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Articular inflammation induced by an
enzymatically-inactive Lys49 phospholipase
A2: activation of endogenous
phospholipases contributes to the
pronociceptive effect
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Abstract

Background: Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may
cause functional disability with severe consequences to the patient’s lives. These are multi-mediated pathologies that
cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute
arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation.

Methods: The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or
femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated
to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response
was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined
by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved
in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors.

Results: Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II
also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection,
a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment
of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with
AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2
receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A
(BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered
by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the
histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor
LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat).

Conclusion: These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II,
which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
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Background
Articular inflammations or arthritis are pathological
conditions that affect around 54 million adults (23% of
the population) only in USA [1]. Arthritis comprises
more than 100 different diseases and conditions, being
rheumatoid arthritis and osteoarthritis the two most
common types. Other frequently occurring forms of
arthritis include lupus and gout [2]. Rheumatoid arthritis
and osteoarthritis are the most common inflammatory
joint diseases, and their symptoms include aching,
stiffness, and swelling in or around the joints, having
pain and functional disability as their main conse-
quences [2–4].
Articular inflammation is a multi-mediated condition,

implying a role for mediators such as interleukin (IL)-1β,
IL-6, tumour necrosis factor (TNF), platelet activating
factor (PAF), and prostaglandin E2 (PGE2) [5]. Besides
these and other mediators present in this pathology, the
participation of phospholipases A2 (PLA2) in this process
is also well documented [6].
The PLA2 superfamily includes 16 groups comprising

six main types comprising the secreted (sPLA2), cytosolic
(cPLA2), calcium-independent (iPLA2), platelet-activating
factor acetylhydrolase (PAF-AH) also known as
lipoprotein-associated (LpPLA2), lysosomal (LPLA2), and
adipose (AdPLA) enzymes [7]. It has been demonstrated
the presence of high levels of PLA2 in the synovial fluid of
inflamed joints of animals and humans, being the PLA2ac-
tivity increased in correlation with the severity of
arthritis [8–11].
Many new therapies and strategies to control arthritis

are currently being investigated, raising hopes for a
better future for patients with this disease [12, 13]. In
this context, experimental models that allow the study of
the mechanisms underlying these inflammatory and pain
conditions are of great clinical relevance.
PLA2s are widespread in nature, and can be found in a

great diversity of tissues and fluids, including mammalian
cells. These enzymes are notoriously abundant in venoms
from snakes, bees, the Heloderma lizard, and the marine
snail Conodipina sp [14–19].
Four myotoxins with PLA2 structure have been iso-

lated from the venom of the viperid snake Bothrops
asper, named MT-I to MT-IV [20]. Despite high hom-
ology among these proteins, MT-II and MT-IV (which
present a Lys instead of the canonical Asp residue at
position 49) lack catalytic activity, whereas MT-I and
MT-III (which contain an Asp residue at position 49)
display high enzymatic activity [21, 22]. These PLA2s
comprise approximately 30% of the venom proteins in
this venom, and play a relevant role in its myotoxic, pro-
inflammatory and hyperalgesic activities [18, 22, 23].
Regardless of their catalytic activity, both MT-II and

III induce marked local inflammation and pain. Despite

few differences in kinetics of release, both MT-II (Lys49-
PLA2) and MT-III (Asp49-PLA2) are able to stimulate
the production and release of inflammatory mediators
such as IL-1 and IL-6, TNFα, LTB4, TXA2, PGE2 and
PGD2 at the site of their injection as well as under in
vitro conditions [24–27]. Concerning their hyperalgesic
activity, both MT-II and MT-III cause significant local
hyperalgesia in the rat hind paw after intraplantar injec-
tion, of rapid onset and similar time-course [28]. The
mediators involved in the nociceptive process induced
by both myotoxins are almost the same, differing in the
level of the pain threshold [27–29]. These results indi-
cate that enzymatic activity is not a strict requirement
for the induction of nociception, but is important for de-
termination of the intensity of the nociceptive
phenomenon.
Therefore, the aim of this study was to establish a new

model of myotoxin-induced joint acute arthritis to inves-
tigate the role of PLA2s in this process. For this purpose,
MT-II was used because, not being itself catalytically-
active, allows for the study of the phenomenon without
the interference of exogenous enzymatic phospholipid
degradation.
Our results demonstrated that in spite of its enzymatic

inactivity, MT-II induces a multi-mediated acute articular
inflammation that shares many of the features observed in
humans arthritis. Thus, MT-II can be considered a suit-
able model for the determination of cellular and molecular
mechanisms involved in arthritis process as well as a use-
ful assay to evaluate new possible therapeutic compounds.

Methods
Isolation of Myotoxin II (MT-II)
MT-II, an enzymatically-inactive Lys49 PLA2, was iso-
lated from Bothrops asper venom obtained from adult
specimens collected in the Caribbean region of Costa
Rica, by ion-exchange chromatography on CM-Sephadex
C-50, as previously described [30]. Salt-free, lyophilized
MT-II was stored at −20 °C until use.

Animals
Male Wistar rats (170–190 g) were used throughout
this study. Animals were housed in a temperature-
controlled (21 ± 2 ° C) and light-controlled (12/12 h
light/dark cycle) room with standard food and water
available ad libitum.

