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There is a situation such that, when a function f(x) is combined with the Dirac delta function δ(x), the usual
formula

R∞
−∞ f(x)δ(x)dx = f(0) does not hold. A similar situation may also be encountered with the derivative

of the delta function δ′(x), regarding the validity of
R∞
−∞ f(x)δ′(x)dx = −f ′(0). We present an overview of

such unusual situations and elucidate their underlying mechanisms. We discuss implications of the situations
regarding the transmission-reflection problem of one-dimensional quantum mechanics.
Keywords: Dirac delta function, singular functions, quantum mechanics.

Existe uma situação tal que quando uma função f(x) é combinada com a função delta de Dirac, δ(x), a
formula usual

R∞
−∞ f(x)δ(x)dx = f(0) deixa de ser válida. Uma situação similar pode ocorrer com a derivada

da função delta, δ′(x), com relação à formula
R∞
−∞ f(x)δ′(x)dx = −f ′(0). Nós apresentamos um apanhado

destas situaçãoes não usuais e elucidamos os mecanismos por detrás delas. Nós discutimos as implicações destas
situaçãoes em relação ao problema de tranmissão-reflexão em mecânica quântica uni-dimensional.
Palavras-chave: função delta de Dirac, funções singulares, mecânica quântica.

1. Introduction

The Dirac delta function δ(x) is a standard subject that
appears in textbooks of quantum mechanics. It is such
that

δ(x) =
{

0 if x 6= 0
∞ if x = 0 , and

∫ ∞

−∞
δ(x)dx = 1. (1)

It can be interpreted as an infinitely high and infinites-
imally narrow spike at the origin [1]. As Dirac himself
cautioned, however, δ(x) is not a function of x accord-
ing to the usual mathematical definition of a function,
which requires a function to have a definite value for
each point in its domain.

If f(x) is an “ordinary” function, which we charac-
terize in due course, we obtain

∫
f(x)δ(x)dx = f(0), (2)

where the range of the integration contains the origin.
If f(x) is discontinuous at x = 0, we interpret Eq. (2)
as ∫

f(x)δ(x)dx =
1
2
[f(0+) + f(0−)], (3)

where f(0+) and f(0−) are respectively the limits of
f(x) when x approaches 0 from the positive and neg-
ative sides. Equation (3) implies that, although δ(x)
itself is not well-defined for x = 0, when it occurs as a
factor in an integrand, the integral has a well-defined
value.

There is another commonly used formula, i.e.,

∫
f(x)δ′(x)dx = −

∫
f ′(x)δ(x)dx

= −1
2
[f ′(0+) + f ′(0−)], (4)

where δ′(x) = dδ(x)/dx and f ′(x) = df(x)/dx. In this
case it is understood that f(0+) = f(0−) but f ′(x) may
be discontinuous at x = 0. The range of the integra-
tion again contains the origin. In Eq. (4) integration
by parts has been done with the understanding that
f(x)δ(x) vanishes at the limits of the integration.

Although Eqs. (3) and (4) look natural they do not
necessarily hold for a certain type of functions. Such sit-
uations have been known in the literature that we quote
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as we proceed. This problem, however, does not seem to
have been mentioned in any textbooks of quantum me-
chanics. Although the situations are rather unusual we
believe that we should at least be aware of such possi-
bilities. In this paper we attempt to present a compre-
hensive overview of the situations and elucidate their
underlying mechanisms. Note that we define δ(x) by
Eq. (1). If one defines δ(x) by Eq. (3) one may be led to
self-contradiction unless one chooses an ordinary func-
tion for f(x). We examine Eq. (3) in Sec. 2 and Eq. (4)
in Sec. 3. We discuss implications of the unusual sit-
uations regarding the transmission-reflection problem
of one-dimensional quantum mechanics. A summary is
given in Sec. 4.

