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Crotalus durissus terrificus crotapotin
naturally displays preferred positions for
amino acid substitutions
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Abstract

Background: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic
criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin.
Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a
chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide
bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported.

Methods: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry
(MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed
by mass spectrometry and de novo peptide sequencing.

Results: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms,
which was corroborated by the MS and tandem mass spectrometry analyses.

Conclusion: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present
in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in β and γ chains (one for
each). The combinations of these four different peptides, with the already described chains, would produce ten
different crotapotins, which is compatible to our previous observations for the Cdt venom.
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Background
Snake venoms are complex mixtures rich in proteins
and peptides, in which such molecules can comprise up
to 95% of the venom dry weight [1, 2]. Such molecules
do aid the animal survival, once they may be used either
as a hunting tool or as a defense mechanism [3]. More-
over, these toxins are also involved in ophidian accidents
[4]. Crotoxin, the major Crotalus durissus terrificus
(Cdt) venom toxin, is also the most toxic [5, 6]. It is a
heterodimeric neurotoxin comprised of a basic phospho-
lipase A2 (PLA2) and an acidic protein, also known as
crotapotin [7, 8].

Crotapotin, a 9.6-kDa peptide displaying a pI of 3.4,
was initially characterized as a chaperone since the PLA2

would increase its toxicity and inhibit the PLA2 activity
[9–12]. However, this peptide has also been described as
presenting anti-inflammatory activity and being able to
modulate the humoral immunity, including in some
neurodegenerative autoimmune disorders [13–17].
Structurally, crotapotin is composed of three peptide

chains, connected by seven disulfide bonds [16, 18].
These chains, called α, β and γ, were first sequenced in
1985 and determined to be composed of 40 (α-chain),
35 (β-chain) and 14 (γ-chain) amino acids [19, 20]. How-
ever, some authors have observed the occurrence of nat-
ural variations of crotapotin [17, 21].
In the present study, we have developed a method for

the isolation and biochemical characterization of crotapo-
tin from crude Cdt venom, including the chromatographic
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separation of the peptide chains after reduction and alkyl-
ation, and de novo mass spectrometry peptide sequencing.

Methods
Venoms and animals
Pooled Cdt venom was obtained from snakes kept in the
Center for the Studies of Venoms and Venomous Animals
(CEVAP) of UNESP, in Botucatu (Brazil). All procedures
involving snake specimens were in accordance with the
ethical standards of the institutional and/or national re-
search committee. The study was approved by the res-
ponsible Ethics Committee on Animal Use of Botucatu
Medical School (protocol no 1145/2015 – CEUA).

RP-HPCL
A 10 mg.mL−1 crude Cdt venom solution (0.1% trifluoroa-
cetic acid – TFA) was centrifuged (3800 x g) and sepa-
rated by RP-HPLC using a Luna C8 column (100 A,
250 × 10 mm, Phenomenex) coupled to a Shimadzu Proe-
minence binary HPLC system. A 20–40% linear gradient
of B (90% acetonitrile – ACN, containing 0.1% TFA) over
A (0.1% TFA) was used for 40 min after initial isocratic
elution for 5 min, under a constant flow of 5 mL.min−1.
UV monitoring was performed at 214 nm and fractions
were manually collected. The reduced and alkylated crota-
potin chains were separated by a Shimpack C18 column
(100 A, 10 × 4.6 mm, Shimadzu), using a 0–50% linear
gradient of B, for 20 min, under constant flow of
1 mL.min−1. UV monitoring was performed at 225 nm.

Chemical processing
Isolated crotapotin was reduced with 500 mM DTT in
50 mM NH4HCOOH for 25 min at 56 °C and alkylated
with 500 mM IAA for 30 min, at 25 °C, protected from
light. The isolated α and β chains were chemically hy-
drolyzed with 70% formic acid for 48 h, at 37 °C. Reac-
tion was stopped by water addition followed by
lyophilization.

