;  s=7-1.00000 1.00000 -1.00000 1.00000
 r=1 ;  s=5 1.00000 1.00000 1.00000 -1.00000  r=4 ;  s=8-0.03206 -1.00000 1.00000 1.00000
 r=1 ;  s=6 1.00000 -1.00000 -1.00000 -1.00000  r=4 ;  s=9 1.00000 -1.00000 1.00000 -1.00000
 r=1 ;  s=7 1.00000 1.00000 1.00000 -1.00000  r=4 ;  s=10 1.00000 -1.00000 -0.35622 -1.00000
 r=1 ;  s=8 1.00000 -0.12390 1.00000 1.00000  r=5 ;  s=5-1.00000 -1.00000 -1.00000 1.00000
 r=1 ;  s=9 0.56382 -1.00000 1.00000 1.00000  r=5 ;  s=6-1.00000 1.00000 -1.00000 1.00000
 r=1 ;  s=10 -1.00000 -1.00000 -1.00000 1.00000  r=5 ;  s=7 -1.00000 1.00000 -1.00000 1.00000
 r=2 ;  s=2 -0.87625 0.72262 1.00000 1.00000  r=5 ;  s=8-1.00000 -0.84173 0.29954 -1.00000
 r=2 ;  s=3 1.00000 1.00000 1.00000 -1.00000  r=5 ;  s=91.00000 1.00000 1.00000 -1.00000
 r=2 ;  s=4 1.00000 -1.00000 1.00000 -1.00000  r=5 ;  s=10 1.00000 -1.00000 1.00000 -1.00000
 r=2 ;  s=5 1.00000 -1.00000 1.00000 -1.00000  r=6 ;  s=6 -1.00000 1.00000 -1.00000 1.00000
 r=2 ;  s=6 1.00000 -1.00000 -1.00000 -1.00000  r=6 ;  s=7 -1.00000 -1.00000 -1.00000 1.00000
 r=2 ;  s=7 1.00000 1.00000 1.00000 -1.00000  r=6 ;  s=8-1.00000 -1.00000 1.00000 -0.95811
 r=2 ;  s=8 1.00000 -1.00000 1.00000 -1.00000  r=6 ;  s=9 1.00000 -0.75947 1.00000 -1.00000
 r=2 ;  s=9 1.00000 -1.00000 1.00000 1.00000  r=6 ;  s=10 1.00000 -1.00000 1.00000 -1.00000
 r=2 ;  s=10 1.00000 1.00000 -1.00000 1.00000  r=7 ;  s=7 -1.00000 1.00000 -1.00000 1.00000
 r=3 ;  s=3 1.00000 1.00000 1.00000 -1.00000  r=7 ;  s=8-1.00000 1.00000 1.00000 1.00000
 r=3 ;  s=4 -1.00000 1.00000 0.61212 -1.00000  r=7 ;  s=9 1.00000 1.00000 1.00000 -1.00000
 r=3 ;  s=5 -1.00000 -1.00000 -1.00000 -1.00000  r=7 ;  s=10 1.00000 1.00000 1.00000 -1.00000
 r=3 ;  s=6 -1.00000 -0.67863 -1.00000 0.42187  r=8 ;  s=8 1.00000 1.00000 -0.84213 0.35815
 r=3 ;  s=7 0.52638 1.00000 -1.00000 1.00000  r=8 ;  s=91.00000 0.68111 -1.00000 -1.00000
 r=3 ;  s=8 1.00000 1.00000 1.00000 1.00000  r=8 ;  s=101.00000 -1.00000 1.00000 -1.00000
 r=3 ;  s=9 1.00000 1.00000 1.00000 -0.73988  r=9 ;  s=9-0.81120 1.00000 -1.00000 1.00000
 r=3 ;  s=10 1.00000 -1.00000 -1.00000 -1.00000  r=9 ;  s=10 -1.00000 -1.00000 1.00000 1.00000

 r=10 ;  s=10 -1.00000 1.00000 -0.61617 1.00000
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values. This comparison involves the accuracy of a very small value 
because of the number of rounding errors that can occur in the 
calculations, that is, the precision (|α’  - α|+|δ’  - δ|)≤10-6. This 
calculation was performed thousands of times (at least 100.000 
times) for each equation in the phase calculation. It was generated at 
least 99.999% of the time with an accuracy of 10-6. The 
mathematical model of Eq. (19) was successfully tested until Step 
and N equal 1801, the value at which the increment ∆θ would be 
0.05º. Thus, it was believed that the chances for the equations to be 
wrong or false have been minimized. 

