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Migration and brackish environment use of Prochilodus lineatus 
(Characiformes: Prochilodontidae) inferred by Sr:Ca ratio 

transects of otolith

Esteban Avigliano1, Jorge Pisonero2, Alejandro Dománico3,4, Sebastián Sánchez5 and 
Alejandra V. Volpedo1

The streaked prochilod, Prochilodus lineatus, represents the most important fishery in the La Plata Basin (South America). 
Our objective was to analyze brackish environment use by the streaked prochilod captured from Paraná and Uruguay rivers. 
To accomplish this, lapillus otolith sections were analyzed for Sr:Ca with laser ablation-inductively coupled plasma-mass 
spectrometry (LA ICP-MS) to infer habitat use of fish. To the interpretation of transects, a threshold that represents the 
transition between freshwater and brackish environments was calculated using the Sr:Ca ratio of the otolith edge of specimens 
captured in the first section of the La Plata Estuary (salinity ≥ 0.5 PSU). The percentage of fish using the estuary was higher 
in the Paraná (37%) than the Uruguay River (5%). Change-point analysis showed that fish entered the estuary between 1 and 
3 times throughout life at a wide range of ages (0-15 years). These incursions had no obvious periodicity. This information 
should be integrated into future management actions, which should also be specific to each area since migration patterns 
differ between the major rivers of the basin. 

Keywords: Connectivity, Freshwater resident, Laser ablation, River migration, Streaked prochilod. 

El sábalo, Prochilodus lineatus, representa la pesquería más importante en la Cuenca del Río de la Plata (Sudamérica). 
Nuestro objetivo fue analizar el uso del hábitat estuarino del sábalo proveniente de los ríos Uruguay y Paraná. Para esto, se 
analizó la relación Sr:Ca en secciones de otolitos lapilli por ablación láser acoplada a espectrometría de masas con fuente 
de plasma de acoplamiento inductivo (LA ICP-MS) para inferir el uso de hábitat. Para interpretar las transectas, un umbral 
que representa la transición entre los ambientes de agua dulce y estuarino, fue calculado usando la relación Sr:Ca del borde 
del otolito de especímenes capturados en la primera sección del estuario del Plata (salinidad ≥0.5 UPS). El porcentaje de 
peces que usaron el estuario fue más elevado para el Paraná (37%) en relación al Uruguay (5%). El análisis de cambio 
puntual mostro que los individuos ingresan al estuario entre 1 a 3 veces a lo largo de la vida en un amplio rango de edades 
(0-15 años). Las incursiones no mostraron una periodicidad notoria. Esta información debería integrarse a futuras acciones 
de manejo que deberían ser específicas para cada área considerando los patrones de migración que difieren entre los 
grandes ríos de la Cuenca. 

Palabras clave: Ablación laser, Agua dulce residente, Conectividad, Migración de rio, Sábalo.
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Introduction

The La Plata Basin, with 3,170,000 km2 is the fluvial-
marine system with larger surface of the Americas, after 
the Amazon. This basin goes through 5 countries in South 
America and is located between latitudes 17° S and 36° 

S, with a north-south current direction (Fig. 1). Its most 
important rivers are the Paraná (4,000 km long), Paraguay 
(2,600 km long), Uruguay (1,800 km long) and Pilcomayo 
(1,500 km long) (Fig. 1) (Guerrero et al., 1997). These rivers 
drain into the Paraná Delta, which terminates in the La Plata 
Estuary (Guerrero et al., 1997). The main fishery resource 
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of the basin is the streaked prochilod, Prochilodus lineatus 
(Valenciennes, 1837), whose catch volumes have exceeded 
36,000 t/year, from the middle portion of the Paraná 
River (Sverlij et al., 1993; MINAGRO, 2016). Streaked 
prochilod reproductive cycle is correlated with the natural 
flood pulse regime (Neiff, 1999) with migrations upstream 
and spawning in open river waters coupled to the flooding 
periods as a mechanism of dispersion of eggs (Sverlij et 
al., 1993). According to Bonetto et al. (1981), Delfino, 
Baigun (1985) and Espinach Ros et al. (1998), the streaked 
prochilods migrate over 1,000 km to feed and reproduce. 