Induction of articular inflammation
The articular inflammation was induced by administra-
tion of MT-II, in different doses, into the left tibio-tarsal
or femoral-tibial-patellar joints, depending on the ex-
perimental protocol used, in rats lightly anesthetized by
inhalation of halothane (Cristália Ltda, Brazil). MT-II
was diluted in sterile PBS solution (NaCl 0.14 M; KCl
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2.7 mM; Na2HPO4 8.0 mM; KH2PO4 1.5 mM) and
injected in a volume of 25 or 50 μL into the tibio-tarsal
or femoral-tibial-patellar joints, respectively, using an in-
sulin syringe (0.5 mL, needle 5/16” 30G) inserted into
the joint. For the femoral-tibial-patellar joint inflamma-
tion, carrageenin was used as positive control (200 μg/
50 μL) and PBS (50 μL) was used as a control [31, 32];
while for the tibio-tarsal joint inflammation the control
groups were constituted by animals that received zymosan
(30 μg/ 25 μL, used as positive control) or bovine serum
albumin (BSA, 20 μg/25 μL, used as a control of the pro-
tein content injected in the joint) or PBS (25 μL) [33–35].

Determination of the cellular influx to the articulation
The cellular influx was evaluated using two methods.

Total and differential counts
To evaluate the cellular influx to the femoral-tibial-
patellar articulation, the animals were terminally
anaesthetized (halothane inhalation), killed by cervical
dislocation and ex-sanguinated by sectioning the cer-
vical vessels 1, 4, 8 and 12 h after MT-II (5, 10, 15 and
20 μg/joint) injection. The synovial cavity of the knee
joints was then washed with 50 μL of PBS containing
4 mM of ethylenediaminetetraacetic acid. The synovial
exudates were collected by aspiration and total and
differential cell counts were performed using a Neu-
bauer chamber (1:20 dilution v:v) and stained smears
(violet crystal 0.5%), respectively. A total of 100 cells
were counted on a light microscope.

Measurement of myeloperoxidase (MPO) activity
The tibio-tarsal joint region was separated from the
tibio-tarsal bone complex at 8 h after MT-II (10 μg/
joint) administration. The neutrophil migration to the
tibio-tarsal joint region of rats was evaluated by the
myeloperoxidase (MPO) kinetic-colorimetric assay as
described previously [36]. Samples of joint tissue were
collected and kept at −80 °C until use. Samples were
placed in CTAB solution (hexadecyl trimethylammo-
nium bromide 0.5%, prepared in 50 mM K2HPO4 buffer,
pH 6.0) at 37 ° C, homogenized and centrifuged at 4,200
g for 10 min at 4 ° C. Briefly, 20 μL of the supernatant
was mixed with 130 μL of ODP solution (o-Phenylene
diamine, 10 mg, dissolved in 10 mL of phosphate buffer
containing 1 μmol of hydrogen peroxide); and the mixture
was assayed spectrophotometrically for MPO activity
determination at 492 nm.
The determination of the cellular influx, assessed by

the measurement of MPO activity was performed 8 h
after intra-articular injection of MT-II (10 μg) or PBS, in
animals pre-treated or not with fucoidan (5 mg/kg,
i.v.), a sulfated polysaccharide that binds to L-selectin,
15 min prior to myotoxin.

Trypan blue exclusion test of cell viability
Cell viability was determined using polymorphonuclear
cells collected from peritoneal cavity by the Trypan blue
exclusion method. Peritoneal cell migration was induced
by i.p. injection of glycogen (10 mL). Four hours later,
animals were euthanized in a CO2 chamber, ex-
sanguinated by sectioning the cervical vessels and had
the peritoneal cavity washed with 10 mL of cold PBS
[37–39]. After gentle massage of the abdominal wall, the
peritoneal fluid containing cells was collected. Cells were
kept (1 × 106 cells/mL) in RPMI 1640 medium with or
without MT-II (5, 10, 15 and 20 μg/mL) for 1 h in a
37o CO2 incubator. The dye exclusion counting was
performed in a Neubauer’s hemocytometer using 1%
Trypan blue. A total of 100 cells were counted by
light microscopy.

Plasma extravasation in the knee joint induced by
myotoxin
The plasma extravasation was determined according to
the protocol described by Lam and Ferrell [40]. Evans
Blue dye (75 mg/kg) was injected i.v. 20 min before joint
excision. MT-II was injected by intra-articular route and
5, 15, 30, 60, 240 and 360 min afterwards, animals were
euthanized by cervical dislocation, exsanguinated by sec-
tioning the cervical vessels and the knee joint capsules
were dissected. These samples were weighed, cut into
smaller pieces and mixed in a solution containing acetone
and 1% aqueous solution of sodium sulphate (7:3 propor-
tion). Samples were kept in continuous mild shaking for
24 h at room temperature. Each preparation was then
centrifuged at 2000 rpm for 10 min. The supernatant
was collected and the amount of dye recovered was
calculated by comparing the absorbance of the super-
natant at 620 nm (Labsystems MuItiscan) with that of
a standard curve prepared with known concentrations
of Evans blue.
As Evans blue dye binds to plasma proteins normally

restricted to the vascular compartment, its presence in
the capsule provides an index of altered vascular perme-
ability. In this experiment, the control group was
constituted of animals that received Ringer-Lock solu-
tion injected by intra-articular route. The amount of
tissue obtained from each animal was small, thus requir-
ing the pooling of the samples. Then, for each experi-
mental procedure, four groups of three rats were used.
Results are expressed as μg Evans blue/mL.

Evaluation of edema
The edematogenic response induced by myotoxin was
evaluated in both tibio-tarsal and femoral-tibial-patellar
joints. MT-II (10 g/articulation) was diluted in 25 (tibio-
tarsal articulation) or 50 μL (femoral-tibial-patellar ar-
ticulation) of PBS. The same volume of PBS was injected
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in the contralateral articulation. The increase in the ar-
ticulation was determined by measuring joint thickness
using a caliper at 0 (time before injections), 1, 2, 4, 8
and 24 h after MT-II or PBS injection. Results were cal-
culated by the difference in thickness of both joints, and
edema was expressed as the percentage increase in joint
thickness as compared to the control.