2. The Dirac delta function

Because δ(x) = 0 for x 6= 0, the validity of Eq. (3) [and
also of Eq. (4)] only depends on the behavior of f(x)
around the origin. By the “ordinary”function we mean
f(x) such that it can be expanded around the origin as

f(x) =
∞∑

n=0

xn

n!
[θ(x)f (n)(0+) + θ(−x)f (n)(0−)], (5)

where n = 0, 1, 2, · · · , θ(x) = 1 (0) if x > 0 (x < 0) and
f (n)(0±) = limx→0± dnf(x)/dxn. It is understood that
f (n)(0±) are all finite. For such a function, Eq. (3) can
be justified in the following manner. Define a rectan-
gular function ∆(x) by

∆(x) =
{

1/(2ε) if − ε < x < ε
0 otherwise , (6)

where ε > 0. Note that
∫ ε

−ε
∆(x)dx = 1. We eventu-

ally let ε → 0 so that ∆(x) becomes δ(x). The integral∫
∆(x)f(x)dx with f(x) expanded as Eq. (5) becomes

∫
∆(x)f(x)dx

=
1
2

∞∑
n=0

εn

(n + 1)!
[f (n)(0+) + (−1)nf (n)(0−)].(7)

In the limit of ε → 0, only the n = 0 part remains to
contribute to

∫
f(x)∆(x)dx and Eq. (3) follows. Al-

though we assumed the specific form of Eq. (6), the
details of the form of ∆(x) are unimportant. For ex-
ample we can assume a gaussian form and obtain the
same result in the narrow width limit.

If f(x) is a function that is defined by means of a
differential equation in which δ(x) is involved, Eq. (3)
may turn out to be inconsistent with the definition of
f(x) itself. Such an unusual situation was recognized in
relation to the Dirac equation in one dimension [2–4].
More recently Griffiths and Walborn (GW) illustrated
such a situation by means of a simple mathematical ex-
ample [5]. We review GW’s example and add further

clarification. Consider f(x) that is defined by means of
the first order differential equation

df(x)
dx

= αf(x)δ(x), (8)

where α 6= 0 is a constant. (In GW’s example, α = 1.)
From Eq. (8) follows

∫ +ε

−ε

df(x)
dx

dx = f(ε)−f(−ε) = α

∫ ε

−ε

f(x)δ(x)dx. (9)

If Eq. (3) is accepted, Eq. (9) leads to the following
boundary condition for f(x) at x = 0 in the limit of
ε → 0

f(0+)− f(0−) =
α

2
[f(0+) + f(0−)]. (10)

It turns out, however, that Eq. (10) is inconsistent with
Eq. (8) that defines f(x). In order to see this let us start
with

df(x)
dx

= αf(x)∆(x). (11)

Before taking the limit of ε → 0, ∆(x) is finite and f(x)
is continuous everywhere. Equation (11) can be solved
by

f(x) = A exp
[
α

∫ x

0

∆(y)dy

]
=





Ae−α/2

Aeαx/(2ε)

Aeα/2

if





x ≤ −ε
−ε < x < ε
ε ≤ x

, (12)

where A is an arbitrary constant. We then obtain
f(±ε) = Ae±α/2. (Constant A can be determined
if the value of f(x) at a certain point is specified.
This, however, is not essential in the present context.)
When ε is finite, f(x) is continuous everywhere. In
the limit of ε → 0, however, f(x) becomes discontin-
uous at x = 0. As x increases through x = 0, f(x)
jumps from f(−0) = Ae−α/2 to f(0) = A and then to
f(0+) = Aeα/2. We obtain the boundary condition at
x = 0

f(0+)− f(0−) = tanh(α/2) [f(0+) + f(0−)]. (13)

Equations (10) and (13) differ through higher order
terms with respect to α.

It is crucial that the ordinary function for which Eq.
(3) holds is given independently of the limiting process
of limε→0 ∆(x) = δ(x). In contrast the f(x) defined
by Eq. (11) depends on ε. Let us examine the integral∫ ε

−ε
f(x)∆(x)dx with f(x) = Aeαx/(2ε). We expand

f(x) as

f(x) =
∞∑

n=0

(xn/n!)f (n)(0), f (n)(0) = A(α/2ε)n.

(14)
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Note that f (n)(0) with n > 0 diverges as ε → 0. For
the n-th term of the expansion we obtain

1
n!

f (n)(0)
∫ ε

−ε

xn∆(x)dx =
[1− (−1)n+1]Aαn

(n + 1)! 2n+1
. (15)

Unlike in (7) all the terms with even n of the expan-
sion contribute to

∫ ε

−ε
f(x)∆(x)dx. This is the cause of

the difference between Eqs. (10) and (13). Although we
assumed an explicit form of ∆(x) of Eq. (6), Eq. (13)
obtained above is insensitive to the particular form as-
sumed for ∆(x) [5].

