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Thouless theorem for one and two degrees of freedom
(Teorema de Thouless para um e dois graus de liberdade)
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We perform an accessible demonstration of Thouless theorem for systems of one and two degrees of freedom,
using only elementary quantum mechanics. This theorem is specially useful to ¯nd the vacuum of a transformed
set of bosonic operators. A further motivation comes from experiments involving few trapped ions or ¯elds in
cavity quantum electrodynamics, usually modelled by few linearly interacting oscillators.
Keywords: quantum oscillators, variables transformations, bosonic systems.

Realizamos uma demonstração acesśıvel do teorema de Thouless para um ou dois graus de liberdade, usando
somente mecânica quântica elementar. Este teorema é especialmente útil para encontrar o vácuo relativo a um
conjunto de operadores bosônicos transformados. Outra motivação é a existência de experimentos envolvendo
ı́ons capturados ou campos em eletrodinâmica quântica de cavidades, usualmente modelados por osciladores
harmônicos interagindo linearmente.
Palavras-chave: osciladores quânticos, transformações de variáveis, sistemas bosônicos.

1. Introduction

Thouless theorem [1] is a crucial tool for the calculation
of many boson observables. This theorem is often app-
lied in traditional nuclear physics for the computation
of low energy nuclear excitations. These excitations are
of course due to the interaction between the fermions
within the nucleus. The result of such interaction in
the low energy domain is a collective excitation which
for all practical purposes behaves as a bosonic degree of
freedom. The language of Thouless theorem is very so-
phisticated and hard to understand for nonspecialists;
however, it may turn out to be quite useful in systems
which involve only few degrees of freedom, as we often
encounter in quantum optics [2-17]. In these situati-
ons, it is usually convenient to rewrite the creation and
annihilation bosonic operators in a new form, and it be-
comes necessary to find out the new eingenstates. This
can be easily achieved once the new vacuum state is
known, which solves the problem.

Just for illustration, let us consider a simple mo-
del for tunneling: assume one has two optical cavities
connected by a waveguide. The Hamiltonian may be of
the form [18, 19]

H = �ωaa†a + �ωbb
†b + �g

(
a†b + b†a

)
. (1)

The eigenvalues and eigenfunctions can be found by se-
veral techniques, and among those a geometrical one
[4]. Diagonalizing Eq. (1) amounts to a rotation:

H = �
(

a† b†
)( ωa g

g ωb

)(
a
b

)

= �
(

a† b†
)
MT M

(
ωa g
g ωb

)
MT M

(
a
b

)

= �
(

ā† b̄†
)( ω̄a 0

0 ω̄b

)(
ā
b̄

)
= �ω̄aā†ā + �ω̄bb̄

†b̄, (2)

where (
ā
b̄

)
= M

(
a
b

)
,(

ω̄a 0
0 ω̄b

)
= M

(
ωa g
g ωb

)
MT , (3)

and

M =
(

M11 M12

M21 M22

)
(4)

is a real orthogonal matrix (MMT = I, with I being
an identity matrix). Since the explicit expressions for
ω̄a, ω̄b and M are not crucial for what follows, they are
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given as a function of the physical parameters in Ap-
pendix A. In the present case, the new vacuum is the
same as the one before: if a |0, 0〉 = b |0, 0〉 = 0, then

ā |0, 0〉 = M11a |0, 0〉 + M12b |0, 0〉 = 0, (5)
b̄ |0, 0〉 = M21a |0, 0〉 + M22b |0, 0〉 = 0.

When one has a slightly more complicated coupling,
e.g. bilinear terms like a†b† and ab as in Hamiltonian

H = �ωa

(
a†a +

1
2

)
+ �ωb

(
b†b +

1
2

)
+

�
g

2
(
a†b† + a†b + b†a + ba

)
, (6)

the situation becomes more involved. In order to dia-
gonalize this Hamiltonian, we may start by using the
form

H =
1
2
ωa

(
(qa)2 + (pa)2

)
+

1
2
ωb

(
(qb)

2 + (pb)
2
)

+

gqaqb, (7)

where

qa =

√
�

2
(
a† + a

)
, pa = i

√
�

2
(
a† − a

)
, (8)

qb =

√
�

2
(
b† + b

)
, pb = i

√
�

2
(
b† − b

)
.