Considering that the La Plata estuary (Uruguay and 
Argentina) is one of the target sites for commercial fishing, 
life history information on streaked prochilod from brackish 
environments is needed to support management decisions 

about this resource. The studies of capture, tagging and 
recapture have provided interesting information about 
brackish incursions. However, these studies have not been 
able to determine the proportion of individuals using the 
estuary, and the ages at which brackish environment use 
occurred. For example, Espinach Ros et al. (1998) have 
reported displacements of up to 1,100 km for fish tagged 
in the Uruguay River and recaptured in the Paraná, as well 
as movements between Uruguay River and the La Plata 
Estuary. It has also been reported a tagged specimen in 
Buenos Aires City (near the limit of the estuary), which was 
recaptured 1,500 km upstream in the Paraná River (Sverlij 
et al., 1993). It seems that there is an important connectivity 
between groups of fish from Paraná and Uruguay rivers with 
the estuary. 

Fig. 1. Sampling sites of Prochilodus lineatus (red arrows). Red point shows the sampling site of fish use for transition 
threshold estimation between freshwater and brackish environments. The bar charts show the proportion of each migratory 
pattern for each collection site (black: freshwater straggler; white, freshwater resident).
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Tagging studies result extremely expensive due to the 
extension of the basin and the number of specimens needed 
to be tagged to obtain a representative number of recaptures 
(Begg, Waldman, 1999). In the past two decades, the chemical 
composition of fish otoliths has been developed as a natural 
tracer of habitat use and cost-effective alternative to mark 
recapture investigations. Otoliths are structures composed 
mainly of calcium carbonate deposited as aragonite, vaterite 
or calcite crystals in a protein matrix (otoline) found in the 
inner ear (Campana et al., 1997). Chemical composition 
is preserved in the otolith chronology because deposited 
material is not reabsorbed or altered (Campana, Neilson, 
1985; Casselman, 1990; Campana, Thorrold, 2001; Elsdon 
et al., 2008). Trace elements in combination with growth 
rings result in an important file that records environment 
information experienced by fish, environmental changes 
and exposure to pollutants throughout ontogeny (Halden, 
Friedrich, 2008). Because many cationic trace elements 
substitute for calcium in the otolith chemical matrix, 
element ratio, such as Sr:Ca, (rather than single element 
concentrations) provide the most accurate representation 
of chemical gradients in the water (Bath et al., 2000). In 
estuaries, salinity often has a positive correlation with otolith 
Sr:Ca when the freshwater end-member has lower Sr:Ca 
than sea-water (Secor, Rooker, 2000; Kraus, Secor, 2004; 
Martin et al., 2004; Sturrock et al., 2012). The techniques 
used to study ontogenetic changes of Sr:Ca ratio in otoliths 
include spot and line scan analysis by electron probe micro-
analysis (EPMA), microproton-induced X-ray emission 
(micro-PIXE) (Lin et al., 2007; Hedger et al., 2008; Daros 
et al., 2016), and more recently laser ablation-inductively 
coupled plasma-mass spectrometry (LA-ICP-MS) (Morales-
Nin et al., 2014; Fowler et al., 2016; Kissinger et al., 2016; 
Avigliano et al., 2017b; Callicó Fortunato et al., 2017).

Considering the lack of knowledge about the use of 
environments with different salinities, our objective was to 
analyze brackish environment use by the streaked prochilod 
captured from the La Plata Basin (Paraná and Uruguay rivers). 
In particular, we evaluated the proportion of individuals using 
the estuary, and the ages at which brackish environment use 
occurred. We accomplished this by analyzing transects of 
Sr:Ca in lapilli sections using LA-ICP-MS.