Evaluation of articular hypernociception
The articular hypernociception was determined by a
dorsal flexion of the tibio-tarsal joint, evaluated
using a modified electronic pressure-meter test, as
previously described [34]. Rats were placed in acrylic
cages with a wire grid floor 20 min before testing
for environmental adaptation. A tilted mirror was
placed below the grid floor to provide a clear view
of the hind paw. Stimulations were performed only
when animals were quiet, did not display exploratory
movements or defecation, and were not resting on
their paws. In these experiments, an electronic pres-
sure meter was used. It consists of a hand-held force
transducer fitted with a polypropylene tip (Insight
Ltda, Brazil) with a large tip (4.15 mm2) adapted to
the probe.
In this test, an increasing perpendicular force is ap-

plied to the central area of the plantar surface of the
hind paw to induce flexion of the tibio-tarsal joint, and
this force is automatically interrupted when the animal
reacts by withdrawing the paw. The electronic pressure-
meter apparatus automatically recorded the intensity of
the force necessary to induce this animal reaction. The
test was repeated until three measurements with less
than 1 g of variation were obtained. The flexion-elicited
mechanical threshold was expressed in grams (g). The
test was applied before and in different times after the
intra-articular injection of MT-II (10 μg) or BSA (20 μg),
zymosan (30 μg) and PBS, used as controls.

Pharmacological treatments
In order to investigate the mechanisms involved in the
articular hypernociception induced by MT-II, receptor
antagonists and enzymatic inhibitors were used:

� To evaluate the contribution of the cellular
influx to the joint to the hypernociceptive effect,
fucoidan (5 mg/kg, i.v.), a sulfated polysaccharide
that binds to L-selectin, was injected 15 min prior
to MT-II [41].

� To investigate the involvement of arachidonate
metabolites in this phenomenon, different groups of
rats were treated with the cyclooxygenase inhibitor
indomethacin (4 mg/kg, 30 min before myotoxin),
with the type-2 cyclooxygenase inhibitor celecoxib
(10 mg/kg, 60 min before myotoxin) or with the 5-

lipoxygenase inhibitor zileuton (100 mg/kg, 60 min
before myotoxin) [28, 42].

� In order to assess the involvement of
endogenous PLA2 activity to the myotoxin-
induced hypernociception, rats were treated
with arachidonyl trifluoromethil ketone
(AACOCF3, 200 μg/joint), a potent and selective
inhibitor of cPLA2, or palmitoyl trifluoromethyl
ketone (PACOCF3, 1 μg/joint), an inhibitor of
iPLA2, 30 min before myotoxin administration
[43, 44].

� To evaluate the participation of bradykinin in the
algogenic effect of myotoxin, a bradykinin B1 receptor
antagonist Lys-(Des-Arg9,Leu8)-bradykinin (Lys-BK,
10 and 40 nmol) and a bradykinin B2 receptor
antagonist icatibant (HOE 140, 0.75 μmol) were
injected by the intra-articular route 20 min
before myotoxin administration [28, 45].

� To evaluate the contribution of cytokines,
animals were treated with an anti-TNF-α anti-
body (0.5 μg/joint), with an anti-interleukin-1β
antibody (1.5 μg/joint), with an anti-interleukin-6
antibody (4.0 μg/joint) or with an anti-CINC-1
antibody (5.0 μg/joint), 30 min before myotoxin.
Carragenin (200 μg/joint) was used as positive
control of the antibody doses used since carragenin-
induced hypernociception is abrogated by these
antibodies.

� To examine the participation of histamine and
serotonin, animals were injected with promethazine
or methysergide (5 mg/kg, i.p.) 30 min before
myotoxin injection [28].

� To explore the effect of endothelin, BQ-123 and BQ-
788 (10 and 20 nmol/joint), selective antagonists of
ET-A and ET-B endothelin receptors, were injected
30 min before myotoxin administration [46].

� In order to investigate the participation of
metalloproteinases in the MT-II effects, Ilomastat
(GM6001, 27 and 71 nM/joint), a potent broad-
spectrum hydroxamate inhibitor of matrix metal-
loproteinases (inhibitor of 1-, 2-, 3-, 8- and 9-
MMPs) was injected 30 min before myotoxin
administration. Zymosan (30 μg/joint) was used
as positive control of GM6001 doses since it is
capable of increasing the mRNA expression to
MMPs-2, −3 and −9 in the synovial tissue [47].

� In order to investigate the participation of nitric
oxide (NO) on myotoxin-induced hypernociception,
rats were treated with the inhibitor of nitric oxide
synthase (NOS), L-NMMA (50 μg/joint), 60 min
before myotoxin injection [48].

Indomethacin was diluted in Tris buffer (1 M, pH 8.0 at
37o C) and PBS. Celecoxib and zileuton were dissolved in

Dias et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2017) 23:18 Page 4 of 13



CMC 1%. HOE 140, Lys-(Des-Arg9,Leu8)-bradykinin,
anti-IL-1β, anti-IL-6, anti-TNFα and anti-CINC-1 anti-
bodies were diluted in PBS. BQ-123 and BQ-788 were
diluted in distilled water. GM6001, AACOCF3 and
PACOCF3 were dissolved in DMSO. LNMMA, prometha-
zine, methysergide and fucoidan were diluted in saline. In
all experiments, control groups were constituted of
animals treated with MT-II plus the specific diluents
of each drug.