Using the results from Ref. [4], we get

H =
1
2
ω̄a

(
(q̄a)2 + (p̄a)2

)
+

1
2
ω̄b

(
(q̄b)

2 + (p̄b)
2
)

, (9)

where ω̄i, p̄i and q̄i (i = a or b) are given by⎛
⎜⎜⎝

q̄a

q̄b

p̄a

p̄b

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎝

qa

qb

pa

pb

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ω̄a 0 0 0
0 ω̄b 0 0
0 0 ω̄a 0
0 0 0 ω̄b

⎞
⎟⎟⎠ =

(
MT
)−1

⎛
⎜⎜⎝

ωa g 0 0
g ωb 0 0
0 0 ωa 0
0 0 0 ωb

⎞
⎟⎟⎠M−1. (10)

The matrix M has the form⎛
⎜⎜⎝

M11 M12 0 0
M21 M22 0 0
0 0 M33 M34

0 0 M43 M44

⎞
⎟⎟⎠ , (11)

and corresponds to a squeezing followed by a rotation
and another squeezing; ω̄a, ω̄b and M are given in Ap-
pendix B. The new variables obey the usual commuta-
tion relations, and we can define related bosonic opera-
tors as

ā =

√
1
2�

(q̄a + ip̄a) , b̄ =

√
1
2�

(q̄b + ip̄b) . (12)

Expressing ā as

ā =

√
1
8�

{(M11 + M33) a + (M12 + M34) b+

(M11 − M33) a† + (M12 − M34) b†
}

, (13)

we note that the relations a |0, 0〉 = b |0, 0〉 = 0 do not
guarantee that ā |0, 0〉 = 0, since in general M11 �= M33

and M12 �= M34. In this case, the relation between the
old and the new vacuum states is not trivial.

It becomes, with these few examples, easy to ima-
gine that if one needs the vacuum of a many-body ope-
rator the problem can become fastidiously cumbersome.
In many-body physics, one usually needs to calculate
matrix elements which involve these vacua. Thouless
theorem is just the most powerful technical tool availa-
ble. It teaches us how to, relate vacua of different pairs
of quasiparticles. In full the theorem reads: starting
with a general product wavefunction |φ0〉 which is the
vacuum to quasi particle operators β, any other gene-
ral product wavefunction |φ1〉 may be expressed in the
form

|φ1〉 = N exp

{∑
k<k′

Zkk′β†
kβ†

k′

}
|φ0〉 , (14)

where N = 〈φ0 |φ1〉 is a normalization constant and
Z a skew symmetric matrix. Thouless has given this
theorem for pure Slater determinants φ0, φ1. Two qua-
siparticle states are, in this case, particle-hole states:

|φ1〉 = N exp

⎧⎨
⎩
∑
m,i

Zmia
†
ma†

i

⎫⎬
⎭ |φ0〉 . (15)

In the present contribution, we construct demons-
trations of Thouless theorem for two special cases rela-
ted to the description of the vacuum for a transformed
set of bosonic operators. These demonstrations are suf-
ficiently accessible and only elementary quantum me-
chanics is used. In section 2, we treat one degree of
freedom systems, deducing the corresponding Thouless
theorem and its relevant coefficients; the manner we
perform the calculation allows us to understand why
the theorem assume its form. Two degrees of freedom
systems are treated in section 3.

2. One degree of freedom

Consider a canonical transformation that relates the
bosonic operators a and a† to the bosonic operators ā
and ā† through:

(
ā
ā†

)
=
(

M11 M12

M21 M22

)(
a
a†

)
, (16)
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where
[
a, a†] =

[
ā, ā†] = 1. We will deduce here an

expression with the form of Eq. (15) connecting the
vacuum state concerning ā and ā† to the vacuum state
concerning a and a†. Since ā† is the Hermitian conju-
gate of ā, we must have M21 = M∗

12 and M22 = M∗
11.

In the following, the Fock states related to a and a† will
be indicated by |n〉:

a†a |n〉 = n |n〉 , |n〉 =

(
a†)n
√

n!
|0〉 , (17)

where |0〉 is the fundamental state for this basis. The
vacuum related to ā and ā† will be indicated by |0̄〉.

