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The concept of entanglement is at the heart of quantum physics. It plays a central role in all quantum phenomena
involving composite systems. Interestingly, there is an intriguing idea that has attracted considerable attention
recently, according to which quantum entanglement may also be essential for understanding the very emergence of
time and dynamical evolution. Within this point of view, sometimes referred to as the timeless picture of quantum
dynamics, the Universe is regarded as consisting of a clock and a system (or “rest of the Universe”) that are jointly
in a stationary quantum state, and time evolution arises as an emergent phenomenon rooted at the entanglement
between the clock and the system. Here we provide a pedagogical and self-contained exposition, at the upper
undergraduate level, of the role of entanglement in this timeless evolution approach to quantum mechanics. In
particular, we give a detailed explanation of how the entanglement between the clock and the system is directly
and quantitatively related to the average distinguishability between the states of the system at different times.
Keywords: quantum dynamics, quantum entanglement, evolution without evolution

1. Introduction

Modern physics recognizes quantum entanglement as one
of the most intriguing and significant physical phenom-
ena. Once circumscribed to the foundational discussions
of quantum mechanics, the applications of entanglement
were developed and expanded into numerous fruitful di-
rections, the most spectacular being perhaps those within
the realm of quantum information. In a few decades, en-
tanglement evolved from being a puzzling manifestation
of the weirdness of quantum mechanics to become a
useful resource in promising quantum technologies, and
a central phenomenon for the understanding of many
aspects of the workings of Nature [1–3]. As a result, entan-
glement has gained a more prominent role in classrooms,
and efforts have been devoted to incorporate the diverse
facets of the concept of entanglement to the teaching of
quantum mechanics [4–13]. However, there is an interest-
ing aspect of quantum theory —known as the timeless
picture of quantum mechanics— in which entanglement
is crucial for solving the so-called time problem, that
has received little or no attention from a pedagogical
point of view. With the purpose of enriching the vision of
entanglement and the possibilities it offers, it is our aim
here to introduce the non-specialized reader to the role
played by the entanglement within the timeless approach
of quantum mechanics.

*Correspondence email address: andreavh@fisica.unam.mx.

The time problem refers to the fact that the intro-
duction of time constitutes a problem at a fundamental
level for any theory endowed with dynamical laws. As
is well-known, classical mechanics resorts to an extrinsic
and privileged parameter t, in terms of which all the
equations of motion are formulated. On the other hand,
and in sharp contrast with this fundamental role played
by t, from the practical point of view the parameter t
is nothing more than the coordinate of a pointer in an
appropriate clock (that is, t represents the position of the
clock’s hands). The tension between these two aspects of
time constitutes part of the time problem and, as we shall
see, also points towards a possible way of solving it. Quan-
tum mechanics inherits from classical mechanics the time
problem, incorporating the extrinsic temporal parameter
in, for example, the Schrödinger (time-dependent) equa-
tion. This way of introducing time into physical theories
has bothered many physicist, mainly because it puts time
as an immutable, unexplained variable. The discomfort
becomes particularly accentuated when it comes to quan-
tum mechanics, in which the dynamical variables, such
as position and momentum, are promoted to Hermitian
operators in an appropriate Hilbert space. Time, on the
contrary, is not regarded as an observable, and its mean-
ing within quantum theory is a subtle matter [14–17].

The time problem is central to modern physics: it
impacts quantum mechanics, cosmology, and general rel-
ativity. In an attempt to tackle it by incorporating time
into a completely quantum context, Page and Wooters
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have proposed the timeless approach [14,15]. It is phys-
ically motivated by the observation that the notion of
time, when understood as a parameter that indicates
the state of the clock hands, can be substituted by the
notion of quantum correlations between the clock (C)
and the physical system of interest (R). The ‘evolution’
of R thus simply reflects the fact that for different states
of C there correspond different states of R, while the
whole U = R + C remains in a single static state. In this
sense, in the timeless approach both the dynamics and
time emerge from non-local correlations, and contrary
to Newtonian mechanics, motion is not assumed as a
primitive, but secondary, concept [17].

