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Introduction

An increase in water demand results in several conflicts 
between the development of freshwater resources (as water 
and energy sources) and the conservation of biologically di-
verse/integrated ecosystems (World Commission on Dams, 
2000). Therefore, the evaluation of how the flow regime of a 

river can be altered for the purposes of water resource devel-
opment and management, while maintaining accepted levels 
of degradation, is known as the science of environmental 
flow assessment (Tharme, 2003).

Several methods have been proposed to estimate envi-
ronmental flows (O’Keeffe et al., 2002) to maintain minimal 
levels of habitat heterogeneity for aquatic organisms. Some 
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for all species. However, the same hydrological flow percentiles produce different habitat proportions in different rivers. This 
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A simulação de habitat para espécies de peixes (PHABSIM) é uma etapa importante do método Instream Flow Incremental 
Methodology (IFIM), cuja aplicação está relacionada a determinação da vazão ecológica. O presente estudo aplicou PHAB-
SIM em dois trechos da bacia do rio das Velhas, cujas vazões de médio prazo são semelhantes, mas sob condições de conser-
vação ambiental diferente. Curvas de aptidão foram obtidas para Astyanax sp., Piabarchus stramineus, Piabina argentea e 
Serrapinnus heterodon através do método tradicional e ajustando modelo aditivos generalizados (Astyanax sp., P. argentea e 
S. heterodon). Os resultados sugerem uso de habitats diferentes dependendo do modelo utilizado para gerar as curvas. Apli-
cando as curvas obtidas pelo método tradicional no PHABSIM, diferentes cenários de vazão foram simulados. O aumento 
da vazão para cheia de um ano de retorno aumenta o habitat provável para todas as espécies. Entretanto, mesmo cenário de 
vazão, fornecido por análise de hidrológica de percentis de ocorrência, fornece diferente proporção de habitat em diferentes 
rios. O trabalho demonstra que curvas de aptidão para espécies neotropicais, independentemente da forma de geração, devem 
ser usadas com cautela. Entretanto, o método PHABSIM permite análises mais elaboradas do que as tradicionais estimativas 
de vazão mínima empregadas na América do Sul.
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of these methodologies include only hydrological simu-
lation, while others consider also the effects of hydrology 
based on habitat availability indicators (Bowen et al., 2003; 
Barquín, Martínez-Capel, 2011).

The instream flow incremental methodology (IFIM) is 
the most applied habitat simulation method in North Amer-
ica (Reiser et al., 1989) and has been useful for assessing 
the effects of altered stream flow regimes, for evaluating 
habitat improvement projects and for assisting in regulat-
ing releases from water storage projects (Katopodis, 2003). 
The IFIM has a component known as the physical habitat 
simulation system, PHABSIM (Bovee et al., 1998), which 
consists of combining the results of hydraulic models with 
the results of a biological model of habitat selection. For 
that, it is necessary to obtain habitat suitability curves and 
the weighted usable area (WUA) for a focal species (Bovee 
et al., 1998).

Despite the wide range of applications for PHABSIM, 
there are some concerns that it does not consider water qual-
ity, sediment transport and other constraints on habitat suit-
ability and population abundances (Spence, Hickley, 2000) 
and that there are statistical uncertainties in the PHABSIM 
output (Ayllón et al., 2012). Furthermore, also criticized is 
the assumption that constant suitability, i.e., the target spe-
cies and life-stage preference for habitat variables, does not 
change spatially or temporally (Gore, Nestler, 1988).