The vacuum state |0̄〉 may be given by the superpo-
sition

|0̄〉 =
∞∑

n=0

cn |n〉 , (18)

and, since ā = M11a + M12a
† and ā |0̄〉 = 0,

ā |0̄〉 =
�
M11a + M12a

†
� ∞�

n=0

cn |n〉

=

∞�
n=1

M11cn

√
n |n − 1〉 +

∞�
n=0

M12cn

√
n + 1 |n + 1〉

=

∞�
n=0

M11cn+1

√
n + 1 |n〉 +

∞�
n=1

M12cn−1

√
n |n〉

= M11c1 |0〉 +
∞�

n=1

�
M11cn+1

√
n + 1 + M12cn−1

√
n
� |n〉 = 0 (19)

Due to the linear independency of the Fock states |n〉,
the coefficients cn must satisfy the relations: c1 = 0;
M11cn+1

√
n + 1 + M12cn−1

√
n = 0 for n � 1. Since this

last equation may be written as

cn+2 = −M12

M11

√
n + 1√
n + 2

cn, for n � 0, (20)

iterating and using c1 = 0 the iteration process leads to

c1 = 0 , c2 = −M12
M11

√
1√
2
c0,

c3 = 0 , c4 =
�
−M12

M11

�2 √
1×3√
2×4

c0,

c5 = 0 , c6 =
�
−M12

M11

�3 √
1×3×5√
2×4×6

c0,

...
...

...

c2n−1 = 0 , c2n =
�
−M12

M11

�n
√

(2n−1)!!√
(2n)!!

c0,

for n � 1.

(21)

We used the notation n!! = n (n − 2) (n − 4) ..., where the
last factor is 1 for odd n and 2 for even n. This gives the
following expression for the vacuum state in the new basis:

|0̄〉 = c0 |0〉 + c0

∞�
n=1

�
−M12

M11

�n
�

(2n − 1)!!�
(2n)!!

|2n〉 (22)

= c0 |0〉 + c0

∞�
n=1

�
−M12

M11

�n
�

(2n − 1)!!�
(2n)!!

�
a†�2n

�
(2n)!

|0〉 .

Observing that�
(2n − 1)!!�

(2n)!!
�

(2n)!
=

1�
(2n)!!

�
(2n)!!

=
1

2n

1

n!
, (23)

we get

|0̄〉 = c0 |0〉 + c0

∞�
n=1

1

n!

�
−1

2

M12

M11

�
a†
�2
�n

|0〉

= c0 exp

�
−1

2

M12

M11

�
a†
�2
�
|0〉 . (24)

We may put the information about the canonical transfor-
mation in the parameter

Z =
1

2

M12

M11
, (25)

and write down the final expression for the new vacuum as:

|0̄〉 = c0e
−Z(a†)2 |0〉 , (26)

where c0 is a normalization constant.
Using the identity [20]

	
a, g(a†)



=

∂

∂a†

�
g(a†)

�
, (27)

where g(a†) is a function of the operator a†, and ∂
∂a†

�
g(a†)

�
is the derivative of this function,

g(a†) =

∞�
n=0

�
a†
�n

gn

and

∂

∂a†

�
g(a†)

�
=

∞�
n=0

�
a†
�n−1

ngn, (28)

the gn being constants or operators that commute with a†.
It is easy to verify that |0̄〉 is the new vacuum:

ā |0̄〉 =
�
M11a + M12a

†
�

c0e
−Z(a†)2 |0〉

= c0

�
M11e

−Z(a†)2a − 2M11Za†e−Z(a†)2 +

M12a
†e−Z(a†)2

�
|0〉

= c0

�
−2M11

�
1

2

M12

M11

�
+ M12

�
a†e−Z(a†)2 |0〉

= 0. (29)

3. Two degrees of freedom

Let us consider the transformation

Ā = M × A, (30)

where

Ā =

�
��


ā
b̄

ā†

b̄†

�
��� , A =

�
��


a
b

a†

b†

�
��� ,

M =

�
D C
C∗ D∗

�
, D =

�
M11 M12

M21 M22

�
,

C =

�
M13 M14

M23 M24

�
. (31)
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Here, a and b are annihilation bosonic operators, and a† and
b† are creation bosonic operators. Notice that

ā = M11a + M12b + M13a
† + M14b

†,

b̄ = M21a + M22b + M23a
† + M24b

†. (32)