Drugs used
Anti-IL-1β, anti-IL-6, anti-TNFα and anti-CINC-1 anti-
bodies were supplied by R&D Systems Inc. (USA). Indo-
methacin, AACOCF3 and PACOCF3 were purchased
from Biomol Research Laboratories (USA). GM6001 was
supplied by USBiological (USA); whereas L-NMMA,
HOE 140, Lys-(Des-Arg9,Leu8)-bradykinin, prometha-
zine, methysergide, BQ-123, BQ-788 and fucoidan were
purchased from Sigma-Aldrich Co. (USA). Celecoxib
was supplied by Searle and Co (Puerto Rico). Zileuton
was purchased from Abbott Laboratories (Zyflo®, USA).
Carrageenin was purchased from Marine Colloids.

Statistical analysis
Results are presented as mean ± S.E.M. Statistical
evaluation of data was carried out by analysis of
variance (ANOVA) and sequential differences among
means were compared according to Tukey contrast
analysis at p < 0.05 [49].

Results
Cellular migration induced by myotoxin II
An increase in the total influx of cells into the femoral-
tibial-patellar joints of animals was noticed 8 h after intra-
articular injection of myotoxin, only with the dose of 10 μg/
joint. This increase was comparable to the cell influx in-
duced by carrageenin, used as positive control, and is due
to an increase in the numbers of polymorphonuclear cells

(Table 1). When animals were treated with other doses of
myotoxin (5, 15 and 20 μg/joint) or BSA, used as a control
of the quantity of protein injected in the joint, no
statistically significant difference was noted for cell
migration values when compared to groups treated
with PBS (Table 1).

Trypan blue exclusion test of cell viability
Since the increase in the cell influx was observed just for
the dose of 10 μg/joint of myotoxin, we used the dye
exclusion test to determine the number of viable cells
collected from peritoneal cavity after treatment with
MT-II.
After 1 h exposure, trypan blue exclusion assay re-

vealed that cell viability of groups treated with PBS, 5 μg
of myotoxin and 10 μg of myotoxin was 100%, while in
the groups treated with 15 and 20 μg the cell viability
was 50 and 20%, respectively. Based on these findings,
and in agreement with the results obtained in the cellu-
lar migration assay, the dose of 10 μg/joint of myotoxin/
joint was chosen for subsequent tests.

Plasma extravasation in the knee joint induced by
myotoxin
Plasma extravasation in the knee joints was determined
5, 15, 30, 60, 240 and 360 min after myotoxin injection.
Results demonstrated an increase of 25 and 57% in the
concentrations of Evans blue dye in the samples from
animal treated with myotoxin 5 and 15 min after injec-
tion, respectively, when compared with animal treated
with Ringer-Lock solution. No statistically significant dif-
ference was noted for plasma extravasation values in the
subsequent times.

Characterization of articular hypernociception and edema
The intraplantar injection of myotoxin II (10 μg/joint)
into the rat tibio-tarsal joint caused a significant de-
crease in pain threshold (Fig. 1). The hypernociception

Table 1 Myotoxin-induced cell migration to the joint

Treatment Groups (n = 6) Total cells (× 106/mL) Mononuclear cells
(× 106/mL)

PMN cells
(× 106/mL)

1 h 4 h 8 h 12 h 8 h 8 h

PBS 6 2.12 ± 0.70 3.72 ± 1.80 1.09 ± 0.61 0.24 ± 0.14 0.25 ± 0.13 1.65 ± 0.77

Myotoxin 5 μg/joint 6 2.07 ± 0.6 83.44 ± 25.2 52.27 ± 23.67 5.20 ± 1.54 7.97 ± 4.65 44.30 ± 19.07

Myotoxin 10 μg/joint 6 18.71 ± 4.10 73.16 ± 22.10 163.08 ± 48.04a 28.12 ± 7.57 8.15 ± 2.87 154.93 ± 34.16a

Myotoxin 15 μg/joint 6 6.12 ± 1.80 48.5 ± 22.70 66.38 ± 21.50 21.32 ± 8.38 3.91 ± 0.86 62.47 ± 13.73

Myotoxin 20 μg/joint 6 10.90 ± 12.75 41.37 ± 20.10 43.15 ± 5.53 12.75 ± 3.40 2.79 ± 0.85 40.36 ± 4.88

Carrageenin 6 4.74 ± 1.10 49.43 ± 7.20 109.14 ± 30.31a 15.64 ± 3.65 7.21 ± 2.36 101.93 ± 28.22a

BSA 6 0.50 ± 0.30 1.00 ± 0.5 1.50 ± 3.40 2.00 ± 0.50 / /

Total and differential cellular influx to the femoral-tibial-patellar articulation, evaluated 1, 4, 8 and 12 h after myotoxin II (5, 10, 15 and 20 μg/joint) injection. Total
and differential cell counts were performed using a Neubauer chamber (1:20 dilution v:v) and stained smears (violet crystal 0.5%), respectively. A total of 100 cells
were counted on a light microscope
aSignificantly different from mean values of control group (BSA)
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was detected from 4 to 8 h, decreasing thereafter and
completely disappearing within 24 h. Zymosan (30 μg/
joint) used as positive control, induced hypernociception
with same intensity of myotoxin, observed 8 h after its
injection (Fig. 1) [34]. The injection of saline or BSA
(control groups) did not modify the pain threshold of
the animals (Fig. 1).
In agreement, the injection of myotoxin caused a

time-dependent edema, observed in both tibio-tarsal
(Fig. 2a) and femoral-tibial-patellar (Fig. 2b) joints. In

both joints, the maximum increase in hind-paw swell-
ing occurred 1 h after MT-II injection, decreasing
thereafter and completely disappearing within 24 h
(Fig. 2).