Before Unwrapping, Change to [-π, π] 

Because of the character of the evaluation equations, only phase 
values α ∈ [0, π/4] and δ ∈ [0, π/2] radians were calculated. For 
unequivocal determination of the wrapped phase value angles ∈ [-π, 
π] it was necessary to test values δ, -δ, δ -π, and -δ +π by combining 
them with α, -α, α -π, and -α +π using values of I j and small 
systems in Eq. (28). The values were tested based on the symmetries 

of the tangent function. Sixteen tests were performed, and the 
correct values of α and δ were sought between -π and π, because the 
experimental values I j and θj are known (Arellano, 2008). 
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We obtain α and δ between [-π, π]. The next step is to unwrap 

the wrapped phase map. When unwrapping, several of the phase 
values should be shifted by an integer multiple of 2π. Unwrapping is 
thus adding or subtracting 2π offsets at each discontinuity 
encountered in the phase data. The unwrapping procedure consists 
in finding the correct field number for each phase measurement 
(Estrada, Servin and Quiroga, 2011; Navarro et al., 2012). 

 
 

Table 2. Values of the real coefficients ( br,s, cr,s, er,s, fr,s), when N = 11 and Step = 11. 

 
 

  

Index br,s cr,s er,s fr,s Index br,s cr,s er,s fr,s
 r=1 ;  s=1 -1.00000 1.00000 -0.84196 1.00000  r=4 ;  s=7 -1.00000 -1.00000 -1.00000 1.00000
 r=1 ;  s=2 -1.00000 1.00000 1.00000 1.00000  r=4 ;  s=8-1.00000 -1.00000 -0.04016 1.00000
 r=1 ;  s=3 1.00000 -1.00000 -1.00000 1.00000  r=4 ;  s=9 1.00000 -1.00000 1.00000 -1.00000
 r=1 ;  s=4 1.00000 -1.00000 -1.00000 -1.00000  r=4 ;  s=10 1.00000 -1.00000 1.00000 -1.00000
 r=1 ;  s=5 1.00000 -1.00000 1.00000 -1.00000  r=4 ;  s=11 1.00000 -1.00000 1.00000 -1.00000
 r=1 ;  s=6 1.00000 -0.17627 1.00000 -1.00000  r=5 ;  s=5 -1.00000 1.00000 -1.00000 1.00000
 r=1 ;  s=7 1.00000 1.00000 0.51373 -1.00000  r=5 ;  s=6-1.00000 0.42636 -1.00000 1.00000
 r=1 ;  s=8 1.00000 -1.00000 1.00000 -1.00000  r=5 ;  s=7 -1.00000 -0.49046 -1.00000 1.00000
 r=1 ;  s=9 1.00000 -1.00000 1.00000 1.00000  r=5 ;  s=8-1.00000 1.00000 -1.00000 1.00000
 r=1 ;  s=10 -0.22709 -1.00000 -1.00000 1.00000  r=5 ;  s=9 1.00000 1.00000 1.00000 -1.00000
 r=1 ;  s=11 -1.00000 -1.00000 -1.00000 1.00000  r=5 ;  s=10 1.00000 1.00000 -0.59913 -1.00000
 r=2 ;  s=2 -1.00000 1.00000 1.00000 1.00000  r=5 ;  s=11 1.00000 -1.00000 1.00000 -1.00000
 r=2 ;  s=3 1.00000 1.00000 1.00000 -0.43243  r=6 ;  s=6-1.00000 -1.00000 -1.00000 1.00000
 r=2 ;  s=4 1.00000 1.00000 1.00000 -1.00000  r=6 ;  s=7-1.00000 -1.00000 -1.00000 1.00000
 r=2 ;  s=5 1.00000 1.00000 -1.00000 -1.00000  r=6 ;  s=8 -1.00000 1.00000 -1.00000 1.00000
 r=2 ;  s=6 1.00000 -1.00000 1.00000 -1.00000  r=6 ;  s=9 -0.91620 1.00000 0.25454 -1.00000
 r=2 ;  s=7 1.00000 0.36529 1.00000 -1.00000  r=6 ;  s=10 1.00000 1.00000 1.00000 -1.00000
 r=2 ;  s=8 1.00000 1.00000 -1.00000 -1.00000  r=6 ;  s=11 1.00000 1.00000 1.00000 -1.00000
 r=2 ;  s=9 1.00000 1.00000 1.00000 -1.00000  r=7 ;  s=7-1.00000 -0.89426 -1.00000 1.00000
 r=2 ;  s=10 1.00000 1.00000 1.00000 1.00000  r=7 ;  s=8-1.00000 1.00000 -1.00000 1.00000
 r=2 ;  s=11 0.42352 -1.00000 -1.00000 1.00000  r=7 ;  s=9 -1.00000 -1.00000 1.00000 0.78597
 r=3 ;  s=3 0.74631 1.00000 1.00000 -1.00000  r=7 ;  s=10 1.00000 -1.00000 1.00000 -1.00000
 r=3 ;  s=4 -1.00000 -1.00000 1.00000 -1.00000  r=7 ;  s=11 1.00000 1.00000 1.00000 -1.00000
 r=3 ;  s=5 -1.00000 -1.00000 -1.00000 -1.00000  r=8 ;  s=8 -1.00000 1.00000 -1.00000 1.00000
 r=3 ;  s=6 -0.36945 1.00000 -1.00000 -1.00000  r=8 ;  s=9 -1.00000 -1.00000 -1.00000 -1.00000
 r=3 ;  s=7 1.00000 1.00000 1.00000 1.00000  r=8 ;  s=101.00000 -1.00000 -1.00000 -1.00000
 r=3 ;  s=8 1.00000 1.00000 1.00000 0.86665  r=8 ;  s=111.00000 1.00000 1.00000 -1.00000
 r=3 ;  s=9 1.00000 -1.00000 1.00000 -1.00000  r=9 ;  s=9 1.00000 -1.00000 1.00000 -1.00000
 r=3 ;  s=10 1.00000 -1.00000 1.00000 1.00000  r=9 ;  s=10 1.00000 1.00000 1.00000 -0.88966
 r=3 ;  s=11 1.00000 -1.00000 -1.00000 0.66946  r=9 ;  s=11 1.00000 0.76934 1.00000 1.00000
 r=4 ;  s=4 -1.00000 -1.00000 0.89444 1.00000  r=10 ;  s=10 -1.00000 1.00000 -1.00000 1.00000
 r=4 ;  s=5 -1.00000 -1.00000 -1.00000 1.00000  r=10 ;  s=11 -1.00000 -1.00000 1.00000 1.00000
 r=4 ;  s=6 -1.00000 1.00000 -1.00000 1.00000  r=11 ;  s=11 -1.00000 1.00000 -1.00000 1.00000
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Testing and Analysis of Error 