There is another closely related problem. If f(x) is
an ordinary function, the following substitution is al-
lowed

f(x)δ(x) → δ(x)
∫

f(y)δ(y)dy = δ(x)f(0). (16)

When combined with Eq. (16), Eq. (8) becomes

df(x)
dx

= αδ(x)
∫ ε

−ε

f(y)δ(y)dy. (17)

The f(x) defined by Eq. (17), however, turns out to be
different from the one defined by Eq. (8). Substitution
(16) is not allowed in this sense. Let us examine this
problem by starting with the finite width version of Eq.
(17), i.e.,

df(x)
dx

= α∆(x)
∫ ε

−ε

f(y)∆(y)dy. (18)

Its solution, which is continuous everywhere, can be
written as

f(x) =





A− αλ
2

A + αλx
2ε

A + αλ
2

if





x ≤ −ε
−ε < x < ε
ε ≤ x

, (19)

where A is a constant and

λ =
∫ ε

−ε

f(x)∆(x)dx. (20)

Unlike (14), f (n)(x) = 0 if n > 1. Equation (19) leads
to

f(ε) + f(−ε) = 2A, f(ε)− f(−ε) = αλ. (21)

On the other hand the f(x) of Eq. (19) also yields
∫ ε

−ε

f(x)∆(x)dx =
1
2ε

∫ ε

−ε

(
A +

αλx

2ε

)
dx = A, (22)

which implies λ = A. In the limit of ε → 0, Eq. (10)
follows from Eq. (21). Substitution (16) in Eq. (8) thus
changes the boundary condition of f(x) at x = 0 from
Eq. (13) to Eq. (10).

In the one-dimensional Dirac equation, which is a
first order differential equation for a two-component

wave function, if there is a potential of the form of
δ(x), Eq. (3) does not hold for the wave function [2–4].
This is essentially for the same reason as the one found
in GW’s example with Eq. (8). It has also been known
that if the potential part of the equation is of the form
of δ(x)ψ(x), where ψ(x) is the Dirac wave function, and
if it is replaced by δ(x)

∫
ψ(y)δ(y)dy, then Eq. (3) can

be used [2, 3, 6]. The interaction in this form can be
interpreted as a zero-range “separable potential”. The
mechanism behind this feature is essentially the same
as what we pointed out above regarding Eq. (16).

Next let us turn to the f(x) defined by the second
order differential equation

d2f(x)
dx2

= βf(x)δ(x), (23)

where β is a constant. In this case we find that f(x) is
continuous at x = 0 and that Eq. (3) holds. Equation
(23) leads to the boundary condition

f ′(0+)− f ′(0−) = βf(0). (24)

No complication such as those discussed above arises in
this case. In order to confirm the validity of Eq. (3), let
us start with

d2f(x)
dx2

= βf(x)∆(x). (25)

Before taking the limit of ε → 0, f(x) and df(x)/dx
can be assumed to be continuous everywhere. Solution
f(x) for −ε < x < ε can be written as

f(x) = AeKx + Be−Kx, K =

√
β

2ε
, (26)

where A and B are constants. From Eq. (26) follows
f(±ε) = Ae±Kε + Be∓Kε. In the limit of ε → 0, we
find Kε → 0 and hence f(x) remains continuous, i.e.,

f(0+) = f(0−). (27)

For x outside the above interval, d2f(x)/dx2 = 0 and
hence f(x) is a linear function of x. In order to deter-
mine the boundary condition for f(x) at x = 0 in the
limit of ε → 0, however, we do not need f(x) for |x| > ε.
It is sufficient to know f(x) for −ε < x < ε.

Let us examine
∫ ε

−ε
f(x)∆(x)dx with f(x) expanded

as Eq. (5). The derivative f (n)(0) = [A+(−1)nB]Kn =
[A + (−1)nB](β/2ε)n/2 diverges as ε → 0. When it is
combined with

∫ ε

−ε
xn∆(x)dx = [1− (−1)n+1]εn/[2(n+

1)], however, only the n = 0 term of the expansion con-
tributes to the integral in the limit of ε → 0. As a conse-
quence, we obtain

∫ ε

−ε
f(x)∆(x)dx → A+B, which jus-

tifies Eq. (3). This is in contrast to the situation found
with the f(x) of Eq. (12) for which f (n)(0) ∝ 1/(2ε)n.
Let us add that substitution (16) in Eq. (23) can be
done without affecting the solution.

