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Abstract

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are
neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and
nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could
explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes
of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-
venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins,
but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The
present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in
snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current
information regarding the mechanism of action of these inhibitors in an attempt to better understand their
application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may
help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional
serum therapy.
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Background
Between 2009 and 2013, the World Health Organization
(WHO) included envenomation by snakes among the
neglected tropical diseases given the large number of ac-
cidents, the complexity of the clinical condition and the
fact that the most affected population consists mainly of
workers from poor rural communities in tropical coun-
tries [1–4]. However, nowadays experts in Toxinology
call on WHO and governments to re-establish snakebite
as a neglected tropical disease, since each year, approxi-
mately 421,000 cases of snakebite occur, of which ap-
proximately 20,000 result in death [5].
Generally, the lethality of bites is low, though the fre-

quency of sequelae related to local complications is
higher, especially when associated with risk factors such
as the use of a tourniquet, bite in extremities (fingers
and toes) and delayed treatment [6]. It is important to
note that some sequelae – especially those that lead to

partial or total limb amputation – despite been a public
health problem, also constitute social problems, since
they may provoke various disorders, including the dis-
ability to work [5]. Snake venoms are a complex mixture
of components, and more than 90% of their dry weight
consists of proteins with a large variety of enzymes, and
a non-protein portion comprising carbohydrates, lipids,
metals, free amino acids, nucleotides and others [7]. The
protein components of snake venoms include cytotoxins,
cardiotoxins, nerve growth factors, lectins, enzyme in-
hibitors and various enzymes, such as phospholipase A2

(PLA2), metalloproteases, serine proteases, phosphodies-
terases, cholinesterases, aminotransferases, L-amino acid
oxidases, catalases, ATPases, hyaluronidases, etc. [8].
Thus, considering the search for natural inhibitors that

neutralize snake venom toxins is of extreme importance
for the production of more efficient antivenoms, the
present study aims to review the currently available lit-
erature on alpha inhibitors present in snake plasma, thus
helping to improve the current knowledge about these
molecules.
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Phospholipases A2 (PLA2)
Phospholipases are a superfamily of enzymes that act on
phospholipids in the cell membrane leading to their cleav-
age in fatty acids and lysophospholipids. Phospholipases
A2 (PLA2) (EC 3.1.1.4) were the first phospholipases to be
known and their discovery was based on observation of
the action of pancreatic fluid of mammals and snake
venom in the hydrolysis of phosphatidylcholine [9].
These enzymes play an important role in several cellular

functions including maintenance of cellular phospholipids,
generation of prostaglandins (PGs) and leukotrienes, cell
proliferation and muscle contraction. Furthermore, it is
known that these enzymes are involved in human inflamma-
tory processes and due to their central role in many cellular
processes, they have been extensively studied [7, 10–12].
The PLA2s are a superfamily of enzymes belonging to

16 groups and subgroups that can also be divided into
six distinct types: the secreted PLA2 (sPLA2), among
them PLA2s found in snake venoms; the cytosolic PLA2

(cPLA2); the Ca2+ independent PLA2s (iPLA2); the
acetyl-hydrolases activating factors of platelets (PAF-AH);
lysosomal PLA2 and the lipoprotein-associated phospho-
lipase A2 (Lp-PLA2) [13, 14].
According to Schaloske and Dennis [13] and Dennis et

al. [14], the sPLA2s are enzymes with a molecular weight
between 14,000 and 18,000 Da, usually containing from 5
to 8 disulfide bridges. These enzymes have a histidine in
their active site and require the presence of Ca2+ ion for
catalysis. The phospholipase A2 from groups IA, IB, IIA,
IIB, IIC, IID, IIE, IIF, III, V, IX, X, XIA, XIB, XII, XIII and
XIV are representatives of sPLA2s.
The PLA2s from snake venoms (svPLA2s) are classified

into groups I and II, and those from the Viperidae family
belong to group IIA [11, 13–15]. The svPLA2s belonging
to group IIA are subdivided into subgroups based on the
presence of a conserved residue on position 49, being
the most studied: (i) PLA2s Asp49, enzymes that usually
have high catalytic activity, and (ii) homologous PLA2s
(or PLA2-like) Lys49, which have no enzymatic activity
[16, 17]. It is important to point out that other variants
in snake venom group II PLA2s have been reported, e.g.,
Ser49, Asn49 and Arg49 [18–23].
Interestingly, despite having no catalytic activity, the

homologous PLA2s Lys49 have a wide variety of pharma-
cological and/or toxic effects, including myotoxicity, cyto-
toxicity, antibacterial, antifungal, muscle necrotic and
anticoagulant activities [7, 24–27]. According to some au-
thors, the main structural domain responsible for the toxic
effect, particularly cytotoxic, in homologous Lys49-PLA2

is the C-terminal region (amino acids 115–129) [27].