The fundamental state related to ā and b̄ will be expres-
sed as |0̄, 0̄〉, and that one related to a and b as |0, 0〉. We
will obtain |0̄, 0̄〉 from |0, 0〉 through an expression of the
form of Eq. (15), i.e.,

|0̄, 0̄〉 = Nf
�
a†, b†

�
|0, 0〉 , (33)

where

f
�
a†, b†

�
= exp

�
1

2

�
Zaa

�
a†
�2

+ Zaba
†b†+

Zbab†a† + Zbb

�
b†
�2
��

, (34)

and N is a normalization constant.
Since

�
a†, b†

�
= 0, we may write

f
�
a†, b†

�
= exp

�
1

2

�
Zaa

�
a†
�2

+ (Zab + Zba) a†b†

+Zbb

�
b†
�2
��

. (35)

The states |0̄, 0̄〉 must satisfy

ā |0̄, 0̄〉 = 0, (36)

b̄ |0̄, 0̄〉 = 0, (37)

and we will find coefficients Zij (i and j = a or b) that make
Eq. (36) and Eq. (37) true. Equation (36) leads to

�
M11b + M12b + M13a

† + M14b
†
�

Ntf
�
a†, b†

�
|0, 0〉 = 0. (38)

Using identity (27) we obtain

	
a, f

�
a†, b†

�

= a†f

�
a†, b†

�
Zaa +

b†f
�
a†, b†

��Zab + Zba

2

�
, (39)

	
b, f

�
a†, b†

�

= a†f

�
a†, b†

��Zab + Zba

2

�
+

b†f
�
a†, b†

�
Zbb. (40)

Thus Eq. (38) may be written in the form

0 =
�

M11

�	
a, f

�
a†, b†

�

+ f

�
a†, b†

�
a
�

+

M12

�	
b, f

�
a†, b†

�

+ f

�
a†, b†

�
b
��

|0, 0〉

+
�

M13a
†f
�
a†, b†

�
+ M14b

†f
�
a†, b†

��
|0, 0〉 .(41)

Since a |0, 0〉 = b |0, 0〉 = 0, we have

0 =
�

M11

	
a, f

�
a†, b†

�

+ M12

	
b, f

�
a†, b†

�

+

M13a
†f
�
a†, b†

�
+ M14b

†f
�
a†, b†

��
|0, 0〉 , (42)

and, using Eqs. (39) and (40),

0 =

�
M11Zaa + M12

�
Zab + Zba

2

�
+ M13

�

a†f
�
a†, b†

�
|0, 0〉 +

�
M11

�
Zab + Zba

2

�
+

M12Zbb + M14} b†f
�
a†, b†

�
|0, 0〉 . (43)

Thus, we may choose

M11Zaa + M12

�
Zab + Zba

2

�
+ M13 = 0,

M11

�
Zab + Zba

2

�
+ M12Zbb + M14 = 0. (44)

Now, using Eq. (37) and performing an analogous calcula-
tion, just changing M1i by M2i (i = 1 to 4), we get

M21Zaa + M22

�
Zab + Zba

2

�
+ M23 = 0,

M21

�
Zab + Zba

2

�
+ M22Zbb + M24 = 0. (45)

Defining

Zm =

�
Zab + Zba

2

�
, (46)

we can write the set of equations above in the form

M11Zaa + M12Zm + M13 = 0, (47)

M21Zaa + M22Zm + M23 = 0, (48)

M11Zm + M12Zbb + M14 = 0, (49)

M21Zm + M22Zbb + M24 = 0. (50)

Using Eqs. (47) and (48) we find

Zaa =
M22M13 − M12M23

M12M21 − M22M11
,

Zm =
M11M23 − M13M21

M12M21 − M22M11
. (51)

Using Eqs. (49) and (50) we find

Zbb =
M21M14 − M11M24

M11M22 − M21M12
,

Zm =
M14M22 − M12M24

M12M21 − M22M11
. (52)

For the system of Eqs. (47-50) to have a solution, the two
Zm values encountered must be equal, i.e., the condition

M14M22 − M12M24 = M11M23 − M13M21 (53)

must be satisfied. This occurs if the transformation matrix
T obeys the sympletic condition,

M × J × MT = J, (54)

where

J =
(

0 I
−I 0

)
, I =

(
1 0
0 1

)
,

0 =
(

0 0
0 0

)
, (55)
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as may be seen by performing the matrices multiplica-
tion in Eq. (54) and comparing the element in the first
line and second column of M × J × MT with the one
of J. If M obeys the simpletic condition, it may be
associated to a classical canonical transformation [21].