The Schrödinger equation in one dimension for the
stationary state of energy E is,

− ~2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x), (28)
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where m is the mass of the particle under consid-
eration, V (x) is the potential and ψ(x) is the wave
function. Equation (23) can be interpreted as the
Schrödinger equation with E = 0 and potential
V (x) = (~2/2m)βδ(x). Actually the boundary con-
ditions Eq. (24) and Eq. (27) can be applied to the
Schrödinger wave function with any value of E. The
effect of the term Eψ(x) on the boundary condition is
negligible because E

∫ ε

−ε
ψ(x)dx vanishes in the limit

of ε → 0. Hence the boundary condition on the wave
function at x = 0 is independent of energy E.

3. The derivative of the delta function

In this section we turn to the validity of Eq. (4). We
consider ∆′(x) = d∆(x)/dx, which in its narrow width
limit is reduced to δ′(x). The results that we obtained
in Sec. 2 are insensitive to the details of the form as-
sumed for ∆(x). In contrast to that, what we are going
to obtain regarding δ′(x) in this section depends on
what we assume for the form of ∆(x) and ∆′(x).

Let us begin with the ∆(x) of the rectangular form
of Eq. (6), which leads to the following dipole form

∆′(x) =
d∆(x)

dx
=

1
2ε

[δ(x + ε)− δ(x− ε)]. (29)

If f(x) is an ordinary function that is continuous at
x = 0, Eq. (4) can be justified by replacing δ′(x) with
∆′(x) of Eq. (29) and letting ε → 0 at the end. Equa-
tion (4), however, may not hold if f(x) is a function
that is defined by means of a differential equation in
which δ′(x) is involved. GW mentioned this possibility
but did not discuss any details; see the last sentence of
note 3 of [5].

We are interested in the f(x) defined by

d2f(x)
dx2

= γf(x)δ′(x), (30)

where γ is a constant. If we accept Eq. (4), Eq. (30)
leads to the boundary condition [7]

f ′(0+)− f ′(0−) = −γ

2
[f ′(0+) + f ′(0−)]. (31)

As we show below, however, Eq. (31) is not valid. Let
us start with

d2f(x)
dx2

= γf(x)∆′(x), (32)

where ∆′(x) is the one defined by Eq. (29). Before
the limit of ε → 0 is taken, f(x) is continuous every-
where but f ′(x) is discontinuous at x = ±ε because of
the δ(x ± ε) of Eq. (29). At x = ±ε, f(x) and f ′(x)
are subject to the boundary conditions (24) and (27)
with β replaced by γ. We refer to the three regions,
x < −ε,−ε < x < ε, and ε < x as I, II and III, re-
spectively. In each of the regions, d2f(x)/dx2 = 0 and

hence f(x) is a linear function of x. Let the f(x) in
these regions be fi(x) = aix + bi where i = 1, 2, 3 cor-
respond to regions I, II and III, respectively. There are
six constants but, if we specify two of them, the oth-
ers can be determined by using Eqs. (24) and (27) at
x = ±ε. If we assume for example that a2 and b2 are
given, we obtain

a1 =
(
1 +

γ

2

)
a2 − γ

2ε
b2, b1 =

γ

2
a2ε +

(
1− γ

2

)
b2,

(33)
a3 =

(
1− γ

2

)
a2 − γ

2ε
b2, b3 =

γ

2
a2ε +

(
1 +

γ

2

)
b2.