In Brazil, as in Central and South America, environ-
mental agencies adopt hydrological methodologies for es-
tablishing acceptable environmental flows (Tharme, 2003). 
These methods rely primarily on the use of hydrological 
data, usually in the form of naturalized, historical monthly 
or daily flow records, for making environmental flow rec-
ommendations (Milhous et al., 1990). However, the hy-
drological methods provide flow percentiles, such as Q95, 
defined as the flow that equals or exceeds 95% of the flow 
record. This and other percentiles are considered inappro-
priate for flow management because there are large site 
variations that lead to poor relationships between these per-
centiles and the amount of suitable habitat for target aquatic 
species (Armstrong, Nislow, 2012). Additional deficiencies 
of the method are created with the existence of state laws 
in Brazil, which use a different percentile (Q7,10 or Q90) for 
minimum flows, leading to different guidelines for nation-
wide rivers.

To advance in the hydrological methods of flow as-
sessment, it is necessary to evaluate other approaches that 
consider the effects of flow modification on the amount of 
habitat availability for focal species. This consideration 
would help to improve the establishment of new thresholds 
in Brazilian watersheds for the protection of the entire river 
community. This paper aimed at i) analyzing the applica-
bility of the PHABSIM for Neotropical fishes, ii) compar-
ing suitability curves to a regression model for fish density, 
and iii) evaluating the relation between flow discharge and 
changes on habitat availability in rivers with different levels 
of preservation.

Material and methods

Study area. The Velhas River is one of the main tributar-
ies of the São Francisco River (Fig. 1). The Velhas River 
drainage area is entirely located in Minas Gerais State and is 
29.173 km2. This river extends 761 km and is impacted by 
mining, agriculture and urban activities. In the first 100 km 
from its source, domestic and industrial wastes are dumped 
into the river from the Metropolitan Region of Belo Hori-
zonte, which over the years has contributed to the pollution 
and siltation of the river. The several cities that occur along 
the Velhas River contribute to its degradation; however, the 
condition of the upper Velhas River has changed due to a re-
cent installation of several sewage treatment stations (Alves, 
Pompeu, 2005).

Two reaches were chosen for analyses based on their 
similar sizes and discharge rates. Median long-term dis-
charge was used to select the reaches. The first reach is lo-
cated in the main channel of the Velhas River, upstream of 
the metropolitan region of Belo Horizonte (20°06’01.44’’S, 
43°47’35.85’’W). The reach receives domestic sewage 
from the Itabirito municipality and mining waste from the 
upstream region. The site is heavily silted, and the riparian 
vegetation is sparse or absent. The second reach is located 
in the Curimataí River (17°59’33.3’’S, 44°10’48.2’’W), a 
tributary of the Velhas River. Although many small cities 
are located nearby, the Curimataí River is less disturbed and 
can be considered a reference river within the basin (Alves, 
Pompeu, 2005).

Fish and habitat sampling. Fish sampling occurred du-
ring the dry season of September 2007 and followed Leal et 
al. (2011). Each reach was sampled in 2 days along 500 m 
(straight main channel) during daylight hours using seines 
(6 m long, 5 mm mesh) and kick nets (80 cm in diameter, 
1 mm mesh). The use of different equipment was applied 
to encompass all kinds of habitats, which were defined as 
homogeneous areas considering substrate, water velocity 
and depth (e.g., shallow gravel bed riffle, mid-depth sandy 
shore, deep pool). Each habitat was considered a sampling 
site, thus totaling 20 samples in each river. Within and be-
tween the rivers, each type of habitat was replicated. The 
individuals collected were fixed in 10% formalin, and in the 
laboratory, they were identified to the species level and pre-
served in 70% ethanol. Voucher specimens of each species 
were deposited in the fish collection of the Coleção Ictioló-
gica do Nupelia (NUP 7265, 7269, 7270, 7271), Maringá 
City, Paraná State, Brazil.