Material and Methods

Sample collection. Fish were collected between February 
2011 and November 2014 by using trammel nets in the 
Uruguay River, (31°25.246’S-58°1.407’W-31°59.105’S-
58°9.599’W) (Corrientes and Entre Ríos provinces, 
Argentina-Uruguay international boundary) and in the 
Paraná River (27°25.467’S-58° 48.133’W) (Corrientes 
province, Argentina-Paraguay international boundary) 
(Fig. 1). Additionally, 9 adult fish were collected at 
the boundary between freshwater and the estuary (34° 
41.969’S- 57°40.291’W) (inner parts of the La Plata 
Estuary, salinity ≥ 0.5 PSU). 

Once the nets were recovered, the fish were killed 
with percussive stunning (Van De Vis et al., 2003). Fish 
were placed on ice and transported to the laboratory where 
they were measured (standard length=SL) and the lapilli 
otoliths were extracted. We preferred using lapilli otoliths 
rather than sagittae or asterisci otoliths because they were 
larger and allowed less measurement error (Assis, 2005; 
Avigliano et al., 2015a).

Otoliths from Uruguay River and La Plata estuary 
were deposited in the collection of the Continental Fishing 
Laboratory of the Ministry of Agro-industry from Buenos 
Aires, Argentina (vouchers numbers: 124579-131140) while 
Paraná River otoliths were deposited in the National University 
of the Northeast, Corrientes, Argentina (vouchers numbers: 
2011/1-2011/223, 2013/7-2013318, 2014/3-2014/33).

Age determination and otolith preparation. Otoliths 
were weighed using a Sartorius AG ED 2242 (Göttingen, 
Germany) analytical balance, washed with Milli-Q water 
with a resistivity of 18.2 mΩ/cm and dried. The left otolith 
of each pair was embedded in epoxy resin and sectioned 
transversely through the core to a thickness of 700 µm 
using a Buehler Isomet low speed saw (Hong Kong, China) 
equipped with twin diamond edge blades and spacers. The 
number of annuli in the otolith section was counted with the 
piece immersed in ultrapure water, using a stereomicroscope 
(Leica EZ4-HD, Singapore) at 40X magnification. Age 
estimation by counting the annuli in lapilli otoliths of P. 
lineatus was validated by Espinach Ros et al. (2008). To 
avoid age effect on otolith chemistry, only fish between 12-
15 years were selected for analysis (21 for Uruguay River 
and 30 for Paraná River) (Tab. 1). 

Tab. 1. Descriptive statistics of individuals from each 
sampling site. N: sample size; SD: standard deviation.

Age (year) Standard length (cm) N

mean±SD range mean±SD range

Uruguay River 13.8 0.9 12-15 46.3 3.4 46-54 21

Paraná River 14.0 1.3 12-15 43.8 5.6 36-58 30

Otolith sections were fixed to glass slides using clear 
epoxy resin. In addition, the potential exists of vateritic 
inclusions was evaluated by observed under reflected light 
after EDTA etching (Tzeng et al., 2007). Otolith sections 
were rinsing 3 times in Milli-Q water and drying in a laminar 
flow hood.

Determination of Sr:Ca ratio by LA-ICP-MS analysis. 
Laser Ablation Inductively Coupled Plasma Mass 
Spectrometry (LA-ICPMS) analyses were conducted at 
University of Oviedo, Spain, using a 193nm ArF* Excimer 
laser ablation system (Photon Machines Analyte G2) 
coupled to an ICP-MS Agilent 7700 (Agilent Technologies, 
Santa Clara, USA). Analytical conditions of the LA-ICP-
MS system are summarized in Tab. 2. 
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Tab. 2. LA-ICPMS operating conditions.
Instrument Parameter Value
ArF 193nm laser ablation

Laser fluence 12 J/cm2

Repetition rate 10 Hz
Pitsize diameter 30 µm
Ablation Cell Two-volume HelEx cell
Cell gas Flow He - 0.8 l/min
Scan Speed 5µm/s 

ICP-QMS
Acquisition mode Time resolved
Nebulizer gas flow Ar - 0.9 l/min
Isotopes measured  43Ca and 88Sr
Integration time 210 ms/isotope