PLA2 inhibitory proteins (PLIs) from snake blood
Venomous and non-venomous snakes have PLA2 inhibi-
tory proteins, called PLIs, in their blood serum [28–30].

These PLA2 inhibitory proteins are produced by the
liver, as indicated by Northern blot analysis and RT-PCR
analysis of genetic material extracted from different tis-
sues. This PLI production by the liver (and not by the
venom glands or other organ) makes it possible for these
proteins to enter the bloodstream, since the liver is the
main organ producing plasma proteins, thus improving
and accelerating the protection mechanism against poi-
soning [31–33]. Furthermore, it has been known that
some secreted PLA2 receptors, which have structural simi-
larity with PLIs, also exist in soluble forms, showing that
PLIs, as well as PLA2 endogenous receptors, could have a
regulatory role of proinflammatory activity of sPLA2s [34].
Several PLIs were purified from the plasma of different

species of snakes, and their structures have been deter-
mined [28–30, 34, 35]. So far, for the isolation of PLA2 in-
hibitors described in the literature, two different methods
were used. One of these purification methods is the bioaffi-
nity chromatography, which is based on the immobilization
of different proteins, PLA2 in this case (for example
BthTX-I and BthTX-II, from Bothrops jararacussu), on
a stationary phase [32, 36–40]. Another method used in
purification of PLIs from snake plasma is a sequence of
chromatographic steps such as gel filtration, ion ex-
change and hydrophobic chromatography [35, 41, 42].
The blood used for plasma separation is typically col-

lected by cardiac puncture, by puncturing the tail vein or
after decapitation of the snake. It is noteworthy that in re-
cent years concern about the ethics in the use animals for
experimentation is growing and therefore the least aggres-
sive method that does not require animal death is the
blood collection from the tail vein of the snake, being
the most indicated. After collecting the blood, plasma
and serum are separated, then plasma is lyophilized and
stored. During purification, the inhibitory activity of
these PLIs is monitored by biological assays based on
inhibition activity of PLA2 and myotoxins, depending
on the inhibitor of interest.
The PLA2 and myotoxin inhibitors from the blood of

snakes are globular, acid and oligomeric proteins, which
form soluble complexes with PLA2 and myotoxins, thus
inhibiting the action of these molecules [34, 43–46].
Blood inhibitors found in snakes are classified into types
alpha (α), beta (β) and gamma (γ) according to structural
aspects [30, 47, 48].
One of the PLIs classes, the βPLIs, have repeated

leucine-rich structures and show similarity to human α2-
glycoprotein [49]. βPLIs inhibit only basic group II PLA2s
isolated from snake venoms and have been isolated from
plasma of Agkistrodon blomhoffii siniticus, Elaphe quadri-
virgata and E. climacophora snakes, which belong to the
Viperidae and Colubridae family [33, 49, 50].
Another type of PLIs, known as γPLIs, is the most

abundant to date. The γPLIs are acidic glycoproteins
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with a mass of 90–130 kDa consisting of 3 to 6 noncova-
lent subunits. Their amino acid sequences contain two
sets of standards cysteine residues, responsible for the
formation of the three-finger motif [51]. This type of in-
hibitor has been reported in different snakes, as Crotalus
durissus terrificus [52–54], Naja naja kaouthia [55, 56],
Agkistrodon blomhoffii siniticus [57], Trimeresurus flavo-
viridis [58], Laticauda semifasciata [59], Elaphe quadri-
virgata [60], E. climacophora [50], Cerrophidion
godmani [32], Notechis ater, Notechis ater serventyi [61],
Oxyuranus scutellatus and O. microlepidotus [61], Pseu-
donaja textilis [61], Python reticulates [62], Notechis scu-
tatus [63], Lachesis muta muta [64], Protobothrops
flavoviridis [65], Bothrops alternatus, B. erythromelas, B.
jararaca, B. moojeni, B. neuwiedi [51], Bothrops jarara-
cussu [39] and Crotalus durissus collilineatus [66] and
these γPLIs appear to be less specific, since they inhibit
PLA2 from groups I, II and III.