Due to limitations of the sampling methods for deep 
waters, the samples were taken in wadable areas. After 
each seine or kick net pass, the area (m2) and depth were 
obtained, and the average velocity was measured using a 
propeller flowmeter at 60% of the total depth. The depth 
was measured by the handle of the propeller flowmeter, 
which has a scale meter on it, and 60% of the total depth 
was calculated to locate the propeller for the velocity mea-
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surement. The dominant substrate was determined visually 
by granulometric  analysis, which is defined as the median 
of the proportion of each category ordered in a size gradi-
ent. The classes were divided according to Bovee (1986), 
and each substrate cate gory was related to one number of 
the channel index (CI) according to the manual of River 2D 
(Steffler, Blackburn, 2002): silt (diameter smaller than 0.3 
mm, CI = 3) sand (diameter 0.3 mm to 2 mm, CI = 4), small 
gravel (diameter 2 mm to 50 mm, CI = 5), cobble (diameter 
50 mm to 200 mm, CI = 6), boulder (diameter 200 mm to 
400 mm, CI = 7), bedrock (diameter bigger than 400 mm, CI 
= 8), and roots and leaves (CI = 9).

Suitability curves and regression models for fish density. 
Water velocity, depth and substrate were used to create sui-
tability curves. Adults and sub-adults of four small-sized (< 
10 cm in standard length) species, Astyanax sp., Piabarchus 
stramineus (Eigenmann, 1908), Piabina argentea Reinhar-
dt, 1867 and Serrapinnus heterodon (Eigenmann, 1915), 
were considered for habitat use analyses based on the length 
at first maturity (L50). These species are widespread in the 
Velhas River basin (Alves, Pompeu, 2001). These species 
were selected because they were the most abundant in the 
studied reaches (Leal et al., 2014) and were thus considered 

good models to test the applicability of the PHABSIM in 
the basin.

Based on the L50, the total length ranged from 2.05 cm 
to 4.2 cm for individuals of Astyanax sp. congeneric species, 
from 4.1 cm to 4.5 cm for P. stramineus, from 2.79 cm to 
3.75 cm to P. argentea and higher than 3.2 cm for S. hetero
don (Gomiero et al., 2007; Castro et al., 2010; Gonçalves et 
al., 2011; Lourenço et al., 2015).

The habitat use for each species in both reaches was 
compared with the habitat availability in all reaches, as in 
Freeman et al. (1997). The suitability curves were obtained 
by dividing the proportional abundance of species in each 
class by the proportional number of available sites (Bovee, 
1986). The curves were standardized by the maximum ob-
tained value of the obtained suitability. All suitability curves 
were processed using the HabSel software (Jowett, 2011), 
which produces histograms that are smoothed by the kernel 
and standardize the curves. The sampled habitat use included  
31 points for Astyanax sp., 9 points for P. stramineus, 33 for 
P. argentea and 30 for S. heterodon.

As suitability curves do not provide levels of uncertain-
ties associated with the fitted values, regression models were 
used to fit the fish density to habitat structure. General addi-
tive models (GAMs) were applied for Astyanax sp., P. argen

Fig. 1. The Velhas river basin in the Brazilian territory, whose drainage area is 29.173 km2.
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tea and S. heterodon, which have a polynomial form based 
on a Poisson distribution with a log link function. Models 
were processed using the HabSel software (Jowett, 2011), in 
which the fish density (abundance divided by sampled area) 
was the dependent variable; velocity, depth and channel in-
dex were the independent variables. The coefficient of deter-
mination (R2) and p-values were determined for the GAM.

PHABSIM. Hydrodynamic Model. For each river (the 
Curimataí and the Velhas), the bed river geometry was ob-
tained for a one km-long reach using a total station during 
a two-month field trip (in July/August 2007 for Velhas and 
July/August 2008 for Curimataí). The grids have approxi-
mately 2297 points at the Velhas reach and 1900 points at 
the Curimataí (the space between the points was, on aver-
age, 3 m), encompassing the river channel and in the banks.

The substrate of the riverbed was sampled to provide 
information for model roughness and for the last step of 
PHABSIM, which is the analysis of habitat availability for 
the chosen species. The substrate was classified according 
Bovee (1986) during the fish habitat sampling. The low wa-
ter turbidity enabled the visual analyses of the substrate in 
the wadable regions, while in the deepest areas, the substrate 
was sampled using a dredge.