Mass spectrometry and de novo peptide sequencing
A Bruker ESI-Q-TOF instrument, coupled to a Promin-
ence Shimadzu binary HPLC, was employed for MS and
MS/MS experiments. Samples were placed in the auto-
sampler holder and submitted to a 10–80% linear gradient
of B for 15 min, under constant flow of 0.2 mL.min−1,
using a Shimpack C18 column (100 A, 10 × 2 mm). CID
fragmentation for MS/MS experiments was performed
with N2. Data were acquired under a 50–2000 m/z win-
dow and processed by Peaks Studio Suite.

Results
Crotapotin isolation
Figure 1 presents the C8-RP-HPLC profile of the crude
Cdt venom separated according to the Methods section.
Six fractions (F1-F6) were manually collected and sub-
mitted to MS analyses in order to identify the known
toxins. F1 and F2 are crotamins, F3 corresponds to cro-
tapotin and F4, F5 and F6 are PLA2s. The minor peaks
were not collected or analyzed by MS. F3 was then

Fig. 1 RP-HPLC profile of the crude Cdt venom. F1 to F6 correspond to the manually collected fractions. F1 and F2: crotamin; F3: crotapotin; F4,
F5 and F6: PLA2. UV monitoring 214 nm. Inset: F3 analytical RP-HPLC demonstrating the proper molecule isolation. Chromatographic conditions
are described in Methods section
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submitted to another chromatographic step (Fig. 1,
inset) in order to assess its homogeneity and the mo-
lecular mass was determined (Fig. 2). Figure 2 already
points out to the presence of more than one molecule;
however, the charge states are only indicated for the
major ions.

Crotapotin chains isolation
Following reduction and alkylation, as described in
Methods, the processed crotapotin was subjected to RP-
HPLC chromatographic separation in order to obtain
the isolated α, β and γ chains. Figure 3a and b (zoomed
chromatogram) present the chain separation. Major
peaks in the chromatogram correspond to the reagents
(data not shown). The chains were identified based on
their molecular masses, as presented in Fig. 4a–c.

De novo peptide sequencing
The isolated formic acid hydrolyzed crotapotin chains
were analyzed by LC-MS/MS (ESI-Q-TOF) and the frag-
mentation spectra are presented in Fig. 5a, b and c. Only
the spectra of the isoforms are presented. Several spec-
tra, corresponding to the known/deposited sequences,
were obtained, but are not presented.

Discussion
Crotoxin is a β neurotoxin, composed of two subunits: an
active PLA2 and the catalytic inactive crotapotin [22, 23].
Since most venoms and toxins present isoforms, a conse-
quence of an evolutionary strategy, we have chosen to
evaluate whether there would be a preferred substitution
site in a given crotapotin subunit that would give rise to
the previously observed isoforms [21].
In order to achieve this goal, we developed a chroma-

tographic method for the separation of crotapotin from
the crude Cdt venom, and another method for the

obtainment of the reduced and alkylated subunits.
Moreover, due to the particular amino acid composition
of the subunits, classical proteomics approaches (based
on trypsin hydrolysis) could not be performed. Con-
versely, we have opted for the formic acid hydrolysis to
adjust the peptide size to the CID fragmentation require-
ments. Interestingly, such strategy helped in the identifi-
cation of a particular α-chain isoform, in which the
deposited Ala31 residue was replaced by an Asp, yielding
a new formic acid cleavage site that was successfully
used in the de novo sequencing process (Fig. 5a).
According to our analyses, what happens in the venom

gland is merely amino acid substitutions and not alter-
nate processing, i.e., we were not able to detecte longer
or shorter chains, only isoforms regarding residue
changes [9]. Most of the isoforms did present molecular
masses close to the already known molecule [16].
During the course of the work, we successfully covered