Alpha-type PLA2 inhibitor
The alpha-type PLA2 inhibitors (αPLIs) from the snake
blood are found mainly as trimers in solution and have a
region with high similarity with the carbohydrate recog-
nition domain (CRD) of C-type lectins and pulmonary
surfactant protein [30, 36, 37, 40, 67–70]. This region
covers approximately 67% of the primary sequence of
the monomers of αPLIs and is the most conserved por-
tion of these molecules, with approximately 46% of se-
quence identity between species [30]. The CRD of αPLIs
lacks the amino acid residues involved in Ca2+ binding,
making the interaction with their respective ligands Ca2
+-independent [40, 42]. Moreover, several studies have

shown that the carbohydrate motif present in αPLIs is
not necessary for the connection with PLA2 [32, 38].

αPLIs studied to date
Various αPLIs were purified to date (Table 1), such as
the plasma PLI from the snake Trimeresurus flavoviridis,
which was purified by a combination of chromatographic
steps through Sephadex gel filtration column G-200,
DEAE-cellulose anion exchange and Blue Sepharose
CL-6B [41]. The purified inhibitor was found as a
glycoprotein with an approximately molecular weight
of 100,000 Da, with non-homologous subunits of approxi-
mately 20,000 to 24,000 Da. Subsequently, it was verified
the ability of this inhibitor to interact with venom
phospholipase A2 of T. flavoviridis, and Agkistrodon halys
blomhoffii, besides the enzyme and the porcine pancreatic
phospholipase C of Bacillus cereus. According to Kogaki
et al. [41], this inhibitor showed specificity to T. flavoviri-
dis PLA2, and an independent inhibitory activity of Ca2+.
Afterward, Inoue et al. [67] purified two distinct but

homologous subunits (PLIα-A and PLIα-B) of the PLI
from Trimeresurus flavoviridis. These subunits were sep-
arated by reversed-phase HPLC and showed molecular
weights around 21,000–22,000 Da when glycosylated
and 17,000 after deglycosylation. Furthermore, the se-
quences were significantly homologous to CRD portions
of pulmonary surfactant apoprotein and animal lectins.
Then, Shimada et al. [71] studied this αPLI, which was
purified into different subspecies of two homologous
subunits. Before this work, it was expected that this
αPLI was a tetramer, composed of two molecules of
αPLI-A and two molecules of αPLI-B [67]. However, in

Table 1 Alpha-type PLA2 inhibitors (αPLIs) studied to date

Purification method Source Name Reference

Sequential chromatography on Sephadex G-200, DEAE-cellulose and Blue
Sepharose CL-6B

Trimeresurus flavoviridis TftPLIα [41]

Sequential chromatography on Sephadex G-200, Mono Q and Blue
Sepharose CL-6B

Agkistrodon blomhoffii siniticus GbPLIα [42]

Affinity chromatography with Sepharose-immobilized myotoxins (myotoxins
I, II, III and IV from B. asper venom)

Bothrops asper BaMIP [73]

Affinity chromatography containing myotoxin II isolated from C. godmani venom,
coupled to CNBr-activated Sepharose 4B

Cerrophidion godmani CgMIP-II [32]

Affinity chromatography containing B. moojeni MjTX-II coupled to CNBr-activated
Sepharose 4B

Bothrops moojeni BmjMIP [36]

Sequential chromatography on Hi-trap Blue, Mono Q, and Superdex 200 Elaphe quadrivirgata EqPLIα [68]

Affinity chromatograph containing myotoxins I and II from A. nummifer coupled
to NHS-activated column

Atropoides nummifer AnMIP [37]

Affinity chromatography containing B. jararacussu BthTX-I coupled to CNBr-activated
Sepharose 4B

Bothrops jararacussu αBjussuMIP [38]