Helium was used as the carrier gas in the ablation 
cell and Ar was added before entering the ICP. The 
ion optics were adjusted to yield maximum sensitivity 
and balanced mass response while ablating National 
Institute  of  Standards  and  Technology standard  reference 
material SRM NIST 612 glass. The optimization was carried 
out manually while monitoring 7Li+, 133Cs+, 232Th+, 238U+ 
and 232Th16O+ ion signal intensities. Plasma robustness was 
monitored via the 232Th16O/232Th and the 238U/232Th intensity 
ratios. ThO+/Th+ intensity ratios were always below 0.4% and 
238U+/232Th+ intensity ratio was less than 1.2. Additionally, 
the cross calibration of the pulse and analogue stages of the 
scanning electron microscope detector (“PA-factor”) was 
carried out daily to ensure a linear response of the instrument 
of >8 orders of magnitude for the isotopes of interest.

NIST SRM 612 silicate glass reference material was 
employed as an external reference material (Pearce et al., 
1997; Jochum et al., 2011; NIST, 2012) to quantify the 
concentration of Sr, using a fixed value for Ca as an internal 
standard. Calcium concentration of the otolith matrix was 
assumed to be 38.8 wt.% (Yoshinaga et al., 2000 ; Hamer et 
al., 2015). In particular, ion signals from 43Ca+ and 88Sr+ were 
measured in the otoliths and in NIST 612, using the laser 
ablation scan mode (transects). Ion signals were collected 
before the ablation process to determine their background 
level and during the ablation process. Net ion signals were 
employed in the bracketing quantification method, where the 
reference material (NIST 612) is analysed at the beginning 
and at the end of each analysis session to monitor and correct 
for any signal drift. The maximum deviation observed during 
one analytical session was about 5%. For instance, the 
average concentration of Sr measured in NIST 612 during 
the analytical session was 78 ± 4 ppm, which is in good 
agreement with the nominal value of 78.4 ± 0.2 ppm (NIST, 
2012). The limit of detection (LOD) for Sr was 0.0023 mmol/
mol, calculated using the 3 sigma criteria. Concentration of 
Sr was expressed as molar ratios (element:Ca = mmol/mol) 
to account for fluctuations in the amount of material analyzed 
and the loss of material during the preparation process 
(Sinclair et al., 1998; Bailey et al., 2015).

Pattern classification and data analysis. Similar to 
Albuquerque et al. (2010), Sr:Ca ratio of the otolith edge 
(last spot of the transect) was compared among sampling 
sites using Kruskal Wallis test, in order to evaluate whether 
there is coherence with the capture sites (Uruguay and Paraná 
Rivers and La Plata Estuary) and the salinity associated with 
them (a higher Sr:Ca ratio is expected near the estuary). 
Data were tested for normality and homogeneity of variance 
using the Shapiro-Wilk and Levene’s tests respectively. 
Prior to Kruskal Wallis test, we evaluated the association 
between the Sr:Ca ratio of the otolith edge and the fish age 
using Spearman correlation. The existence of a correlation 
with the age could affect the interpretation of the Sr:Ca ratio.

To facilitate the interpretation of transects, the threshold 
that represents the transition between the freshwater 
environment and the estuary was calculated using the Sr:Ca 
ratio of the edge of the otolith (last spot of the transect) of 9 
additional specimens captured in the first section of the La 
Plata estuary (salinity ≥ 0.5 PSU) (Fig. 1). The threshold 
was estimated as the average of Sr:Ca ratio of the otolith 
edge plus twice the standard deviation (mean+2* SD) as 
suggested by Lin et al. (2015) and Avigliano et al. (2017b). 

Several algorithms have been used to facilitate the 
interpretation of fish movement patterns and to quantify 
the number of habitat changes during their life history 
(Hedger et al., 2008; Walther et al., 2011; Killick, Eckley, 
2014; Freshwater et al., 2015; Hegg et al., 2015; Wynne 
et al., 2015). In this work we used Change-Point analysis 
(CPA) to facilitate the classification of individuals and 
quantify the number of changes in otolith elemental ratio 
(Shrimpton et al., 2014; Hegg et al., 2015). We assumed 
that significant changes in the transect corresponded with 
habitat changes due to chemical composition of the water 
(Freshwater et al., 2015; Hegg et al., 2015; Wynne et al., 
2015). CPA determined whether there had been a change 
in the underlying process that generated the sequence 
of events and identified where the change occurred. The 
procedure used to perform a CPA comprises a combination 
of cumulative sum charts and boot strapping to identify 
shifts in the pattern of Sr:Ca. The analysis provides both 
confidence levels and confidence intervals for each change 
(95% confidence is used for all confidence intervals) and it 
is robust to issues of non-normality (Shrimpton et al., 2014). 
The Change-Point Analyzer 2.3 software package (Taylor, 
2000) was used for CPA.