To assess the practical use of the method developed in this 
work, a stress-frozen disk under diametric compression, D = 100.0 
mm in diameter, H = 5.0 mm thick and made of epoxy, is used. The 
pixel numbers, which are used for digitization, are 1024 × 1024. The 
grey level of each pixel ranges from 0 to 255. The light source used 
in this experiment is white light from a sodium lamp. Figure 5 
shows diagram of the assembly of experiments with the polariscope 
where only the analyzer is rotated (change the angle on each photo). 
Flowchart of processing applied to phase-shifting method in digital 
photoelasticity is show in the Fig. 6. 

The Figure 7 shows isochromatic fringe orders of the 
experimental solution with new method. The fringe orders (n) are 
calculated by Eq. (29). Note in the picture the presence of noise and 
defects due to imperfections of the photographs taken of the 
photoelastic model (Wijerathne, Oguni and Hori, 2008). The 
problem consists in the photographs having a high rate of noise, 
imperfections and uncertainties due to dust in the air; the whole 
optical polariscope and camera lens, even after cleaning the 
equipment before testing; mechanical vibration in the laboratory; the 
variations in room temperature; the reflected light, because the 
laboratory was not completely dark; the errors in the phase shift of 
images due to reduction of the areas to be analyzed; error in the 
positioning of optical elements, in relation to the light source, 
specimen and the camera, which should be exactly linear in the 
center; error in measuring the diameter and thickness of the 
specimen; error of measurement of the load by the load cell, and 
errors in the discretization image points and grayscale. Several 
sources of errors and uncertainties in photoelastic experiments are 
cited in Ashokan and Ramesh (2009). 

 

( )21 σσ −=
F

H
n                                                          (29) 

 
 

 
Figure 5. Arrangement of the experiments (circular polariscope) with the 
new method proposed. 

 
Figure 6. Flowchart of processing with the outputs and results of each stage. 

 

 

Figure 7. Fringe orders ( n) obtained from experimental measurements. 
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To test the new equations for the phase calculation, they were 

used with the technique of photoelasticity for an object with known 
stress and to evaluate the average error using Eq. (30) and Eq. (31). 
This process was started with three images, repeated with four, then 
five and so on. The idea was to show that with an increasing number 
of images, the average error tends to decrease. Figure 8 shows an 
example of this procedure. 