Sequential chromatography Blue Sepharose 6FF, Q-Sepharose and Superdex
200 HR10/30

Elaphe climacophora PLIα [50]

Affinity chromatography containing BthTX-I, from B. jararacussu, coupled to
CNBr-activated Sepharose 4B

Bothrops alternatus αBaltMIP [40]
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this last study, it was showed that this αPLI is a trimeric
protein. Curiously, all the αPLIs except that from P.
flavoviridis are multimers composed of a single subunit.
Ohkura et al. [42] purified an alpha inhibitor from the

snake Agkistrodon blomhoffii siniticus, using a similar
method described by Kogaki et al. [41]. In this case, this
αPLI purification was performed by sequential chroma-
tography through Sephadex G-200 column, Mono Q
and Sepharose Blue CL-6B. The purified PLI showed up
as a glycoprotein with a molecular mass from 75,000 to
24,000 Da for the trimer and the monomer.
After, Inoue et al. [72] studied the specificity of the two

previously purified (and cited above) PLA2 inhibitors from
T. flavoviridis and A. b. siniticus plasma, purified by
Kogaki et al. [41], and Ohkura et al. [42], respectively.
Both αPLI showed a high specificity for group II acidic
PLA2s from their own venom. In this work, the authors
draw a parallel between PLI from snake plasma and PLA2

receptors of rabbit, bovine, and human, suggesting that
the CRD-like domain would be involved in the binding to
the PLA2 molecule.
Regarding the αPLI from Bothrops genus, other α inhibi-

tors were purified, for example, BaMIP, a PLI isolated
from the plasma of Bothrops asper by affinity chromatog-
raphy in Sepharose 4B CNBr-activated with myotoxins
immobilized [73]. BaMIP presented monomers with a mo-
lecular weight of approximately 24,000 Da and a structure
in solution composed of five subunits. The BaMIP showed
inhibition on myotoxic, edema and cytolytic activity of the
myotoxins I and III of B. asper snake. Structural studies
have also shown that BaMIP, as well as all α phospholipase
A2 inhibitors has a homologous domain to CRD of C-type
lectins.
Another snake inhibitor studied is CgMIP-II, an αPLI,

purified from plasma of Cerrophidion (Bothrops) godmani
snake by affinity column containing myotoxins [32]. The
inhibitor is an acidic protein (pI 4.0), glycosylated, the
monomeric subunits with a molecular weight between
20,000 Da and 25,000 Da, forming a polymer of about
180,000 Da.
Soares et al. [36] purified a protein that neutralizes the

enzymatic, toxic and pharmacological activity of a variety
of toxins (acidic or basic) of different venoms. This inhibi-
tor, called BmjMIP, was isolated from the plasma of the
snake Bothrops Moojeni, by affinity chromatography.
BmjMIP presented similar biochemical and structural
characteristics to those already described for αPLIs, besides
being stable at a wide range of pH and temperature.
Okumura et al. [68] purified the αPLI-like protein

(PLIα-LP) from a non-venomous snake E. quadrivirgata
serum by sequential chromatography on Hi-trap Blue,
Mono Q and Superdex 200 columns. The PLIα-LP showed
the highly conserved C-type lectin-like domain (CTLD)
and 51 kDa, being a trimer. Although this protein has

about 70% similarity with other inhibitors previously stud-
ied, this protein did not demonstrate any inhibitory activity
against different PLA2s. It is important to cite that Shirai et
al. [50] also purified an αPLI-like protein (PLIα-LP) from
E. climacophora snake. According to Okumura et al. [68],
the high homology with αPLIs and the lack of inhibitory
activity on αPLI-like proteins may provide important
information concerning the structure/function of these
αPLIs.
Quirós et al. [37], purified an αPLI (AnMIP) from the

plasma of Atropoides nummifer by affinity matrix, pre-
pared by coupling a mixture of myotoxins I and II from
A. nummifer to an NHS-activated column. According to
the work, this trimeric inhibitor neutralized the activity
of basic PLA2 myotoxins and showed specificity towards
group II PLA2, either belonging to the catalytically active
(Asp49 PLA2) or inactive (Lys49 PLA2-like) subtypes.
Oliveira et al. [38] and Santos-Filho et al. [40] purified

two different αPLIs (named αBjussuMIP and αBaltMIP),
from B. jararacussu and B. alternatus, respectively. These
molecules were purified through affinity chromatography
using BthTX-I immobilized on Sepharose gel and
neutralize enzymatic, toxic and pharmacological activ-
ities of several phospholipases A2. Santos-Filho et al.
[74, 75] subsequently expressed an active recombinant
alpha inhibitor, named rBaltMIP, in Pichia pastoris heter-
ologous system. According to these works, heterologous
expression would enable large-scale obtainment of these
αPLI, thus allowing further investigations for the elucida-
tion of possible mechanisms of inhibition of PLA2s, which
have not yet been fully clarified.