Thus we can express |0̄, 0̄〉 through

|0̄, 0̄〉 = Nt exp
{

1
2

(
Zaa

(
a†)2 + Zaba

†b†+

Zbab†a† + Zbb

(
b†
)2)} |0, 0〉 , (56)

with

Zaa =
M22M13 − M12M23

M12M21 − M22M11
,

Zab =
M11M23 − M13M21

M12M21 − M22M11
,

Zba =
M14M22 − M12M24

M12M21 − M22M11
,

Zbb =
M21M14 − M11M24

M11M22 − MM12
, (57)

since the values chosen for Zab and Zba lead to the va-
lue of Zm found by solving Eqs. (47), (48), (49) and
(50). It is easy to see that(

Zaa Zab

Zba Zbb

)
= −

(
C† (D†)−1

)∗
, (58)

which is the Thouless theorem for the present situation.

4. Conclusion

We demonstrated the Thouless theorem for the particu-
lar case where the states connected are vacuum states
of two sets of bosonic operators, for one and two degrees
of freedom. We also found the coefficients necessary for
the application of the theorem, which are useful to ef-
fectively find the vacuum states in the new basis. Thus,
knowing the transformation for the operators, we can
calculate the transformation for the vacuum states and
obtain the new Fock states, the new coherent states and
so on.
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Appendix A

The rotation matrix M in Eq. (4) may be written as [4]

M =
(

cos θ sin θ
− sin θ cos θ

)
, (59)

where

sin θ =

√√√√√1
2

⎛
⎝1 − ωa − ωb√

(ωa − ωb)
2 + 4g2

⎞
⎠,

cos θ =

√√√√√1
2

⎛
⎝1 +

ωa − ωb√
(ωa − ωb)

2 + 4g2

⎞
⎠, (60)

what leads to the following expression for the frequen-
cies ω̄a and ω̄b in Eqs. (3):

ω̄a =
1
2

(
ωa + ωb +

√
(ωa − ωb)

2 + 4g2

)
,

ω̄b =
1
2

(
ωa + ωb −

√
(ωa − ωb)

2 + 4g2

)
. (61)

Appendix B

The transformation matrix M in Eq. (11) may be writ-
ten in the form [4]

M =

⎛
⎝ ημ cos θ η−1μ sin θ 0 0

−ην sin θ η−1ν cos θ 0 0

0 0 η−1μ−1 cos θ ημ−1 sin θ

0 0 −η−1ν−1 sin θ ην−1 cos θ

⎞
⎠ ,

(62)

where

η =
(

ωa

ωb

) 1
4

,

μ =

⎧⎨
⎩1

2

⎛
⎝ωa

ωb
+

ωb

ωa
+

√(
ωa

ωb
− ωb

ωa

)2

+
4g2

ωaωb

⎞
⎠
⎫⎬
⎭

1
4

,

ν =

⎧⎨
⎩1

2

⎛
⎝ωa

ωb
+

ωb

ωa
−
√(

ωa

ωb
− ωb

ωa

)2

+
4g2

ωaωb

⎞
⎠
⎫⎬
⎭

1
4

,

sin θ =

√√√√√√√1
2

⎛
⎜⎜⎝1 −

ωa

ωb
− ωb

ωa√(
ωa

ωb
− ωb

ωa

)2

+ 4g2

ωaωb

⎞
⎟⎟⎠,

cos θ =

√√√√√√√1
2

⎛
⎜⎜⎝1 +

ωa

ωb
− ωb

ωa√(
ωa

ωb
− ωb

ωa

)2

+ 4g2

ωaωb

⎞
⎟⎟⎠. (63)
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The frequencies ω̄a and ω̄b in Eqs. (10)) are given by

ω̄a =

√
1
2

(
ω2

a + ω2
b +
√

(ω2
a − ω2

b )2 + 4g2ωaωb

)
,

(64)

ω̄b =

√
1
2

(
ω2

a + ω2
b −
√

(ω2
a − ω2

b )2 + 4g2ωaωb

)
.
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