(34)
In taking the narrow width limit of ∆(x), let us in-

troduce another parameter η such that η > ε. We let
both of ε and η approach zero from the positive side.
We integrate both sides of Eq. (32) over the interval
[−η, η]. From the left hand side we obtain

∫ η

−η

d2f(x)
dx2

dx = f ′(η)− f ′(−η) = a3 − a1,= −γa2,

(35)
where we have used f(η) = f3(η) and f(−η) = f1(−η)
together with Eqs. (33) and (34). The right hand side
of Eq. (32) yields

γ

∫ η

−η

f(x)∆′(x)dx = − γ

2ε
[f(ε)−f(−ε)] = −γa2, (36)

which naturally agrees with Eq. (35). This can also be
calculated as

γ

∫ η

−η

f(x)∆′(x)dx

= γ[f(x)∆(x)]η−η − γ

∫ η

−η

∆(x)f ′(x)dx

= −γ

∫ ε

−ε

∆(x)f ′2(x)dx = −γa2, (37)

Note that ∆(±η) = 0 and f ′2(x) = a2.
In the limit of η → 0, we obtain f ′(±η) → f(0±),

f(0+) = a3 and f(0−) = a1, and then

f ′(0+)− f ′(0−) = a3 − a1 = −γa2, (38)

− γ

2
[f ′(0+) + f ′(0−)] = −γ

2
(a3 + a1)

= −γa2 +
γ2

2ε
b2. (39)

Note that Eq. (39) is different from Eqs. (36) and (37).
From Eqs. (38) and (39) we see that Eq. (31) is not
valid. It is possible to resurrect Eq. (31) by choosing b2

such that b2/ε = 0, i.e., either b2 = 0 or b2 scales with ε
in such a manner. Such a choice of b2, however, is artifi-
cial. Here the following remark would be in order. One
may erroneously think that [f(ε) − f(0)]/ε → f ′(0+)
and [f(0)−f(−ε)]/ε → f ′(0−). Both of these are equal
to a2, which is f ′2(x). Note that f ′(0+) = f ′3(x) and
f ′(0−) = f ′1(x).
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There is another important aspect of the f(x) that
is subject to Eq. (30). In Eqs. (33) and (34) we assumed
that f2(x) is given first and then determined f1(x) and
f3(x). If instead we start with an assumed f1(x) and
determine f2(x) and f3(x), we obtain

a2 =
(
1− γ

2

)
a1 +

γ

2ε
b1,

b2 = −γ

2
a1ε +

(
1 +

γ

2

)
b1, (40)

a3 =
(

1− γ +
γ2

2

)
a1 − γ2

2ε
b1,

b3 = −γ2

2
a1ε +

(
1 + γ +

γ2

2

)
b1. (41)

Let us require that f3(x) be finite in the limit of ε → 0.
This requirement can be satisfied if we choose b1 = 0.
Then we find that b2 = b3 = 0. Alternatively we can
assume that b1 is scaled according to b1 = c1ε. In this
case we again obtain b2 = b3 = 0. Thus we arrive at
the boundary condition,

f(0+) = f(0−) = 0. (42)

Regarding the relation between f ′(0+) and f ′(0−), we
obtain

f ′(0+) =
(

1− γ +
γ2

2

)
f ′(0−)− γ2

2
c1, (43)

where we assumed b1 = c1ε. Equation (43) contains
c1 that can be chosen arbitrarily. Hence it is not a
legitimate boundary condition.

As we said at the end of the last section, Eq. (30)
also can be regarded as the Schrödinger equation with
energy E = 0 and potential V (x) = (~2/2m)γδ′(x).
We pointed out that the energy term Eψ(x) has no
effect on the boundary condition, that is, Eq. (42)
can be applied even when E 6= 0. Let us consider
the transmission-reflection problem of one-dimensional
quantum mechanics with energy E = k2/(2m) where
k > 0. Assume that a “plane wave”eikx is incident
from the left. The wave function can be written as

ψ(x) =
{

eikx + R(k)e−ikx for x < 0
T (k)eikx for x > 0 , (44)

where T (k) and R(k) are the transmission and reflection
coefficients, respectively. The probabilities of transmis-
sion and reflection are respectively given by |T (k)|2 and
|R(k)|2. Equation (42) requires that

ψ(0) = T (k) = 1 + R(k) = 0, (45)

so that there is no transmission at any energies. The
incident wave is totally reflected at x = 0. This means
that the two half-spaces of x > 0 and x < 0 be-
come effectively disjoint. This was pointed out by

Šeba a long time ago [8]. In this connection, see
Refs. [9, 10] also. The T (k) and R(k) for the poten-
tial V (x) = (~2/2m)γ∆′(x) with finite ε can be worked
out explicitly. When |εk| ¿ 1 we obtain [10]

T (k) =
iεk

γ2 + iεk
, R(k) =

−γ2

γ2 + iεk
, (46)

which is reduced to Eq. (45) in the limit of ε → 0.
On the basis of Eq. (30) Griffiths [7] proposed Eq.