In more formal terms, the timeless proposal considers
the whole universe U as a closed composite quantum sys-
tem comprising two non-interacting subsystems: the clock
C and the rest R, and assumes that the global system
is in a static state (eigenstate of the total Hamiltonian
with corresponding null eigenvalue, consistently with the
Wheeler-DeWitt equation [17,18] developed within the
quantum theory of gravity). For an observer in R, the no-
tion of time (or temporal flux) emerges from this ‘frozen’
state as a result of the quantum entanglement between C
and R, and the parameter t is identified with the values
of an appropriate observable of the clock (the position of
its hands). According to this idea, time (and the concomi-
tant dynamics) would be an emergent property rooted
at the entanglement between the dynamical system (R)
and a ticking apparatus.

The timeless formalism thus brings together the emer-
gence of time —the parameter characterizing evolution
and change— and the notion of entanglement, the most
paradigmatic feature of composite quantum systems.
Moreover, it places entanglement as the fundamental
phenomenon that gives rise to quantum evolution. The
timeless picture of quantum mechanics has attracted
considerable attention recently [19–23], constituting an
intriguing line of enquiry within the active field of re-
search devoted to quantum entanglement. This timeless
approach, and its connection with entanglement, con-
stitutes also a stimulating subject for a student project.
It offers a unique opportunity for students to discuss a
cutting-edge topic on fundamental physics. It has sci-
entific, philosophical, and historical relevance, and (as
shown in the present work) can be treated in an quanti-
tative, yet comprehensible, way.

In order to make accessible the relation between en-
tanglement and the timeless quantum formalism to a
broad non-specialized audience, including an upper-level
undergraduate physics student, we provide here an in-
troductory discussion on this matter. Based on one of
the most widely used quantitative indicators of entangle-
ment, we first focus on the analysis of the entanglement
between the clock and the remaining subsystem. Special
attention is then payed to the physical interpretation of
the ‘amount of entanglement’ as a quantitative indicator
of the average distinguishability between the states that

the system visits at different times. This time-averaged
distinguishability is explicitly calculated for a general
state of a system with a discrete (though not necessarily
finite) energy spectrum.

The paper is organized as follows. In Section II we
review some basic features of a simple, yet useful and
widely used quantitative indicator of entanglement for
pure states of a bipartite quantum system, based on the
linear entropy. In Sec. 3 we introduce the main assump-
tions in the timeless formalism, and make explicit the
relation between entanglement and evolution. In Sec. 4
we apply the indicator of entanglement based on the
linear entropy to evaluate the entanglement between the
clock C and the system R, and explore its connection
with the time evolution of R. Specifically, we show that
the entanglement between C and R is closely related
to the average distinguishability of the states of R at
different times. Section 5 is devoted to calculate explicitly
the entanglement for an arbitrary quantum state, and to
discuss some relevant examples. Finally, some conclusions
are drawn in Sec. 6.

2. Quantitative indicator of
entanglement

According to quantum mechanics, the maximal knowl-
edge that Nature allows us to have about the state of a
physical system is given by a pure quantum state. This is
mathematically represented by a wave function or, more
abstractly, by a normalized vector in an appropriate
Hilbert space. One of the most counter-intuitive man-
ifestations of the quantumness of composite quantum
systems is that it is possible to have maximal knowl-
edge of a total bipartite system without having maximal
knowledge of its parts [8]. When this is the case, we
say that the corresponding pure quantum state of the
bipartite system is entangled: the composite system is
globally described by a pure state, yet the states of ei-
ther of its subsystems cannot be pure, but instead are
described by mixed states. The degree of mixedness of
these marginal states constitutes thus an indicator of
entanglement of the global, pure state. Hence, it is pos-
sible to resort to measures that quantify such degree
of mixedness to construct quantitative indicators of the
amount of entanglement in a pure (bipartite) state [1].
Now, a convenient measure for the degree of mixedness
of the subsystems’ marginal states is given by the linear
entropy of the associated density matrices (see [11] for
a didactic discussion). In what follows we are going to
briefly review this quantitative indicator of entanglement
for pure states of bipartite quantum systems.