Transects, thresholds and change points in the Sr:Ca 
chronologies were graphically inspected to infer movement 
between freshwater and brackish environments (Wynne et 
al., 2015). 

In this work, patterns were defined based on habitat 
use assuming an approach similar to that of Elliott et al. 
(2007) as follows (Fig. 2): 1) freshwater resident: defined as 
permanence in freshwater throughout life and 2) freshwater 
straggler: defined as freshwater fish found in estuaries in low 
number and whose distribution is usually limited to the low 
salinity in upper reaches of estuaries.
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Following Walther et al. (2011) and Shrimpton et al. 
(2014), the variable “number of changes” was compared 
between locations (Uruguay and Paraná rivers) using the 
non-parametric Mann-Whitney U test because the response 
was not normally distributed with heterogeneous variance 
(Shapiro-Wilk, p <0.05; Levene, p <0.05), even after 
transformation log (x+1). Prior to parametric Mann-Whitney 
U test, we evaluated the association between the number of 
Sr:Ca changes and the fish age using Spearman correlation. 

Results

Otolith edge and threshold estimation. Otolith edge 
had Sr:Ca values of 1.19±0.22, 1.33±0.33 and 1.66±0.22 
mmol/mol for the Uruguay and Paraná Rivers and Estuary, 
respectively (Fig. 3), being significantly higher for the latter 
(H=13.3, p<0.009). No correlation was found between 
age and Sr:Ca (r=-0.24, p=0.1). For this reason, it was not 
necessary to make age corrections in variables.

A reference value for movements between freshwater and 
brackish environments was calculated as the average Sr:Ca 
value + 2*SD (1.66 mmol/mol + 2*0.22=2.12 mmol/mol) 
at the otolith edge of 9 specimens caught in the first section 

of the estuary (Fig. 1). Values greater than the Sr:Ca=2.12 
mmol/mol threshold were considered indicative of brackish 
environment use. 

Otolith microchemical profiles of specimens caught in 
the estuary are shown in the complementary figure S1 - 
Available only as online supplementary file accessed with 
the online version of the article at http://www.scielo.br/ni. 

Fig. 3. Otolith edge Sr:Ca ratio of Prochilodus lineatus 
calculated for freshwater and brackish environments. 
Asterisks  indicate  a statistically  significant  (p<0.05) 
difference between sampling sites.

Fig. 2. Habitat use patters according to Elliott et al. (2007). a. freshwater resident and b. freshwater straggler. Modified from 
the fig. 1 of Potter et al. (2015).
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Life history and migration patterns allocation.
Considering the fish captured in fresh water, the otolith 
Sr:Ca ratio ranged between 0.34 and 3.19 mmol/mol (mean 
± SD: 1.33 ± 0.33 mmol/mol). Fish had values of Sr:Ca in 
the otolith core and edge that were less than the reference 
value, suggesting that these were hatched and caught in 
freshwater environments (Fig. 4).

The percentage of each migratory behavior is represented 
as a percentage in bar charts for each sampling site (Fig. 1). 
Freshwater resident pattern was observed in 95% (N=20) 
and 63% (N=19) while, freshwater straggler was found 
5% (N=1) and 37% (N=11) in Uruguay and Paraná Rivers, 
respectively (Fig. 1).

According to the results of the CPA and the estimated 
threshold, clear patterns were not observed in relation to the 

ages at which the brackish incursions occur (Fig. 4). Of all 
fish classified as freshwater straggler, 46.4% were predicted 
to make brackish incursions between age-3 and age-5. Only 
30.6% of freshwater straggler specimens were predicted to 
enter the estuary more than once.