 

 
Figure 8. Set with 6 images of the photographs take n of the photoelastic 
model, ∆∆∆∆θθθθ equal to 18°, the disk is under compression. 
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where M is the number of pixels of the image and αi

e and δi
e are the 

exact values calculated by Eqs. (6)-(12) for the disk. The values of 
αi and δi are calculated by the new equation. In the analysis of the 
error, only the zones within the photos that were unambiguous and 
contained no inconsistencies were considered (Ashokan and 
Ramesh, 2009). 

To compare the new equations for calculating the phase, nine 
sets of photos with Step set to 3, 4, 6, 7, 10, 11, 16, 19, and 31 were 
generated. In each set, the angle θ of the analyzer is varied (∆θ): 
45º, 30º, 18º, 15º, 10º, 9º, 6º, 5º, and 3º, respectively. Each set was 
computed using the average error of 3 to the number of Step images 
and using equations to evaluate the angles α and δ. The data are 
shown below in Tables 3 and 4. Figures 9 and 10 show that the 
average error decreases when the number of images increases. It 
may be noted that for a number of images, the average error 
increases when the variation of the angle θ between the images 
decreases. 

It is important to note that for each equation developed, the 
average errors found for the angle δ are larger than the errors 
found for the angle α of the fringes isoclines. It is believed that 
this occurs because the absolute values of δ are higher than the 
absolute values of α. 

 

Table 3. Average error in 10 -6 rad versus number of frames ( N) for angle �. 

 
 

 
Figure 9. A plot of the data from Table 3 with the average error in 10 -6 rad 
versus the number of frames ( N) for angle αααα. 

 

Set of 

Image
1 2 3 4 5 6 7 8 9

∆θ ∆θ ∆θ ∆θ 45º 30º 18º 15º 10º 9º 6º 5º 3º

Step 3 4 6 7 10 11 16 19 31

3 4712 6879 9762 11256 16786 18342 22312 27453 29601

4 4005 6239 9562 11076 16265 18003 22201 27298

5 3955 5945 8654 9698 12671 15643 18964

6 3520 3645 4521 4799 5210 7564 9863

7 3290 3489 3845 4075 6178 7843

8 3132 3320 3821 5854 6582

9 2985 3255 3594 5123 5987

10 2845 2930 3278 4021 4388

11 2602 2725 3267 3678

12 2503 3077 3333

13 2384 2988 3167

14 2241 2845 3011

15 2133 2458 2637

16 1921 2112 2353

17 1682 1976

18 1378 1734

19 1241 1667

20 1535

21 1402

22 1378

23 1320

24 1298

25 1204

26 1167

27 1076

28 1005

29 945

30 806

31 745
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Figure 10. A plot of the data from Table 4 with the  average error in 10 -6 rad 
versus the number of frames ( N) for angle δδδδ. 

 

Table 4. Average error in 10 -6 rad versus the number of frames ( N) for angle δδδδ. 

 

 

 
Figure 11. Results obtained through experimental me asurements using 
the new equations with N = 6 and Step = 6 of: δδδδ, αααα, fringe order( n), σσσσ1, σσσσ2, 
von Mises stress( σσσσυυυυ), σσσσx, σσσσy and ττττxy. 

 
To compare the present equations with the equations deduced 

by other authors, the equations were applied to the analysis of error 
in the algorithm of Patterson and Wang (1991). Values of Eα = 
2104 × 10-6 rad and Eδ = 5312 × 10-6 rad were obtained. 

For the Patterson and Wang algorithm with six images, the 
average error is less than six images using the new equations. It is 
believed that the major distinction between the pictures of the phase 
shifts is the reason why this improved result is obtained. However, 
to obtain these images, it is necessary to rotate the analyzer and the 
second plate of the polariscope by a quarter-wave. 

The average error of the algorithm of Wang and Patterson with 
6 images is in the range of the average error found for 11 images 
using the new equations, but for more than 16 images, lower 
average errors for the newly developed equations can be observed, 
indicating that a larger number of images yielded smaller errors. 
Similar results were obtained with the algorithms proposed by other 
authors in Ramji and Prasath (2011), Ramji and Ramesh (2008) and 
Chang and Wu (2011). 

The significant advantage of the methodology proposed in this 
paper is that the method only changes the angle of the analyzer in 
the polariscope and that one can obtain equations for calculating the 
phase for any number of images in various situations. 

More experiments were performed with other values of load (P), 
diameter of the disk (D), the disk thickness (H), and material fringe 
constant (F) with very similar results. These new experiments were 
conducted to validate and confirm the proposed method. 