The PHABSIM was processed using the free software 
River 2D (University of Alberta, 2002), which is a two-
dimensional depth averaged finite-element hydrodynamic 
model that has been customized for fish habitat evaluation 
studies. The River2D model suite consists of four programs: 
R2D_Bed, which creates the river topography from the 
points collected with total station; R2D_Mesh, which cre-
ates a domain with the boundary conditions of the chosen 
scenario of discharge; R2D_Ice, which creates the freezing 
condition for the studied reach; and River2D, which solves 
the numerical model. This study applied the programs R2D_
Bed, R2D_Mesh and River2D.

Four scenarios were studied by simulating rainy or dry 
seasons for Curimataí and Velhas Rivers. All the boundaries 
conditions (Tab. 2) were obtained by hydrologic analyses of 
the historical data series of both sites. The discharge in the 
rainy scenario was related to recurrence of a one-year flood. 
The mesh quality was evaluated by the mesh quality index 
(QI). QI values between 0.15 and 0.5 indicate good condi-
tions (Tab. 1), which means that the reach domain was well 
discretized (the major parts of reach are represented by the 
built mesh). At the Velhas reach, two islands were defined as 
intern boundaries.

Steady flow regime was simulated for each discharge 
scenario using RIVER 2D (Steffler, Blackburn, 2002), and 
the results were calibrated by measurements of velocities 
and discharge completed in the field.

Hydrodynamic model compared with field measure-
ments. The field measurements of water velocity allowed 
for validating the numerical model results for dry scenarios. 
A propeller flowmeter collected the velocity in 30 different 
cross-sections along each studied reach. In each cross sec-
tion, the flowmeter was positioned at 20%, 50% and 80% 
of the cross-section width. A sounder measured depth in a 
range of 0.6 m to 79 m. If the depth was less than 1.2 m, the 
60% depth velocity was sampled by the propeller flowmeter. 
If the depth was greater than 1.2 m, the velocities at 20% 
depth and 80% depth were measured. This procedure was 
performed to obtain the mean velocity for the column of the 
cross section.

The producer accuracy for flowmeter is ± 0.03 m/s and 
for the depth sounder ± 1%. A differential GPS collected the 
UTM coordinates of each measurement grid point in each 
reach, and the estimated position accuracy was 10 mm for 
latitude and longitude and 30 mm for elevation.

WUA Method. The weighted usable area (WUA) was ob-
tained by the habitat model of River 2D software. The WUA 
is calculated as the product of a composite suitability index 
(CSI), which was evaluated at every node in the domain 
and the area associated with that node (Steffler, Blackburn, 
2002). It is necessary to calculate the following: habitat sui-
tability of use index (SI) curves for each fish species and life 
stage of interest (for depth, velocity, and channel index); the 
channel index for the entire computational mesh, which is a 
descriptive code for substrate or cover (hiding places); and 
depth and velocity over the entire computational mesh, whi-
ch is provided by the hydrodynamic model. In this study, the 
channel index for the entire reach was obtained by substrate 
characterization in the field.

Results

Fish samples. A total of 284 individuals of the studied spe-
cies were captured in the Curimataí reach and 511 were sam-
pled in the Velhas reach (Tab. 2). Astyanax sp. and Piabina 
argentea were the most abundant species in Velhas, and As
tyanax sp. and Serrapinnus heterodon were the most abun-
dant in Curimataí reach.