(31) together with

f(0+)− f(0−) =
γ

2
[f(0+) + f(0−)], (47)

which also relies on Eq. (4). As we have shown explic-
itly, Eq. (31) is inconsistent with Eq. (30). In a similar
manner it can also be shown that Eq. (47) is inconsis-
tent with Eq. (30). It is interesting, however, that Eqs.
(31) and (47) together represent a legitimate point in-
teraction that can be related to a self-adjoint extension
of the kinetic energy operator [10]. Boundary condi-
tions (31) and (47) can be reinstated if we make the
following substitution in Eq. (30) [11,12],

f(x)δ′(x) → δ′p(x)
∫

f(y)δ(y)dy

+ δ(x)
∫

f(y)δ′p(y)dy, (48)

where δ′p(x) is defined by

f(x)δ′p(x) = f̃(x)δ′(x), (49)

f̃(x) =
{

f(x)− 1
2 [f(0+)− f(0−)] if x > 0

f(x) + 1
2 [f(0+)− f(0−)] if x < 0 .

(50)
Boundary conditions (31) and (47), however, should
be dissociated from δ′(x). Note a similarity between
substitutions (16) and (48); they respectively resurrect
Eqs. (3) and (4). The substitutions, however, change
the physics of the models under consideration.

We have interpreted δ′(x) as the ε → 0 limit of
∆′(x) of Eq. (29), which is the derivative of the rectan-
gular function ∆(x) of Eq. (6). A question that arises
here is: Does boundary condition (42) depend on the
explicit form assumed for ∆′(x)? The answer to this
question is somewhat surprisingly affirmative. This is
in the following sense. Recently Christiansen et al. [13]
re-examined the transmission-reflection problem with a
potential of the form of δ′(x). They assumed the δ′(x)
as the narrow width limit of the following rectangular
function [see their Eq. (5)]

∆′
C(x) =

{
0 if |x| > 2ε
−(x/|x|)(2ε)−2 if |x| < 2ε

. (51)

We have replaced their ε with 2ε so that the ε of Eq.
(51) corresponds to the ε of Eq. (29). The ∆′

C(x)
is the derivative of a triangular function of a unit
area. If f(x) is an ordinary function, Eq. (4) with
δ′(x) = limε→0 ∆′

C(x) holds.
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Christiansen et al. [13] considered the potential

Vσ(x) =
~2

2m
σ2∆′

C(x), (52)

where σ is a dimensionless constant. They solved the
Schrödinger equation and then took the limit of ε → 0.
They showed that, if σ satisfies

tan σ = tanh σ, (53)

the potential becomes partially transparent with

T (k) = sec σ sechσ 6= 0. (54)

This is in contrast to T (k) = 0 of Eq. (45). Equation
(53) admits discrete values of σ. They are 3.927, 7.069,
10.210, · · · in increasing order. Let us add that there
are a variety of other forms of ∆′(x) that lead to non-
vanishing but different T (k) [14].

If we assume Eqs. (16) and (47), which are both
based on Eq. (4), we obtain

T (k) =
4− σ4

4 + σ4
. (55)

This follows from Eqs. (38) and (49) of [10] with c = σ2.
The σ of Eq. (54) is subject to Eq. (53) but there is no
such restriction on the σ of Eq. (55). The T (k)’s of Eqs.
(54) and (55) are clearly different. This means that Eq.
(4) with the wave function fails when it is used for Vσ(x)
with ε → 0.

Instead of reviewing it in detail, let us put Chris-
tiansen et al.’ s analysis in the perspective of the
“threshold anomaly”of transmission-reflection problem.
With an arbitrarily given potential, the transmis-
sion probability usually vanishes at threshold, i.e.,
|T (k)|2 → 0 as k → 0. This is because, no matter
how small it is, the potential is insurmountably large
as compared with the infinitesimal energy of the in-
cident particle. If there is a bound state at threshold
(i.e., with zero energy), however, threshold anomaly can
occur such that |T (k)|2 remains finite as k → 0 [15].
When the strength parameter σ of the potential is cho-
sen to satisfy Eq. (53), indeed there is a bound state
at threshold. There are two types of the anomaly, I
and II. We obtain |T (0)|2 = 1 in type I whereas |T (0)|2
can take any value between 0 and 1 in type II. Type II
can be found only if the potential is asymmetric as a
function of x [16]. The partial transparency that was
found in [13] is an illustration of the threshold anomaly
of type II. Let us add that threshold anomaly does not
occur to a potential of the form of ∆′(x) of Eq. (29).
This can be seen from Eq. (46).