Mechanism of action of αPLIs
In the last 30 years, several studies have been published
aiming to biochemically, structurally and functionally
characterize αPLIs. However, the mechanism of action
of these αPLIs is still unknown. Some authors have
suggested that the αPLI/PLA2 binding site is probably
related to the CRD region of the molecule, which recog-
nizes and binds to the enzyme, preventing its toxic activ-
ity. One factor that supports this idea is that these CRD
domains are present in endogenous PLA2 receptors, such
as the human receptor of group I pancreatic PLA2 and
receptors of group II secretory PLA2 from rabbits,
mice, cattle and humans [38, 73, 76–78]. Nevertheless,
the molecular nature of the interaction between the CRD
region and PLA2 is still unknown and efforts towards the
elucidation of the structure of αPLIs and their complexes
are being performed [30].
Studying the deletion of amino acid residues, Nobuhisa

et al. [79] mapped the interaction between an αPLI and an
acidic PLA2 from T. flavoviridis, noting that the binding
capacity was more restricted to the C-terminal region
between residues 136 and 147. In this region, two

Santos-Filho and Santos Journal of Venomous Animals and Toxins including Tropical Diseases  (2017) 23:19 Page 4 of 9



hydrophobic tripeptides and Tyr144 residue appear to
be involved in the interaction PLI/PLA2 [37, 69, 79].
Thereafter, Okumura et al. [69] studied the relationship

of the structure/function of the αPLI previously purified
from the snake Agkistrodon blomhoffii siniticus, named
GbPLIα, and the αPLI-like protein EqPLIα-LP, purified
from the nonvenomous snake Elaphe quadrivirgata, and
which does not show inhibitory activity against PLA2s
[42, 68]. In that work, by constructing chimeric proteins,
they mapped important residues to the inhibitory activity
of the αPLIs; for example, the region 13-36 of the neck
C-terminal portion of the trimer. Interestingly, the re-
gion found as the responsible for PLA2 inhibition was
distinct from the carbohydrate-binding site. Furthermore,
other residues were pointed as candidate, including
Asn26, Lys28, Asp29, and Tyr144 [69].
According to Okumura et al. [69], the trimer is formed

through the interactions of the helical neck regions,
forming a central pore, responsible for PLA2 binding.
Furthermore, as Tyr144 is expected to be located in this
central pore, this residue may be one of the responsibles
for the direct interaction to the PLA2 molecule. In a
complementary study, Nishida et al. [70] created hetero-
trimers of αPLI composed of two different subunits de-
rived from the recombinant GbPLIα, EqPLIα-LP, and
chimeras of GbPLIα-EqPLIα-LP homotrimers, in order
to estimate the contribution of each subunit to the total
inhibitory activity as a trimeric PLA2 inhibitory protein.
Summing up, in this work, it was observed, once more,
the importance of the residues 13–36 for the trimer for-
mation, and consequently for the αPLI inhibitory activity.
Furthermore, the interactions between residues Glu23 and

Lys28 of GbPLIα were also suggested to be important to
stabilize the trimeric structure.
Lastly, in a recent study, Estevão-Costa et al. [80] stud-

ied the importance of αPLI trimerization for the binding
and inhibition to acidic PLA2s. Furthermore, they sug-
gested that the central pore, which is composed by posi-
tive charged residues, especially Arg57, Lys71, Arg108 and
His109, could be a significant part of the binding site of
αPLIs to acidic PLA2s. In addition, these authors pointed
the importance of the hydrophobic core (Leu158 to
Val161), which may be the responsible for the central pore
structural integrity. However, the positive surface of the
basic PLA2 could prevent the PLA2/PLI interaction at the
central pore and according to these authors, the mechan-
ism of inhibition of basic PLA2 by αPLIs remains to be
understood. It is interesting to point out that, considering
the sequence of the native protein, obtained through
Edman degradation sequencing [40], the numbering of
central pore important residues should be Arg38, Lys52,
Arg89 and His90 (Fig. 1).
So far, it is possible to observe that the mechanism of

action of these inhibitors and the region responsible for
their inhibitory properties are not yet fully elucidated in
the literature, requiring further study concerning these
macromolecules and their interactions with PLA2s.