Tab 1. Simulated scenarios (discharge and elevation) and mesh details (space and quality index-QI) for the two evaluated 
sites in the dry and rainy seasons

Reach Correspondent season Inlet discharge (m3/s) Outlet water surface elevation (m) Mesh space QI value

Velhas
Dry 11.3 741.61 9 0.23

Rainy 79.5 742.27 9 0.22

Curimataí
Dry 1.86 539.88 5 0.35

Rainy 104 542.30 5 0.42
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Suitability curves and regression model for fish density. 
Astyanax sp. and Piabarchus stramineus used areas with 
comparatively higher velocity (over 1.5 m/s), while Piabi
na argentea and Serrapinnus heterodon were found in areas 
with a lower current (0.5 and 1 m/s, respectively) (Fig. 2a). 
The depth use was different for P. stramineus, which was 
found in deeper areas (up to 140 cm). The other species used 
areas between 80 and 100 cm depth (Fig. 2b). The analyses 
of substrate use indicated that all species were found in hi-
gher abundance in cobble, although there was some use of 
silt and sand areas for S. heterodon and boulder, bedrocks 
and roots/leaves for Astyanax sp. (Fig. 2c).

The p-value of GAM models was statistically significant 
just for P. argentea, but different single variables were rela-
ted to the species density (Tab. 2). GAM models predicted 
high densities of S. heterodon at lower velocities (Fig. 3a) 
and at 80 cm depth (Fig. 3b). A similar depth profile was pre-
dicted for P. argentea (Fig. 3b) which presented higher den-
sities in cobble substrate areas (Channel index = 6; Fig. 3c).

PHABSIM. Hydrodynamic model compared with field 
measurements. The maximum values of velocities produ-
ced by the hydrodynamic model (1.71 m/s at Velhas and 
1.37 m/s at Curimataí) were higher than those of the field 
measurements (1.54 m/s at Velhas and 1.19 m/s at Curima-
taí) for both reaches (10% at Velhas and 13% at Curimataí). 
Velocity changes along the reaches followed the same pat-
tern of variation (Figs. 4a, c), although in section 15 of the 
Velhas reach, the high velocity registered by the flowmeter 
was not represented by the model (Fig. 4a).

For the Velhas reach, the depth of hydrodynamic model 
(4.39 m) was lower (13%) in the maximum value than that in 
the field measurements (5 m), although the tendencies along 
the stretch were similar (Fig. 4b). The maximum depth (2.24 
m) was very similar (6.25%) in the Curimataí measurements 
and in the hydrodynamic scenario (2.1 m), although the mo-
del has diminished variation compared to that observed in 
the field (Fig. 4d).

Hydrodynamic. In the dry season scenario, the hydrody-
namic model of the Velhas reach provided depths from 0 
to 4.39 m and velocities from 0 to 1.71 m/s (Fig. 5a). For 
the rainy scenario (Fig. 5b), the river became deeper (depth 
ranged from 0 to 5.39 m) and faster (velocity ranged from 0 
to 3.77 m/s). An island was observed in the dry scenario in 
the Velhas reach, which disappeared completely during the 
rainy scenario.

The hydrodynamic results for the Curimataí reach varied 
from 0 to 2.29 m in depth and from 0 and to 1.37 m/s in ve-
locity (Fig. 5c) in the dry scenario. Under these conditions, 
one island formed in the upper side of the reach. During the 
rainy events, the maximum depth was 4.44 and the highest 
velocity achieved 3.08 m/s (Fig. 5d).

WUA. Considering all reaches and scenarios evaluated, 
Serrapinnus heterodon presented the highest percentage of 

Fig. 2. Suitability curves for velocity (m/s) (a), depth (b) 
and channel index (c) for the four studied species at the Ve-
lhas river basin.

available habitat (WUA), followed by Piabina argentea, 
Astyanax sp. and Piabarchus stramineus (Figs. 6-7). There 
were no major differences in habitat availability for these 
species between the two reaches. However, for all of the 
species, there was an important reduction in the availability 
of habitat when lower flows (dry season) were simulated. 
This reduction was particularly pronounced for P. strami
neus (Fig. 8).
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Tab 2. Fish species abundance in both reaches, coefficients and p-value for GAM models
P. stramineus Astyanax sp. P. argentea S. heterodon