We start by considering a composite quantum system
A + B constituted by two subsystems, A and B. Let

|Ψ〉 =
∫

Ψ(x1, x2) |x1〉 |x2〉 dx1 dx2 (1)
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be a pure state of A + B. Here {|x1〉 ⊗ |x2〉 = |x1〉|x2〉 =
|x1, x2〉} denotes a basis of the Hilbert space of the
composite system, namely HA ⊗ HB , where HA and HB

stand for the Hilbert spaces associated to the subsystems
A and B, respectively, with corresponding basis {|x1〉}
and {|x2〉}. The members of these basis are characterized
by continuous labels x1 ∈ RN1 and x2 ∈ RN2 , and
satisfy the standard orthogonality condition 〈x|x′〉 =
δ(x − x′). The subsystems A and B can be, for example,
two particles moving, respectively, in their corresponding
configuration space of dimension N1 and N2. As usual,
the wave function Ψ(x1, x2) = 〈x1, x2|Ψ〉 is normalized
to one, that is, 〈Ψ|Ψ〉 =

∫
|Ψ(x1, x2)|2 dx1 dx2 = 1.

Instead of using the ket |Ψ〉 to describe a pure state of
the system A + B, one can use the equivalent description
provided by the density matrix

ρ = |Ψ〉〈Ψ| (2)

=
∫

|x1, x2〉〈x1, x2|Ψ〉〈Ψ|x′
1, x′

2〉〈x′
1, x′

2| ×

× dx1dx2dx′
1dx′

2,

with matrix elements

〈x1, x2|ρ|x′
1, x′

2〉 = 〈x1, x2|Ψ〉〈Ψ|x′
1, x′

2〉
= Ψ(x1, x2)Ψ∗(x′

1, x′
2). (3)

The marginal density matrices ρA and ρB describing,
respectively, the individual states of the subsystems A
and B, are

ρA(B) = TrB(A) ρ = TrB(A) (|Ψ〉〈Ψ|) , (4)

where Tri denotes the partial trace over the degrees of
freedom of subsystem i. The matrix elements of the
marginal density matrices are

〈x1|ρA|x′
1〉 =

∫
〈x1, x2|ρ|x′

1, x2〉dx2

=
∫

Ψ(x1, x2)Ψ∗(x′
1, x2)dx2,

〈x2|ρB |x′
2〉 =

∫
〈x1, x2|ρ|x1, x′

2〉dx1

=
∫

Ψ(x1, x2)Ψ∗(x1, x′
2)dx1. (5)

A quantitative indicator E [|Ψ〉] of the amount of entan-
glement between A and B when the composite system is
in the pure state |Ψ〉, is given by the degree of mixedness
exhibited by the marginal density matrices ρA(B). Such
degree of mixedness can be quantified by the linear en-
tropy SL of either one of the two reduced matrices, given
by

SL[ρA(B)] = 1 − Tr ρ2
A(B). (6)

Therefore, we can define the following indicator of entan-
glement,

E [|Ψ〉] = 1 − Tr ρ2
A = 1 − Tr ρ2

B . (7)

To obtain an explicit expression for E [|Ψ〉] in terms of
the wave function Ψ(x1, x2) we compute the trace:

Tr ρ2
A =

∫
〈x1|ρ2

A|x1〉dx1

=
∫

〈x1|ρA|x′
1〉〈x′

1|ρA|x1〉dx1dx′
1

=
∫

|〈x1|ρA|x′
1〉|2dx1dx′

1. (8)

Finally, combining Eqs. (5) and (8), we obtain

E [|Ψ〉] = 1 − Tr ρ2
A

= 1 −
∫

Ψ(x1, x2)Ψ∗(x′
1, x2)×

× Ψ∗(x1, x′
2)Ψ(x′

1, x′
2)dx1dx′

1dx2dx′
2, (9)

which constitutes the desired expression for the entan-
glement measure E [|Ψ〉] in terms of the wave function
Ψ(x1, x2).