Specifically, the only freshwater straggler specimen 
captured in the Uruguay River performed only one brackish 
incursion at the age of 5 (Fig. 4f). 

Among the 11 freshwater straggler fish caught in the 
Paraná, 4 performed a single incursion between the 3rd 
and the 4th year of life. Three other specimens performed a 
single incursion at the ages of 1, 8 and 14 years respectively. 
Finally, 4 specimens performed between 3 and 4 incursions 
at the ages of 12 and 13; 1, 2 and 4; 0+, 7 and 11; 2, 10-12 
and 15 years, respectively (Fig. 4b-c).

Fig. 4. Otolith microchemical profiles of Prochilodus lineatus from core to edge (age: 12-15). Vertical arrows indicate otolith 
annuli (age) and black dashed line indicate upper (brackish) and lower (freshwater) thresholds for Sr:Ca. Horizontal lines 
illustrate stable signatures identified by using change-point analysis for the Sr:Ca ratio.

Quantification of changes in the life history. The 
global average (mean ± SD) for the number of changes 
of environment (or change points per transect) was 20.5 ± 
5.4 (range: 9-33). Number of changes in transects of Sr:Ca 
were 18.5 ± 5.3 and 22.5 ± 5.6 for Uruguay and Paraná 
Rivers, respectively.

Spearman test showed that there is no correlation 
between age and number of changes points (r=-0.25, 
p=0.08). The Mann-Whitney U test showed significant 
differences in the number of changes in transects of Sr:Ca 
between sampling sites (U=810, p=0.0001), being higher in 
the Paraná River.

Discussion

While transition thresholds between environments 
seem to vary among teleost fish, our threshold estimate 
for brackish environment use (Sr:Ca=2.12 mmol/mol) was 
comparable to benchmarks for other species. For example, 

Bradbury et al. (2008) has reported values ~2.3 mmol/mol 
for Osmerus mordax (Mitchill, 1814) while Smith, Kwak 
(2014) reported values of ~3 mmol/mol for Gobiomorus 
dormitor Lacepède, 1800. However, euryhaline species were 
associated with significantly higher values of reference, as 
Mugil cephalus Linnaeus, 1758 (Sr:Ca=3.3 mmol/mol) 
(Fowler et al., 2016), Genidens barbus (Lacepède, 1803) 
(Sr:Ca=3.75 mmol/mol) (Avigliano et al., 2017b) and 
Zenarchopterus dunckeri Mohr, 1926 (Sr:Ca=4.2 mmol/
mol for freshwater-brackish) (Kanai et al., 2014).

Low La Plata Basin has a salinity gradient in north-south 
direction, which is positively correlated with Sr:Ca ratio of 
water (Avigliano, Volpedo, 2013). For this reason, the Sr:Ca 
ratio of otolith has been widely used to infer migratory 
and population aspects of several species (Avigliano, 
Volpedo, 2016); for example Genidens barbus (Avigliano 
et al., 2015a,b, 2016a, 2017b), Odontesthes bonariensis 
(Valenciennes, 1835) (Avigliano, Volpedo, 2013; Avigliano 
et al., 2014, 2015c), Mugil liza Valenciennes, 1836 
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(Callicó Fortunato et al., 2017), Lycengraulis grossidens 
(Spix & Agassiz, 1829) (Mai et al., 2014), Micropogonias 
furnieri (Desmarest, 1823) (Albuquerque et al., 2012) and 
P. lineatus (Avigliano et al., 2016b, 2017a). Particularly 
in P. lineatus it has been used the otolith microchemistry 
(Sr:Ca, Ba:Ca and Zn:Ca ratios) as well as otolith and scales 
morphometry in order to identify different nursery areas 
(Avigliano et al., 2016b, 2017a). According to Avigliano 
et al. (2017) the capture sites studied in this work are also 
different nursery areas. In contrast to previous publications 
on the species, this paper describes for the first time details 
on brackish use, revealing that a considerable proportion 
of fish from Paraná River, depending on the sampling site, 
uses this environment throughout his life.