The threshold anomaly refers to T (k) with k = 0.
The T (k) of Eq. (54) that is due to potential Vσ(x),
however, is independent of k. In this sense the thresh-
old anomaly holds for all energies. The reason why
T (k) becomes independent of k can be seen as follows.

Note that Vσ(x) ∝ 1/ε2 and its spatial range is pro-
portional to ε. In the Schrödinger equation with Vσ(x),
if we introduce dimensionless quantities y = x/ε and
η = εk, we can eliminate x and k in favor of y and η.
The transmission coefficient can be expressed in terms
of dimensionless parameters σ and η [13]. In the limit
of ε → 0 and η → 0, the transmission coefficient is re-
duced to a function of σ alone, which is independent of
k; see Eq. (54). The reason why the T (k) of Eq. (55)
is also independent of k can be explained in a similar
manner.

4. Summary

Regarding the Dirac delta function δ(x) and its deriv-
ative δ′(x), Eqs. (3) and (4) appear quite ubiquitously
in textbooks of quantum mechanics but we should be
aware of some possible danger in using them naively.
We presented an overview of unusual situations in
which the seemingly natural Eqs. (3) and (4) fail to
hold. They can occur when function f(x) is not an ar-
bitrarily given function but is specifically defined by a
differential equation in which δ(x) or δ′(x) appears.

We illustrated the mechanism behind the failure of
Eq. (3) by starting with function ∆(x) of Eq. (6) that
has a finite width 2ε and taking its narrow width limit.
Equation (3) fails when f(x) is a function that is de-
fined by a first order differential equation of the form of
Eq. (8). In this case f (n)(0), given by Eq. (14), diverges
as ε → 0 for all values of n > 0 and this results in the
failure of Eq. (3). The commonly used substitution (16)
also fails. No such complication arises for f(x) that is
subject to a second order differential equation such as
the Schrödinger equation. The delta function δ(x) that
we used is the one defined by Eq. (1). Often Eq. (3) is
used in defining δ(x). The δ(x) so defined, however, is
led to self-contradiction as we illustrated by means of
the f(x) defined through Eq. (8).

The failure of Eq. (4) is associated with the sec-
ond order differential equation (30) (and also the
Schrödinger equation) in which δ′(x) is involved. For
∆′(x), the finite width version of δ′(x), we first consid-
ered the traditional dipole form of Eq. (29) and explic-
itly examined how Eq. (4) fails. We also examined the
different version (51) that Christiansen et al. [13] re-
cently considered. Equation (4) again fails in this case.
The results obtained in Sec. 2 are insensitive to the
details of the form assumed for ∆(x). In contrast the
results obtained in Sec. 3 vary depending on the form of
∆′(x). We discussed implications that the unusual sit-
uations have regarding one-dimensional quantum me-
chanics. We related the results of [13] to the threshold
anomaly of the transmission-reflection problem.
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de São Paulo, Conselho National de Desenvolvimento
Cient́ıfico e Tecnológico, the Natural Sciences and Engi-
neering Research Council of Canada, the Japan Society
for the Promotion of Science and Kyoto Sangyo Uni-
versity.

References

[1] P.A.M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, 1958), 4. ed., Sec. 15.

[2] B. Sutherland and D.C. Mattis, Phys. Rev. A 24, 1194
(1981).

[3] M.G. Calkin, D. Kiang and Y. Nogami, Am. J. Phys.
55, 737 (1987).

[4] B.H.J. McKellar and G.J.. Stephenson Jr., Phys. Rev.
C 35, 2262 (1987).

[5] D. Griffiths and S. Walborn, Am. J. Phys. 67, 446
(1999).

[6] M.G. Calkin, D. Kiang and Y. Nogami, Phys. Rev. C
38, 1076 (1988).

[7] D.J. Griffiths, J. Phys. A: Math. Gen. 26, 2265 (1993).
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