Contribution of the cellular influx to the joint to the
hypernociceptive effect of myotoxin
The treatment with fucoidan, a sulfated polysaccharide
that binds to L-selectin, prevented the hyperalgesia in-
duced by myotoxin (Fig. 3a). The efficacy of fucoidan in
decrease the cellular influx to the joint was confirmed in
the MPO activity assay (Fig. 3b).

Mediation of myotoxin-induced hypernociceptive effect
Participation of eicosanoids and endogenous
phospholipases A2

Pretreatment with the cyclooxygenase inhibitor indo-
methacin (Fig. 4a) or type 2 cyclooxygenase inhibitor
celecoxib (Fig. 4b) significantly reduced the hyperalgesia
caused by myotoxin. The lipoxygenase inhibitor zileuton
did not modify the hyperalgesic response (Table 2).
Since it was demonstrated that both cyclooxygenase

and type 2 cyclooxygenase inhibitors blocked the hyper-
algesic effect of myotoxin and considering that this myo-
toxin is an enzymatically-inactive PLA2, we investigated
the possible participation of endogenous phospholipases
in this effect, since myotoxin cannot hydrolyze membrane
phospholipids directly.
Results demonstrated the both AACOCF3 (Fig. 4c)

and PACOCF3 (Fig. 4d) prevented the hypernociception
induced by myotoxin, suggesting the participation of
cytosolic and Ca2+-independent PLA2s in this effect.

Participation of bradykinin
Myotoxin-induced hyperalgesia was abolished by
treating the animals with the bradykinin B2 receptor

Fig. 1 MT-II-induced articular hyperalgesia. MT-II (10 μg/joint) or PBS
(vehicle) was injected in tibio-tarsal articulation (25 μL). Pain threshold
was determined by a dorsal flexion of the tibio-tarsal joint using
a modified electronic pressure-meter test before (time 0 – basal)
and 1, 2, 4, 6, 8 e 24 h after MT-II injection, and was represented
as force (in g). Zymosan (30 μg) and BSA (20 μg) were used as
controls. Each point represents the mean ± SEM of six animals.
*p < 0.05 indicate statistically significant differences when compared
with PBS group (vehicle)

Fig. 2 Edema induced by MT-II in (a) tibio-tarsal and (b) femoral-tibial-patellar rat joints. MT-II (10 μg/articulation) was injected in 25 (tibio-tarsal
articulation) or 50 μL (femoral-tibial-patellar articulation) of PBS (vehicle). The same volume of PBS was injected in the contralateral articulation.
The increase in the articulation was determined by measuring the joint edema using a caliper at 0 (time before injections) or 1, 2, 4, 8 and 24 h
after MT-II or PBS injection. Results are expressed as the percentage in the increase in joint thickness of MT-II group in relation to the PBS group.
Each point represents the mean ± SEM of six animals. *p < 0.05, **p < 0.01 and ***p < 0.001 indicate statistically significant differences when compared
with baseline (time 0)
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antagonist HOE 140 (Fig. 5a), but it was not altered by
bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-
bradykinin (Fig. 5b).

Participation of cytokines
Pretreatment with antibodies against TNFα (Fig. 6a), IL-1β
(Fig. 6b) and IL-6 (Fig. 6c) blocked the hypernociceptive
effect of myotoxin. Antibodies against CINC-1 partially
reduced this effect (Fig. 6d).

Participation of endothelin
The hypernociceptive effect induced by myotoxin was
partially reversed by the pretreatment with BQ-123 and
BQ-788, selective antagonists of ET-A (Fig. 7a) and
ET-B (Fig. 7b) endothelin receptors respectively.

Participation of histamine, serotonin, nitric oxide and
metalloproteinases
The histamine and serotonin antagonists promethazine
and methysergide, respectively, the nitric oxide inhibitor

Fig. 3 Effect of a L-selectin binder on MT-II- induced articular hyperalgesia. MT-II (10 μg/joint) or PBS (vehicle) was injected in tibio-tarsal articulation
(25 μL). Fucoidan (fuco), a L-selectin binder (5 mg/kg, i.v.) or saline (vehicle) was injected 15 min prior to MT-II. a Pain threshold was determined using
a modified electronic pressure-meter test 8 h after MT-II injection, and represented as force (in g). b The neutrophil migration to the tibio-tarsal joint
region of mice was evaluated by the myeloperoxidase (MPO) kinetic-colorimetric assay, tested 8 h after MT-II injection. Each point represents the mean ±
SEM of six animals. *p < 0.05 and ***p < 0.001 indicate statistically significant differences when compared with control group (vehicle +
vehicle). #p < 0.05 and ###p < 0.001 indicate statistically significant differences when compared with MT-II group (MT-II + vehicle)

Fig. 4 Involvement of eicosanoids and endogenous phospholipases A2 on MT-II- induced articular hyperalgesia. MT-II (10 μg/joint) or PBS (vehicle)
was injected in tibio-tarsal articulation (25 μL). Pain threshold was determined using a modified electronic pressure-meter test 8 h after MT-II injection, and
represented as force (in g). a Indomethacin, a cyclooxygenase inhibitor (Indo, 4 mg/kg, 30 min before MT-II) or (b) celecoxib, a type-2
cyclooxygenase inhibitor (Cel, 10 mg/kg, 60 min before MT-II) or (c) arachidonyl trifluoromethil ketone, a selective inhibitor of cPLA2 (AACO, 200 μg/
joint, 30 min before MT-II) or (d) palmitoyl trifluoromethyl ketone, an inhibitor of iPLA2 (PACO, 1 μg/joint, 30 min before MT-II) was injected prior to
MT-II. Each point represents the mean ± SEM of six animals. ***p < 0.001 indicate statistically significant differences when compared with control group
(vehicle + vehicle). ##p < 0.01 and ###p < 0.001 indicate statistically significant differences when compared with MT-II group (MT-II + vehicle)
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LNMMA and the inhibitor of matrix metalloproteinases
1-, 2-, 3-, 8- and 9- GM6001 (Ilomastat) did not inter-
fere with the effect of myotoxin (Table 2).