N Velhas River 0 10 273 1
N Curimataí River 9 224 100 178
P-value - 0.082 0.000 0.093
R2 - 0.485 0.715 0.476
Parameter - Coefficient P Coefficient P Coefficient P
Constant - 0.3 0.696 5.279 0 -1.128 0.141
Channel Index - -0.009 0.919 -0.672 0.004 0.028 0.784
Depth (m) - 0.01 0.376 -0.027 0.025 0.018 0.035
Velocity (m/s) - -0.223 0.489 -0.308 0.729 1.621 0.007

Fig. 3. Generalized additive model (GAM) for Astyanax sp. (a), Piabina argentea (b) and Serrapinnus heterodon (c). The GAM 
curves show the natural log contribution of each habitat function (v = velocity, d = depth and CI = channel index) to the model 
ln (standardized density) = constant + v + d + CI. Light gray lines around the GAM curves indicate 95% confidence intervals.
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In both reaches, the greater WUA areas (red region) were 
found in the main flow even for the rainy scenario (Figs. 
6-7). Serrapinnus heterodon presented higher WUA areas in 
all scenarios for both reaches. Its medium weighted use area 
(green region) ranged from 14% (at Curimataí reach in rainy 
scenario) to 60% (at Velhas reach in dry scenario). Piabina 
stramineus presented lower WUA areas in all scenarios for 
both reaches. Its medium weighted use area (green region) 
ranged from 1% (at Curimataí reach in rainy scenario) to 
50% (at Curimataí reach in dry scenario). The flow change 
created more WUA differences at the Curimataí reach than 
those at the Velhas reach.

Discussion

The flow regime plays an important role in the biophysi-
cal structure and functioning of river and floodplain eco-
systems, regulating the physical nature of river channels 
relating to sediment deposition and water quality. It is thus 
central to regulate the aquatic biodiversity and key ecologi-
cal processes (Naiman et al., 2002). As an attempt to relate 
fish demands to the flow/habitat regime in a tropical river 

basin, the habitat use of four Neotropical species was used 
to investigate flow influences in habitat quantity.

The preference (Costa et al., 2013; Teresa, Casatti, 2013) 
and habitat use (Mazzoni et al., 2011) of Neotropical fish 
was obtained by several studies that can provide impor-
tant information for management tools such as PHABSIM. 
However, none of these studies evaluated how the amount 
of the available habitat would vary due to flow variations.

In this study, Piabarchus stramineus used fast (>1.5 m/s) 
and deep areas of the river (> 140 cm), while the other 
three species occupied shallower and slower habitats. The 
WUA analyses indicated that the habitat availability for 
P. stramineus is more sensitive to flow alteration. Cau-
tion should be applied when interpreting these standards of 
P. stramineus due to the small number of sampled individu-
als. However, rare information in the literature about habitat 
use of this species reinforces the relevance of these results 
and would be complemented by further studies.

Overall, increases in flow led to increases in the WUA 
for all studied species in both rivers. However, in the rainy 
scenario, the simulation quantified larger habitat (WUA) 
at the Curimataí reach than that at the Velhas. On the other 

Fig. 4. The velocities and depth comparison between the field measurement and the numerical model for points in 50% cros-
s-section width of the Velhas reach (a-b) and in 50% width of the Curimataí reach (c-d).
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Fig. 5. Hydrodynamic (depth and water velocity) for the Velhas reach in the dry (a) and rainy (b) scenario; and for the Curi-
mataí reach in the dry (c) the rainy (d) scenario. The reach length is 1 km.
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Fig. 6. Weight usable area (WUA) in percentage for four species at the Velhas reach in the dry scenario (a) and in the rainy 
scenario (b). Highest WUA is indicated in red and lowest WUA is indicated in dark blue. The reach length is 1 km. The red 
line indicated the area along the reach where the habitat use was observed.
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Fig. 7. Weight usable area (WUA) in percentage for four species at the Curimataí reach in the dry scenario (a) and in the rainy 
scenario (b). Highest WUA is indicated in red and lowest WUA is indicated in dark blue. The reach length is 1 km. The red 
line indicated the area along the reach where the habitat use was observed.
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Fig. 8. Weight usable area in percentage of total area for four species in all scenarios and reaches. The reach length is 1 km.