If the wave function Ψ(x1, x2) is normalized to 1 (as
we are assuming) one has Tr ρ2

A(B) ≤ 1, with the equality
satisfied if and only if the matrices ρA(B) correspond
to pure states and, consequently, the global state |Ψ〉 is
separable (that is, non-entangled). It thus follows that
the entanglement measure E satisfies the inequality

0 ≤ E [|Ψ〉] ≤ 1, (10)

and vanishes if and only if the state |Ψ〉 is non entangled.
It should be noticed that though in the above lines we
have considered systems with continuous variables, and
expressed E [|Ψ〉] in terms of the wave function Ψ(x1, x2),
the entanglement measure (7) is also well-defined —and
satisfies the inequality (10)— for pure states of bipar-
tite quantum systems in which HA and HB have finite
dimensions, as is the case for systems of qubits.

The quantity E [|Ψ〉] is an entanglement monotone (i.e.,
it does not increase, on average, under local transforma-
tions [1]), it vanishes for separable pure states and it
admits its largest possible value for maximally entangled
pure states. Thus, it complies with basic requirements
that any entanglement measure should satisfy [1]. We
stress here, however, that the linear entropy provides just
one way of quantifying the bipartite entanglement in a
pure state. Other quantities exist that serve for that same
purpose; a more fundamental one is the von Neumann
entropy, defined as

SvN [ρA(B)] = −Tr [ρA(B) ln ρA(B)]. (11)

Expressing the reduced state, say ρA, in its diagonal
form ρA = diag ({λα}), with {λα} the (real) eigenvalues
of ρA satisfying

∑
α λα = 1, the von Neumann entropy

expresses as

SvN [ρA] = −
∑

α

λα ln λα. (12)

From Eq. (12) it follows that the von Neumann entropy
vanishes if and only if the reduced states ρA(B) are pure
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(one λα equals 1 and the remaining ones equal 0), mean-
ing that A and B are disentangled. Importantly, the von
Neumann entropy lies at the basis of the so-called entan-
glement of formation, one of the most exploited measures
of bipartite entanglement in general (mixed) bipartite
states. However, in spite of the significance of SvN in
certifying and quantifying entanglement, the indicator
E [|Ψ〉], based on the linear entropy, has the important
computational advantage (both from the analytical and
the numerical points of view) that in order to compute
it, one does not need to determine the eigenvalues of
the marginal density matrix ρA. Moreover, it has been
extensively used as a legitimate measure of entangle-
ment [24–29], playing in particular a prominent role in
the expression for the so-called concurrence, a widely
employed measure of bipartite entanglement (see, for
instance, [24,27,28]). Thus, for our present purposes, the
simpler linear entropy-based quantitative entanglement
indicator suffices. A nice and interesting introduction to
entanglement in composite quantum systems with con-
tinuous variables, that considers the measure (9), can
be found in [4]. The entanglement indicator based on
the linear entropy is a particular instance of a more gen-
eral family of entanglement indicators [29] based on the
quantum Sq entropies [30].

Before ending this Section, it is worthwhile stress-
ing that in more general terms, for pure states of the
composite system A + B, any measure of the degree of
mixedness of either of the marginal (reduced) states ρA

or ρB, provides a quantitative indicator of the amount
of entanglement between A and B. Such measures of
mixedness, or generalized entropies, can be expressed in
the form Tr [f(ρA(B))], where f(x) is a concave function
(that is f ′′(x) ≤ 0), such that f(0) = f(1) = 0. Clearly
both the von Neumann entropy and the linear entropy
have this form. In the first case we have f(x) = −x ln x,
whereas in the second case we have f(x) = x(1 − x).

3. Entanglement and the emergence of
evolution

As a starting point, we consider the Universe as a bipar-
tite quantum system conformed by a clock (C) and the
rest (R). The corresponding Hilbert spaces are HR for
the rest of the Universe, HC for the clock, and the tensor
product HR ⊗ HC for the total system (U = R + C).
We shall express a pure state of U in terms of a product
orthonormal basis {|x〉 ⊗ |t〉 = |x〉 |t〉}, where {|x〉} and
{|t〉} are orthonormal basis of HR and HC , respectively.
The continuous label t ∈ R, characterizing the clock’s
basis states, corresponds to the position of the hands of a
clock associated to an observable T̂ , that is, T̂ |t〉 = t |t〉.
On the other hand, the label x, characterizing the basis
states of HR, represents the position, or any other degree
of freedom of the one, or many particles, that conform R.
In other words, x can be regarded as describing a point
in the configuration space associated with the system

R (throughout the paper we will assume that x is a
continuous variable, yet it may also denote a discrete one
if integrals are properly substituted by discrete sums).