Discussion
Although outstanding efforts have been performed by
clinicians and researchers to find effective strategies to
treat and to restore joint function in articular inflamma-
tory conditions such as osteoarthritis and rheumatoid

arthritis, effective and/or protective treatments are still a
challenge [50, 51]. For this reason, animal models that
share the same characteristics of human arthritis are
useful for the characterization of these conditions and
for the study of new therapies.
The multi-mediated characteristic of articular inflam-

matory diseases and the importance of PLA2s and
cyclooxygenase-derived mediators to these conditions
have been well documented [5, 6]. Interestingly, studies
performed using MT-II, a catalytically inactive PLA2

homologue, demonstrated that its enzymatic activity is
not essential for its proinflammatory effects, since it is
able to induce eicosanoid production through the
stimulation of endogenous cytosolic and Ca2+-independ-
ent phospholipases A2 [26, 52, 53]. Herein it was
demonstrated that in spite of lacking enzymatic activity,
MT-II can induce acute arthritis, allowing the study of
mediators involved in this condition. Our observations in-
dicate that this is a multi-mediated process that involves
the participation of eicosanoids (through the activation of
endogenous PLA2s), bradykinin, cytokines, endothelin and
is dependent on the cellular influx to the joint.
Both MT-II (Lys49-PLA2) and MT-III (Asp49-PLA2)

induce hyperalgesia, allodynia, edema, plasma extravasa-
tion and H2O2 production by isolated macrophages [24,
28, 29, 54, 55]. The difference among the myotoxins is
the intensity of their effects, since in all of them the ef-
fect observed with MT-II is weaker than that of MT-III.
The Lys49-PLA2 was chosen for the present study since
the lack of enzymatic activity eliminates the possibility
that exogenous PLA2 degradation of phospholipids may
contribute to the genesis of the inflammation, thus
allowing the study of the role of endogenous, inflamma-
tory PLA2s in this phenomenon.
The kinetics of the articular inflammation induced by

MT-II was characterized. MT-II induced a rapid plasma
extravasation in the knee joints observed 5 min after its
injection, which peaked at 15 min. A time-dependent

Table 2 Evaluation of histamine, serotonin, nitric oxide and
metalloproteinases in the myotoxin-induced hypernociceptive
effect

Treatment Force in grams evaluated
8 h after myotoxin injection

Saline + PBS 49.90 ± 1.72

DMSO + PBS 49.60 ± 2.11

Saline + Myotoxin 25.58 ± 0.59a

DMSO +Myotoxin 23.64 ± 0.79a/NS

Zyleuton +Myotoxin 29.82 ± 3.03a/NS

Methysergide + Myotoxin 26.72 ± 0.85a/NS

Promethazine +Myotoxin 24.74 ± 1.04a/NS

L-NMMA +Myotoxin 29.14 ± 1.72a/NS

GM6001 + Myotoxin 26.06 ± 0.69a/NS

Methysergide + PBS 49.82 ± 1.31

Promethazine + PBS 50.06 ± 2.18

L-NMMA + PBS 48.26 ± 3.87

GM6001 + PBS 44.54 ± 2.33

Articular hyperalgesia induced by MT-II in rats in the presence or in the absence
of different pharmacological treatments. The articular hypernociception was
determined by a dorsal flexion of the tibio-tarsal joint using a modified electronic
pressure-meter test and was represented as force (in g), observed 8 h after MT-II
injection. Zyleuton: 5-lipoxygenase inhibitor; methysergide: antagonist of
H1 histaminergic receptor; promethazine: antagonist of serotoninergic receptors;
L-NMMA: inhibitor of nitric oxide synthase; GM6001: a potent broad-spectrum
hydroxamate inhibitor of matrix metalloproteinases (inhibitor of 1-, 2-, 3-,
8- and 9-MMPs)
NS Not significantly different from mean values of myotoxin group
aSignificantly different from mean values of control group (Saline or DMSO+ PBS)

Fig. 5 Involvement of bradykinin on MT-II-induced articular hyperalgesia. MT-II (10 μg/joint) or PBS (vehicle) was injected in tibio-tarsal articulation
(25 μL). Pain threshold was determined using a modified electronic pressure-meter test 8 h after MT-II injection, and represented as force (in g).
(a) A bradykinin B2 receptor antagonist icatibant (HOE 140, 0.75 μmol) or (b) a bradykinin B1 receptor antagonist Lys-(Des-Arg