hand, in the dry scenario, the Velhas reach showed a higher 
WUA than that of the Curimataí. Therefore, the same hy-
drological flow percentiles may produce different habitat 
proportions in different rivers. This result indicates that hy-
drological methods, which provide flow percentiles, are in-
consistent when compared to habitat availability scenarios.

Reaches with hydrological similarity might provide dif-
ferent amount of habitat for species because habitat avail-
ability is also a function of the riverbed. One of criticisms 
of the hydrological methods for environmental flow is that 
it does not consider local fish demands and the dynamic 
and variable nature of the hydrological regime (King et al., 
2000) or the structural differences of the riverbed.

The PHABSIM indicated more habitat for three spe-
cies at the Velhas reach than that of the Curimataí reach 
in the dry scenario. Those areas might be disconnected by 
areas of high velocity, which brings consequences to the 
effectiveness of the presence of physical habitats because 
the fish might be not able to access the habitat (by water 
velocity barrier). For species such as P. stramineus, a wa-
ter velocity barrier might be created, for example, when 
the flow velocity is approximately 0.73 m/s for specimens 
that have just reached sexual maturity (Castro et al., 2010). 
Therefore, the simple WUA analysis, proposed as the main 
result of PHABSIM, is weak in detecting the connectiv-
ity of these habitats. On the other hand, hydrological al-
terations, such as discharge reduction, might lead to habitat 
disconnection, and isolation has long been described as an 
important driver of stream fish population dynamics (Lon-
zarich et al., 1998).

Although the Velhas reach in the dry scenario had a high-
er habitat quantity for all species, three of them (Astyanax 
sp., P. stramineus and S. heterodon) were more abundant in 
the Curimataí reach. The hydrodynamic analyses showed 
that the water velocities and maximum depths for both sce-
narios (rainy and dry season) were higher at the Velhas reach 
than those at the Curimataí reach. This result might be an 
indication of the lack of stabilization of sediment transport 
in both the river bank and the bed of the Velhas reach.

In this study, the only species whose abundance followed 
the WUA index was P. argentea: 273 and 100 individuals 
were sampled in Velhas and Curimataí reaches, respective-
ly. Leal et al. (2013) reported the plasticity of P. argentea, 
which uses different microhabitats in different river reaches 
in the Velhas River basin. In previous studies, P. argentea 
preferred areas deeper than 0.51 m and lower velocities (be-
tween 0 and 0.2 m/s) (Teresa, Casatti, 2013). Although we 
found similar results for depth preferences, P. argentea used 
more areas with velocities higher than 1 m/s. This result may 
indicate a fish adjusting to the presence of those habitats, as 
was reported in Leal et al. (2013).

The lack of providing levels of uncertainties associated 
with habitat suitability criteria (HSC) curves is the other 
criticism of the PHABSIM method (Ayllón et al., 2012). In 
this study, the adjustment of fish density for the four spe-
cies using the generalized additive model showed different 
standards when they were compared to suitability curves, 
and they can help further studies of habitat projection for 
this species. Recently, new methods for transforming the 
traditional HSC curves using the generalized additive model 
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(GAM) have been developed to add levels of uncertainties 
to fish occurrence by environmental variables (Shearer et 
al., 2015; Lin et al., 2015).