Other methodologies have been used to study migratory 
and biological aspects of the streaked prochilod, primarily 
tagging and recapture (Bonetto et al., 1981; Delfino, 
Baigun, 1985; Sverlij et al., 1993; Espinach Ros et al., 
1998) although biochemical methods (Colombo et al., 2011; 
Speranza et al., 2012) and distribution studies (Bayley, 
1973; Stassen et al., 2012) have also been conducted. These 
studies show brackish use in some specimens, but also 
suggested the presence of non-migratory fish, especially in 
the Uruguay River (Bonetto et al., 1981; Delfino, Baigun, 
1985; Espinach Ros et al., 1998). Our results provide further 
evidence of this connectivity and revealed that streaked 
prolichod in the estuary utilize this habitat intermittently 
throughout their lives. Espinach Ros et al. (1998) have 
also reported the existence of adult specimens that did 
not migrate (evaluated period of 3 years) with respect to 
the place tagged on the Uruguay River, suggesting the 
existence of resident populations. In this work, the highest 
percentage of freshwater resident specimens was registered 
in the Uruguay River. However, it is not possible to affirm 
that these specimens are not migratory, as they could move 
long distances among environments with similar salinity 
and make no significant differences in Sr:Ca ratio of otolith 
(Avigliano et al., 2017a).

According to CPA, the greatest number of changes was 
observed for the Paraná River, which is consistent with the 
highest percentage of freshwater stragglers specimens (Fig. 1). 

It is clear that the use of environments with different 
salinities is complex and highly variable between sites and 
specimens. In this sense, the variability in the observed 
migration patterns could be associated with different 
evolutionary adaptations (Lucas, Baras, 2001; McDowall, 
2001; Elliott et al., 2007). Brackish incursions could also 
facilitate connectivity between the great rivers. This way 
fish could move into new environments and perhaps into 
more beneficial ones in terms of food and reproduction, 
especially if the natal site had changed.

Our results are important for the management of the 
shad resource. Even though there are bi-national organisms 
that monitor the resource (Comisión Administradora 
del Río Uruguay, CARU), there is no management of it 
at a basin or sub-basin level. Even integral management 

is not carried out within some countries. For example, in 
Argentina each province has independent regulations and 
handle closed seasons, minimum catch sizes and different 
fishing quotas. Even Buenos Aires province (Argentina) 
has banned the fishing and commercialization of shad 
caught in the Río de la Plata since 2000 (SAP, 2000) 
due to the presence of contaminants found in muscle 
and in the estuary. It has been suggested that shad may 
transport dozens of tons of contaminants per year from 
the estuary to the Paraná and Uruguay rivers (Colombo et 
al., 2011). The results of the present study allow inferring 
that a proportion of the shads captured in the middle 
portion of the Uruguay and Paraná rivers use the estuary 
in different stages of its life. In this sense, the possibility 
of implementing regulations at the regional level, rather 
than local, should be discussed. Considering the use of 
brackish waters and migration distances, other methods of 
assessment and management should be considered in order 
to ensure not only the sustainability of the fishery but also 
the quality of the product for consumption. Management 
methods should consider connectivity between different 
points in the basin, paying special attention to brackish 
use by the species, since this could affect the quality of the 
meat and affect consumer health (Colombo et al., 2011; 
Speranza et al., 2012).

In conclusion, although it is known that streaked 
prochilod performs upstream migrations in winter for 
reproduction and downstream migration in summer 
to feed (Sverlij et al., 1993), occupation of brackish 
environments is highly variable among individuals with 
unknown consequences at the population level. Excessive 
commercial fishing may have rapid negative effects on 
resident populations. In this sense, populations should be 
managed integrally. Here, we have to emphasize the need to 
link the obtained results with current resource management 
actions in order to contribute to their sustainability. We 
highlight the importance of intensifying this type of studies 
including other markers such as stable isotopes of Sr, which 
would allow to track the movements of the specimens in 
freshwater throughout the basin (Hegg et al., 2015). 
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