9,Leu8)-bradykinin (des, 10
and 40 nmol) was injected by intra-articular route 20 min prior to MT-II. Each point represents the mean ± SEM of six animals. ***p < 0.001
indicate statistically significant differences when compared with control group (vehicle + vehicle). ###p< 0.001 indicate statistically significant differences
when compared with MT-II group (MT-II + vehicle)
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edema was observed in both tibio-tarsal and femoral-
tibial-patellar joints, reaching its maximum increase 1 h
after myotoxin injection. The inflammatory response
reached its peak 8 h after MT-II injection, a time when
the cell influx and hyperalgesic effect reached their
maximum. In these studies, the selected dose (10 μg)
was not cytotoxic. Previous studies already demonstrated
that MT-II induces prominent leukocyte infiltration to
the peritoneal cavity 6 h after its injection, composed
predominantly of polymorphonuclear leukocytes [24].
This same cell migration profile was obtained in the
present study using carrageenan and is in agreement

with previous studies [56], confirming articular MT-II
injection as a suitable model for articular inflammation
evaluation.
According to the World Health Organization rheumatoid

arthritis and osteoarthritis are included in the group of con-
ditions having the greatest impact on society, being
osteoarthritis one of the ten most disabling diseases in
developed countries [57]. In addition, pain can be consid-
ered one of the most prominent symptoms in people suffer-
ing of arthritis, being the most important cause of disability
and loss of joint function in patients with osteoarthritis [57,
58]. Considering this, the hyperalgesic effect of articularly

Fig. 6 Involvement of cytokines on MT-II-induced articular hyperalgesia. MT-II (10 μg/joint) or PBS (vehicle) was injected in tibio-tarsal articulation
(25 μL). Pain threshold was determined using a modified electronic pressure-meter test 8 h after MT-II injection, and represented as force (in g).
a anti-TNFα antibody (0.5 μg/joint) or (b) anti-IL-1β antibody (1.5 μg/joint) or (c) anti-IL-6 antibody (4.0 μg/joint) or (d) anti-CINC-1 antibody
(5.0 μg/joint) was injected 30 min before MT-II. Each point represents the mean ± SEM of six animals. *** p < 0.001 indicate statistically significant
differences when compared with control group (vehicle + vehicle). ### p < 0.001 indicate statistically significant differences when compared
with MT-II group (MT-II + vehicle)

Fig. 7 Involvement of endothelin on MT-II-induced articular hyperalgesia. MT-II (10 μg/joint) or PBS (vehicle) was injected in tibio-tarsal articulation
(25 μL). Pain threshold was determined using a modified electronic pressure-meter test 8 h after MT-II injection, and represented as force
(in g). a BQ-123 or (b) BQ-788 (10 and 20 nmol/joint, selective antagonists of ET-A and ET-B endothelin receptors, respectively) were injected 30 min
before MT-II. Each point represents the mean ± SEM of six animals. **p < 0.01 and ***p < 0.001 indicate statistically significant differences
when compared with control group (vehicle + vehicle). #p <0.05 and ### p < 0.001 indicate statistically significant differences when
compared with MT-II group (MT-II + vehicle)
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injected MT-II was investigated and the role of several in-
flammatory mediators in this process was determined.
MT-II induced significant hyperalgesia which peaked

8 h after injections. The hyperalgesic effect of both MT-II
and MT-III was previously investigated after intraplantar
injection of the toxins [28]. These authors demonstrated
that MT-II induced hyperalgesia that peaked 1 h later after
intraplantar injection, decreasing afterwards. Differences
in the experimental conditions between that study and
our present report, particularly regarding the site of
injection, could explain the differences described. In
our case, it is interesting to note that the peak of the
hyperalgesic response of the animals coincided with
the peak of cell influx.
The cellular traffic between the blood and the tissues

is regulated by adhesion molecules expressed on the
blood and endothelial cell surface [59]. Among the
major adhesion molecules involved in cell transmigra-
tion is L-selectin, a molecule indispensable for adhesion,
diapedesis and subsequent cell migration to the tissue
[60, 61]. Thus, the importance of cell influx to the
hyperalgesic effect induced by MT-II was investigated
using fucoidan, a binder of L-selectin which is able to in-
hibit cell migration into the tissue in a dose that does
not affect the number of circulating leukocytes [41]. Our
data showing that fucoidan fully reverted the hyper-
algesia induced by MT-II confirmed the importance of
cell influx to the joint to MT-II-induced hyperalgesia.
The reduction in cell migration into the joint cavity was
confirmed by myeloperoxidase assay.
It is important to point out that previous studies

demonstrated that fucoidan significantly inhibited both
cytotoxic and myotoxic effects of MT-II and that this
inhibition is due to a rapid formation of complexes be-
tween fucoidan and myotoxins [62]. Regardless this
interference of fucoidan in MT-II-induced myotoxicity,
it probably does not explain the inhibition of MT-II-
induced hyperalgesia observed in our results, because
this interference was observed only when fucoidan was
incubated with MT-II or when they were injected simul-
taneously at the same site [62, 63]. In contrast, MT-II-
induced muscle necrosis was not inhibited when fucoi-
dan was administered by i.v. route, immediately after
i.m. toxin injection [63]. Therefore, considering that in
our studies fucoidan was administered by i.v. route and
MT-II directly in the joint, it is possible to consider that
the inhibition of MT-II-induced hyperalgesia was a conse-
quence of the decrease in leukocytes migration into joint
articulation.
This hyperalgesic effect clearly involves the participa-

tion of type 2 cyclo-oxygenase-derived mediators, since
both indomethacin and celecoxib inhibited this effect.
The lipoxygenase inhibitor zileuton did not modify the
hyperalgesic response, suggesting that leukotrienes are

not likely to be involved in this phenomenon. These re-
sults are in agreement with Chacur et al. [28], who had
previously demonstrated the involvement of prostaglan-
dins and the absence of leukotrienes on MT-II-induced
hyperalgesia using the intraplantar injection model. Con-
sidering that MT-II is a PLA2-like protein devoid of
catalytic activity and, therefore, cannot hydrolyze mem-
brane phospholipids directly, the participation of cytosolic
and Ca2+-independent endogenous PLA2s was presently
investigated.
The combined activities of sPLA2 and endogenous

cPLA2 or Ca2+-independent PLA2 to induce eicosanoid
formation in different cells has already been proposed
[64, 65]. In addition, previous works have demonstrated
the ability of MT-II to induce inflammation through
endogenous PLA2s activation. Moreira et al. [26] demon-
strated that MT-II is able to induce PGD2 and PGE2 re-
lease and expression of COX-2 in macrophages in culture,
being these phenomena decreased by the inhibition of
cytosolic PLA2 but not Ca