Potential complement of antiophidic serum therapy
Currently, antiserum composed of specific immunoglob-
ulins is the only treatment for snake envenomation, but
there are ongoing issues with availability, effectiveness and
dosing [81–83]. These antivenoms neutralize the toxicity
and lethality of specific venoms, but their administration

Fig. 1 In silico model of αBaltMIP trimer (available at Model Archive database under the DOI 10.5452/ma-a4btt) and αBaltMIP monomer (available
at Model Archive database under DOI 10.5452/ma-a2iil) with a detailed view of the central pore (yellow), highlighting the four conserved cationic
residues R38, K52, R89 and H90. In addition, the hydrophobic core (cyan), the 13–36 residues of the neck C-terminal region (red) and the Y144 (blue)
are depicted
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is often related with significant clinical side effects [84, 85].
Additionally, the production of antivenoms is associ-
ated with high costs related to animal maintenance and
also comes across animal welfare concerns, which insti-
gates the search for innovative products for snakebite
therapy [82, 86].
Interestingly, the production of specific antivenom was

started by Vital Brazil in the 1900’s and it was Vital
Brazil who also discovered the effectiveness of the poly-
valent antivenom [87, 88]. At that time, antivenom was
prepared with crude plasma of hyperimmunized animals.
However, it was thereafter discovered that antibodies
(immunoglobulins) were the active therapeutic molecules
responsible for the action of the antivenom. Therefore,
only the antibodies started to be purified and used in anti-
venom therapy.
Nowadays, despite advances in the production of anti-

venoms, this production is still similar to the methods
originally described by Vital Brazil [87, 88]. Currently,
immunoglobulins or immunoglobulin fragments [F(ab’)2
or Fab] purified from serum are used in antivenom [2].
Other innovations have been proposed on traditional
antiserum, as the use of the single chain variable fragment
(scFv) or the use of recombinant antigen binding domains
derived from camelid heavy chain antibodies (VHH)
[82, 89–91]. However, there are numerous challenges
on antivenom improvement, for example, the high cost
of monoclonal antibodies production or the lower affinity
and the short serum half-life profiles of some immuno-
globulin fragments [82, 92].
Although serum therapy effectively reverses the systemic

effects of venom into the victim’s body, avoiding death
many times, it has some disadvantages including a number
of side effects (anaphylactic shock, renal failure and serum
sickness, for example). The inefficiency to combat the local
effects of the envenomation (increasing the chances of
sequelae in the stricken member), the need for careful
storage and the short shelf life of the serum are also
other limiting factors.
PLA2 enzymes and PLA2-like myotoxins are the main

responsible for myonecrosis, an important medical com-
plication of snake envenomation, and which, in severe
cases can lead to drastic consequences such as perman-
ent loss of tissue or limb amputation. These outcomes
provoke severe problems for both the affected individual
and public health, since the victim may become incap-
able of working and lose life quality. In addition, these
sequelae burden the public health once they increase the
length of hospitalization and surgeries and, in some
cases, can lead to early retirement of the individual af-
fected by the envenomation.
The search for natural inhibitors that neutralize snake

venom toxins is of extreme importance for the produc-
tion of more efficient antivenoms, especially considering

that several toxins induce weak immunogenic responses,
making traditional serum therapy unable to inhibit local
effects such as the myotoxicity induced by phospholi-
pases A2 and PLA2-like enzymes [46, 93].

Conclusions
In conclusion, the traditional antivenom is not completely
able to inhibit local effects of envenomation, mainly
caused by myotoxins. Thus, the search for proteins, such
as αPLIs, that neutralize myotoxins present in snake
venom is extremely important for the production of a
more efficient treatment.
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