The GAMs allow the identification of spurious predic-
tions in the affected regions of the habitat gradient by confi-
dence intervals and enable correction by changing the effec-
tive degrees of freedom for the relevant smoothing function 
(Shearer et al., 2015). However, according Lin et al. (2015), 
different species distribution models, which are used to ob-
tain HSC curves, will produce different means and standard 
deviations of the WUA values, which means that, in prac-
tice, decision-makers should be aware of the differences 
among projections caused by the model choice.

There is some uncertainty regarding the acceptable limits 
for the channel hydraulics. Predicted and measured depths 
and velocities at the Velhas and the Curimataí sites differed, 
on average, by 13%. However, Bovee (1996) mentioned that 
the PHABSIM predicted depths and velocities are accept-
able if they differ by approximately 10%; Gallagher (1999) 
found differences of approximately 18% between the pre-
dicted and measured values. In this study, the difference 
was due to the position of the flowmeter and depth sounder, 
which depends on hand support to maintain stability against 
the water flow. These differences could also have been due 
to incomplete characterization of the spatial domain by the 
finite element mesh.

The general pattern of the Velhas and Curimataí reaches 
was the habitat increase (WUA) by the flow increase. The 
pattern makes sense for the habitat generalist species (P. 
argentea and S. heterodon), where increased flow means 
increased flood area and increased habitat, or it could be fa-
vored by higher velocities and/or deeper depths (Astyanax 
sp. and P. stramineus).

The Velhas and Curimataí rivers are non-regulated wa-
tercourses, which means that there is no significant dam 
in their way. However, the multiple water uses by industry 
plants, irrigation and human supply promote alterations in 
the flood peaks (Santos et al., 2012). In addition to those as-
pects, the minimum flow established by the Brazilian laws is 
only related to the hydrological aspect of rivers and depends 
on the state regulation information on what percentage of 
this reference discharge should be maintained on the river 
(CONAMA, 2005; Minas Gerais, 2012; Rio de Janeiro, 
2007). In the Minas Gerais state, the minimum flow was cal-
culated by the hydrological methodology of Q7,10 (the mini-
mum average 7-day (consecutive) flow that is expected to 
occur once every 10 years).

A global review of environmental flow methodologies 
revealed that hydrological methodologies are the largest 
group (30% of the global total), are applied in all world re-
gions and are the main methods applied in Central and South 
America (Tharme, 2003). The second most widely applied 
worldwide group of methodologies is the instream flow in-
cremental methodology (IFIM), or other similarly structured 
approaches, with an emphasis on complex, hydrodynamic 
habitat modeling. The use of IFIM is remarkable in North 

America and in developed countries of the Northern Hemi-
sphere (Tharme, 2003). Actions that might have changed 
this scenario have been done with the release of important 
marks such as the Water European Directive in 2000 (Hering 
et al., 2010) and the Brisbane Declaration (http://www.wa-
tercentre.org/news/declaration) in 2007 (Poff et al., 2010). 
However, the implementation of these actions takes time, 
and the scientific literature was not able to capture the al-
terations in the global quantification of environmental flow 
methodologies.

The biological limitations of PHABSIM cause it to be 
overlooked by many biologists (Acreman et al., 2008), yet 
it is a useful tool that should not be considered a panacea 
(Spence, Hickley, 2000). The PHABSIM is the major com-
ponent of IFIM and allows stakeholders to negotiate accept-
able flow levels with other instream and out-of-stream water 
users in a variety of possible scenarios, in the same way that 
the other users had been doing for years (Waddle, 2012).

The selection of an appropriate environmental flow 
methodology for application in any country is likely to be 
context-specific and primarily constrained by the availabil-
ity of appropriate data on the river system of concern, as 
well as local limitations in terms of time, funding, expertise 
and logistical support (King et al., 1999). Although the limi-
tations of PHABSIM, which could be higher in Neotropical 
countries due to issues of megadiversity, the lack of Neo-
tropical fish information, rare species and growing impacts 
on the basins, the methodology might be a better solution 
than steady parameters supplied by hydrological methods 
would be.
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