2+ independent PLA2. Giannotti
et al. [52], investigated the ability of MT-II to induce, in
isolated macrophages, the formation of lipid droplets
(LD), which are key elements of inflammatory responses.
It was demonstrated that iPLA2, but not cPLA2, sig-
naling pathways are involved in this LD formation.
Corroborating these data, our results showed that, in
the joint, both cytosolic and Ca2+-independent phos-
pholipases are involved in MT-II-induced articular
hyperalgesia.
The role of several mediators on MT-II PLA2-induced

hyperalgesia was presently investigated using inhibitors
of specific pathways or receptor antagonists. It was ob-
served that this effect involves the participation of
bradykinin, acting through B2 receptors, indicating the
importance of kinins to the hyperalgesic effect. Bradykinin
is an inflammatory mediator involved in both pain and
nociceptor sensitization [66, 67]. It was already demon-
strated that in some inflammatory conditions, bradykinin
may induce the release of several mediators that act in a
cascade fashion, causing both pain and nociceptors
sensitization. These are considered multi-mediated pro-
cesses that involve participation of biogenic amines,
cytokines (TNFα, IL-6, IL-1β and IL-8), prostanoids and
sympathomimetic amines [66, 68–72]
The importance of bradykinin to the onset of pain in ar-

ticular inflammatory conditions has also been highlighted.
Severe acute pain is considered the most important clinical
symptom in patients suffering from crystal-induced arthritis
(CIA). Ramonda et al. [73], evaluating this phenomenon,
demonstrated that bradykinin can be included as one of the
most important molecules to induce pain, together with
prostaglandins, cytokines (in particular, interleukin-1β) and
substance P, exerting their effects through different recep-
tors present in both peripheral sensory neurons and in the
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spinal cord. De Falco et al. [74] reviewed the importance of
bradykinin to osteoarthritis and described the action
of B2 receptor antagonists to this condition, presenting
these antagonists as promising agents to the osteoarthritis
treatment.
In spite of the fact that (i) bradykinin-induced pain partly

depends on the release of inflammatory mediators by mast
cells [75]; (ii) the release of vasoactive amines from mast
cells incubated with venom cationic PLA2s has been previ-
ously detected [76, 77] and (iii) Chacur et al. [28] demon-
strated that the hyperalgesic effect of MT-II injected in the
rat paw is partially mediated by histamine and serotonin;
these mediators do not seem to be involved in the MT-II-
induced articular hyperalgesia, since both histamine and
serotonin antagonists did not interfere with the hyperalge-
sic effect of MT-II. In addition, nitric oxide inhibitor
LNMMA and the inhibitor of matrix 1-, 2-, 3-, 8- and 9-
metalloproteinases GM6001 (Ilomastat) did not interfere
with the effect of myotoxin. Although the importance of
these mediators to inflammatory conditions is well stab-
lished, it is suggested that they are not contributing to the
observed hyperalgesic effect [47, 78–81].
The role of cytokines in hyperalgesic and inflammatory

processes, including arthritis, is well documented [82–84].
The sensitization of nociceptors by cytokines is a multi-
mediated process that involves the release of prostaglandins
and sympathomimetic amines [68, 69, 72, 85, 86]. In
addition, the release of cytokines induced by both Bothrops
asper venom or isolated Lys49 PLA2 has already been
described [28, 29, 55, 87, 88]. In agreement with these data,
our results confirmed the importance of cytokines to the
articular inflammation induced by MT-II, since antibodies
against TNFα, IL-1β, IL-6 and CINC-1 interfered with the
effects induced by MT-II.
Endothelins are peptides implicated in pain transmission

in both humans and animals, which contribute to sensory
changes associated with inflammatory and neuropathic pain
[89–91]. In addition, these peptides have been involved in
articular inflammatory conditions, including osteoarthritis,
where endothelin signaling may play a role in destruction
of bone-cartilage unit [92]. Thus, the participation of
endothelin acting on ET-A or ET-B receptors in MT-II in-
duced articular pain was investigated. Our results demon-
strated that both ET-A and ET-B antagonists partially
reversed the hyperalgesic effect of MT-II, even when both
antagonists were associated (data not shown). These results
underscore the involvement of endothelin in the MT-II-
induced pain and suggest that the mediators involved in
this pain signaling are not released in a sequencial manner,
but probably through parallel pathways.

Conclusion
In conclusion, our work demonstrated that MT-II, a
catalytically-inactive Lys49-PLA2, induces an acute multi-

mediated inflammatory articular process that includes
most of the important mediators described in articular
chronic conditions. Considering that arthritis is a patho-
logical condition that has no cure, more in vivo animal
models and clinical studies are needed to better under-
stand the cellular and molecular mechanisms involved in
this process as well as the efficacy and tolerability of new
therapeutic compounds. In this context, MT-II-induced
articular inflammation can be considered a valuable model
for arthritis pathology and treatment evaluation.
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