97% of crotapotin using the proteomics/de novo sequen-
cing (data not shown). However, few spectra did not
match the deposited sequence and, by using a combin-
ation of the Spider algorithm of Peaks Studio and manu-
ally checking the spectra for correction, we were able to
identify four amino acid substitutions. Interestingly, the
α chain bears more amino acid substitutions, as the
asymmetrical HPLC peak already indicated (Fig. 3b).
Since the α and β chains are homologous to the PLA2,
such preference for mutation in these chains may have a
counter part in the isoforms also observed for the Cdt
PLA2 itself [21, 24].
Our de novo data specifically indicates the Thr→Glu77,

Ala→Asp68 substitutions in the α chain. Although the
Thr→Glu77 substitution would retain the hydrogen bond
capabilities (but with the addition of a true charge), the
Ala→Asp68 substitution seems more disturbing. Such
mutation is located in an α helix and the introduction of a

Fig. 2 F3 ESI+ MS spectrum. The charge states of the major ions are presented above the m/z value. The presence of isoforms is indicated by the
arrows for the [M + 6H]6+ ion
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charged residue may alter such structure. Moreover, this
particular region is mostly involved in the PLA2 inter-
action [23].
In the β chain, the Pro→Ala98 substitution would

evoke the same type of alteration. Proline is a rigid,
structurally relevant amino acid, typically present in pro-
tein ‘turn’ regions. On the other hand, alanine is a much
more flexible amino acid. Such substitution would relax
this molecule region, allowing for more flexibility and,
therefore, different types of intermolecular interactions.
The γ chain (also known as crotalphine [25]) presents

a Gln→Arg136 substitution. This modification has
already been reported by Konno et al. [25] and is de-
scribed as not capable of altering the analgesic proper-
ties of this peptide. This is in agreement with our
proposal based on the conservation of the electrostatic
characteristics of the residue that would retain the

hydrogen bond-forming capabilities, in spite of the
addition of a charge.
Unfortunately, the absence of genomic (or transcrip-

tomic) data makes it more difficult to characterize other
amino acid substitutions that are certainly occurring but,
due to the lower relative concentration levels, have not
yielded high quality spectra, suitable for the de novo se-
quencing (data not shown). Few studies report other
amino acid substitutions, such as residue 84 of the β
chain [26].
Evolution has long been ‘experimenting’ with amino

acids substitutions in proteins and peptides in order to
increase venom efficiency and efficacy as well as avoid
prey evasive strategies [27, 28]. Not only that, but also
synergism aroused by the presence of several isoforms of
a given molecule also increases toxicity [29]. If one takes
into account the biotechnological appeal of the clinical

Fig. 3 a Reduced and alkylated crotapotin (F3) RP-HPLC separation chromatographic profile. b Zoomed region with the identification of the individual
chains. UV monitoring 225 nm. The major peaks in A correspond to the alkylation reagents
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use of toxins, such isoforms may hint to specific targets
when given residues in the toxins are substituted; the
Conus toxins are a good example of this concept [30].

Conclusion
The mere existence of venoms and toxic animal secre-
tions is itself a demonstration of an unbalanced (or
biased) evolutionary strategy happening in a given or-
ganism. Toxins are molecules that must act in another

organism, and not against the producing animal. There-
fore, regulation mechanisms must exist to prevent local
damage. They may include, but are not limited to, the
presence of concentrated low affinity inhibitors; the ab-
sence of ionic co-factors; the lack of catalytic activity
due to conformation restrains; the pH of the media; the
timing of the activation of the precursor, among others.
Certainly, one of those strategies targeted to increase the
efficiency and efficacy of the venom is the presence of
isoforms of a given toxin, as herein reported.

Fig. 4 MS spectrum of the (a) γ, (b) β and (c) α chains. The charge states of the major ions are presented above the m/z value. The lack of homogeneity
indicates the presence of isoforms
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Fig. 5 Representative annotated interpreted CID fragmentation spectra of the de novo sequenced isoforms of crotapotin (a) α, (b) β and (c) γ
chains. Above each chain, the aligned sequences presenting the amino acid substitution are shown
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