In line with the timeless formalism, we will assume
that U is in a pure state |Ψ〉 such that ĤU |Ψ〉 = 0, where
ĤU = ĤR ⊗ IC + IR ⊗ ĤC is the total Hamiltonian, with
ĤR an arbitrary Hamiltonian of R, and ĤC the Hamilto-
nian of the clock. Furthermore, we will consider that ĤC

and the clock’s observable T̂ satisfy the commutation
relation

[T̂ , ĤC ] = i~. (13)

This amounts to say that ĤC is the generator of displace-
ments in the position of the clock’s hands; that is, for an
infinitesimal displacement dt it holds that e−iĤCdt/~ |t〉 =
|t + dt〉, or equivalently, that i~ d |t〉 /dt = ĤC |t〉. Now,
the state of R when the clock reads t, that is, its state
given that the clock is in |t〉, is obtained by projecting
|Ψ〉 onto |t〉, and will be denoted as |Φt〉 = 〈t|Ψ〉. Under
these conditions, we get

∂

∂t
|Φt〉 = ∂

∂t
〈t| Ψ〉

=
(

∂

∂t
〈t|
)

|Ψ〉 + 〈t|
(

∂

∂t
|Ψ〉
)

=
(

d

dt
〈t|
)

|Ψ〉

= i

~
〈t| ĤC |Ψ〉 . (14)

Writing IR ⊗ ĤC = ĤU − ĤR ⊗ IC and using that
ĤU |Ψ〉 = 0, Eq. (14) becomes

∂

∂t
|Φt〉 = i

~
〈t| (ĤU − ĤR ⊗ IC) |Ψ〉

= −i

~
〈t| ĤR ⊗ IC |Ψ〉

= −i

~
ĤR〈t|Ψ〉

= −i

~
ĤR |Φt〉 , (15)

whence |Φt〉 obeys

i~
∂

∂t
|Φt〉 = ĤR|Φt〉. (16)

That is, the relative state of the rest of the Universe
is found to satisfy the (time-dependent) Schrödinger
equation. In other words, the usual dynamical scenario
—embodied in the time-dependent Schrödinger equation—
ensues from the static image of the non-evolving state
|Ψ〉.

A few comments regarding the eigenvalue spectra of
the operators T̂ and ĤC is in place here. Both these
observables have continuous spectra; however, since the
complete system is assumed to be in a zero-energy eigen-
state of the total Hamiltonian, if ĤR has discrete eigenval-
ues {En} with n = 0, 1, 2, . . . (as will be assumed below),
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then the allowed eigenvalues of ĤC also form a discrete
set, namely {−En}, and the corresponding eigenstates
are thus {e−iEnt/~}. This means that we are working
with an effectively discrete Hilbert space for the clock,
spanned by this discrete set of states. Notice that this
is similar to what occurs when considering the position
and the momentum of a particle in a one-dimensional
box. The operators x̂ and p̂ also satisfy a relation of
the form (13) (they are canonical conjugate variables),
and by imposing the appropriate boundary conditions on
the (impenetrable) walls, the accesible eigenvalues of the
momentum form a discrete set, {pn}, and the eigenfunc-
tions that span the Hilbert space of the system are given
by {e−ipnx/~}. Of course, the similarity is only formal,
since in the present case the (effective) discrete spectra
of ĤC is not determined by any boundary condition, but
rather by the condition of total zero energy of the R + C
composite system.