Figures 11 and 12 show the results obtained with the application 
of the new phase calculation equations developed for various values 
of N and Step. Note that there is little visual or graphic difference 
between the results obtained using the three different equations. 
This is due to high resolution graphics of photographic images, and 

Set of 

image
1 2 3 4 5 6 7 8 9

∆θ ∆θ ∆θ ∆θ 45º 30º 18º 15º 10º 9º 6º 5º 3º

Step 3 4 6 7 10 11 16 19 31

3 10577 15721 22985 28654 40250 42066 46327 47965 49443

4 9745 14383 22952 26124 39867 41233 46076 48346

5 9517 13469 20263 29838 31335 36435 46432

6 8259 8679 11108 14491 20801 24452 37333

7 8084 8473 9447 13012 19179 31055

8 7694 9057 10271 17332 25002

9 7301 7999 8780 12566 19710

10 6890 7035 8017 9881 12700

11 6293 6574 8007 9127

12 6155 7592 8180

13 5738 7356 7802

14 5476 6990 7412

15 5348 6039 6479

16 4866 5165 5781

17 4377 4852

18 3880 4261

19 3541 4032

20 3821

21 3442

22 3386

23 3240

24 3152

25 2958

26 2867

27 2644

28 2412

29 2366

30 1907

31 1717

Average 
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the δδδδ  in 

10
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 rad
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the good results achieved with the new equations developed in the 
research. Numerically, the equations with more images have less 
uncertainty and therefore, they are more accurate. Thus, there was 
obtained the best values of stress with number of images N = 31 and 
Step = 31, than using N = 6 and Step = 6. 

Once obtained the value of α and δ unwrapping, apply digital 
implementation of the shear difference technique for whole field 
stress separation of 2-D problems of any geometry showed in 
Ramesh (2000) and Ramji and Ramesh (2008abc). Thus, it 
calculates the values of the phase maps, principal tensions (σ1, σ2) 
and normal (σx, σy) and shear (τxy) stresses. The von Mises stress or 
equivalent tensile stress (συ), a scalar stress value that can be 
computed, too. Thereafter, graphical displays of tensions in the 
object under study are shown. 
 

 
Figure 12. Results obtained through experimental me asurements using 
the new equations with N = 31 and Step = 31 of: δδδδ, αααα, fringe order( n), σσσσ1, σσσσ2, 
von Mises stress( σσσσυυυυ), σσσσx, σσσσy and ττττxy. 

Conclusion 

This paper addresses the equations used for phase calculation 
measurements with images using phase shifting technique. The new 
equations are shown to be capable of processing the optical signal of 
photoelasticity. These techniques are very precise, easy to use, and 
low cost. On the basis of the performed error analysis, it can be 
concluded that the new equations are very good phase calculation 
algorithms. The metric analysis of the considered system 
demonstrated that its uncertainties of measurement depend on the 
frame period of the grid, on the resolution of photos in pixel and on 
the number of frames. However, the uncertainties involved in the 
measurement of the geometric parameters and the phase still require 
attention. In theory, if we have many frames, the measurement 
errors become very small. The measurement results obtained by the 
optical system demonstrate its industrial and engineering 
applications in experimental mechanics. 

New numerical equations are deduced to calculate the directions 
of the tensions and delays (phase maps of the isoclines and 
isochromatic fringes) for the full-field image automatically, by 
programming the phase shift method in digital photoelasticity. With 
these new equations, a larger number of images phase shifted only 
by rotation of the analyzer can be used, and the gain can be 
calculated with lower uncertainties. Numerical methods were 
employed in an unprecedented way with the photoelastic technique 
to obtain a methodology for deriving the new equations. Until now, 
these equations were determined by algebraic and analytic methods. 

With the new equations, it was possible to develop a 
photoelastic system that moves the analyzer of the polariscope at a 
constant speed while a camera takes many pictures at equal intervals 
of times, like a film. With this technique, the obtained 
measurements are more precise, and there are fewer uncertainties. 

Digital photoelasticity is an important optical metrology follow-
up for stress and strain analysis using full-field digital photographic 
images. Advances in digital image processing, data acquisition, 
procedures for pattern recognition and storage capacity enable use of 
the computer-aided technique in automation and facilitate 
improvement of the digital photoelastic technique. Photoelasticity has 
seen some renewed interest in the past few years with digital imaging, 
image processing and new methods becoming readily available. 
However, further research is needed to improve the accuracy, the 
precision and the automation of the photoelastic technique.  
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