In what follows we shall consider the behaviour of the
system when the hands of the clock acquire values in the
interval [0, T ], and write |Ψ〉 (the global state of U) as

|Ψ〉 = 1√
T

∫
Ψ(x, t) |x〉 |t〉 dx dt. (17)

This state is properly normalized, both spatially and
temporally, that is

〈Ψ|Ψ〉 = 1
T

∫ T

0

(∫
|Ψ(x, t)|2 dx

)
︸ ︷︷ ︸

=1

dt = 1. (18)

The relative state |Φt〉 thus reads

|Φt〉 = 〈t|Ψ〉 = 1√
T

∫
Ψ(x, t) |x〉 dx = 1√

T
| Φ̃t〉, (19)

where we defined

|Φ̃t〉 =
√

T |Φt〉 =
∫

Ψ(x, t) |x〉 dx. (20)

Therefore, 1√
T

Ψ(x, t) = 〈x|Φt〉 is the wave function cor-
responding to the state |Φt〉, whose norm is given by

〈Φt|Φt〉 = 1
T

∫
|Ψ(x, t)|2 dx = 1

T
, (21)

whence |Φ̃t〉 stands for the the normalized relative state,
satisfying

〈Φ̃t|Φ̃t〉 = T 〈Φt|Φt〉 = 1. (22)

Considering values of t within a finite interval [0, T ]
corresponds to studying a part of the history of the
Universe that, from the standard time-based perspective,
is perceived as having a finite duration T . To have a finite
range of values [0, T ] for the clock’s position observable,
and to have the wave function normalized within that
finite interval, can be regarded as the result of having
measured the observable (proyector) Π =

∫ T

0 |t〉〈t|dt,

post-selecting the measurement result 1. In other words,
states normalized within the finite range [0, T ] are the
result of proyecting the state of the Universe onto the
subspace spanned by eigenstates of T̂ with eigenvalues
t ∈ [0, T ].

In terms of the wave function Ψ(x, t), Eq. (16) reads

i~
∂

∂t
Ψ(x, t) = ĤRΨ(x, t), (23)

hence, if condition (21) holds for an initial time t = 0, it
will hold for all t. Now, from Eq. (23) it follows that if R
and C are non-entangled, so that Ψ(x, t) is a factorizable
state of the form Ψ(x, t) = ΨR(x)ΨC(t), then ΨR(x) is
an eigenstate of ĤR, consequently Ψ(x, t) is a stationary
state, and R does not evolve. Thus, the essential point
is that for Ψ(x, t) to evolve, the rest of the universe
and the clock must be entangled, that is, Ψ(x, t) must
be a non-factorizable function of the variables x and t,
which in turn requires that the zero eigenvalue of ĤU

is degenerate (the higher the degeneracy, the richer the
evolution will be). To investigate such intimate relation
between entanglement and time evolution is the aim of
the following sections.

Now that the main ingredients of the timeless picture
of quantum mechanics have been introduced, we can
reconsider the timeless approach from an intuitive, qual-
itative point of view. As we have already seen, in the
timeless approach the system R under consideration and
the clock C are jointly in a stationary quantum pure
state described by the wave function Ψ(x, t). This wave
function describes in a static way all that happens to C
and R at all times t and at every location x. That is,
Ψ(x, t) is a static mathematical object codifying all that
happens “everywhere and everywhen”. In this sense, the
timeless picture of quantum mechanics can be regarded
as a quantum-mechanical version of the “block universe”
picture of time in classical physics [31]. According to
this latter picture, all that has happened in the past and
all that will happen in the future exists in a “frozen”
block universe that, together with the multi-dimensional
coordinates x describing the configuration space of the
system R, incorporates a new dimension associated with
the time parameter t.

Now, in the quantum timeless picture, t is not regarded
as a parameter, but as the coordinate describing the clock
system C. As we have already mentioned, if the system
R is perceived as evolving (in the usual sense), then the
joint pure state describing the composite (R + C) system
has to be entangled. This means that, if R evolves, then,
from the timeless point of view, neither of the subsystems
R and C can be described by a pure state. Watching
the quantum block universe “from the outside”, so to
speak, one cannot associate a pure state to either R or
C. In other words, even having a maximum knowledge
about the state of the total R + C system, one cannot
have complete knowledge about either one of the parts
[8]. To describe the subsystems R and C we need the
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corresponding density matrices ρR and ρC . The marginal
density matrix ρR has a clear intuitive meaning. We shall
consider that the global wave function Ψ(x, t) is defined
over a finite time interval [0, T ]. The matrix ρR results
from tracing the global state ρ = |Ψ〉 〈Ψ| over the degrees
of freedom of the clock C, that is, over the coordinate
t ∈ [0, T ]:

ρR = TrC ρ =
∫ T

0
〈t|Ψ〉〈Ψ|t〉 dt

=
∫ T

0
|Φt〉 〈Φt| dt

= 1
T

∫ T

0
|Φ̃t〉〈Φ̃t| dt. (24)

Notice that Eq. (21) guarantees the normalization condi-
tion Tr ρR = 1, required by any density matrix describing
a physical state.

Equation (24) shows that the marginal density matrix
ρR is given by a statistical mixture of all the (normal-
ized, pure) states |Φ̃t〉 that describe the system R at
different times within the interval [0, T ]. That is, ρR

is equal to the time average of the evolving state |Φ̃t〉
over the interval [0, T ]. This state of affairs is essentially
quantum-mechanical and does not have a counterpart
within the classical block universe picture. This suggests
that quantum mechanics is perhaps better adapted to the
block universe picture than classical mechanics. Now, the
mixed state described by ρR has a degree of mixture that
can be assessed quantitatively by various appropriate
measures. These measures of mixedness also provide indi-
cators of the degree of entanglement that exists between
the system R and the clock C.

The measures of the degree of mixedness of ρR are
related to the effective number of distinguishable pure
states that contribute to ρR. For instance, the participa-
tion ratio of ρR, given by 1/Tr (ρ2

R), constitutes a direct
measure of the effective number of distinguishable states
in ρR. On the other hand, the von Neumann entropy
SvN [ρR] can be interpreted as an effective indicator of
the (logarithm of the) number of distinguishable states
entering in the decomposition of a statistical mixture
described by ρR. Other entropic measures evaluated on
ρR admit similar interpretations. It is thus intuitively
clear that, since ρR coincides with the time average of
the evolving state |Φ̃t〉, the measures of the degree of
mixedness of ρR give us a quantitative estimate of the
degree of diversity of (or amount of distinguishability
between) the different states that the system R visits
during the interval [0, T ].

In summary, the degree of mixedness of ρR, as mea-
sured by a set of different indicators —including the
linear or the von Neumann entropy— gives us an esti-
mate of two different things: the amount of entanglement
between C and R, and the distinguishability of the states
of R at different times, during the interval [0, T ]. Thus,
we see that there is a close connection between the evolu-
tion of R and the entanglement between C and R: both

these phenomena have as a consequence that the quan-
tum state ρR of the system R is mixed. The more ρR is
mixed, the greater the diversity of states that R visits
during its evolution, and the more R is entangled with
C.

4. Quantifying the entanglement
between the clock C and the rest of
the Universe R

With the aim of exhibiting the tight relation between
entanglement and evolution, we shall consider, as before,
a finite time interval [0, T ] during which the evolution
takes place. Moreover, for analyzing the entanglement
between C and R we adopt the entanglement indicator
discussed in Section II. Therefore, in what follows we will
focus on the quantity

E = 1 − Tr ρ2
R, (25)

with ρR the marginal density matrix of R. The matrix
elements of ρR are given by

〈x|ρR|x′〉 = 1
T

∫ T

0
Ψ(x, t)Ψ∗(x′, t) dt. (26)

This is an instance of the general expression (5), with A
and B substituted by R and C, the basis |x2〉 substituted
by the basis |t〉 of the clock, and Ψ substituted by the
global function 1√

T
Ψ(x, t), properly normalized in space

and time during the chosen time interval.
Recall that, according to Eq. (24), the marginal density

matrix ρR can be interpreted as the time average, over the
interval [0, T ], of the normalized state |Φ̃t〉〈Φ̃t|. Further,
ρR is a statistical superposition of the states |Φ̃t〉〈Φ̃t|
corresponding to different values of t (as opposed to a
coherent quantum superposition). It is also worth to
emphasize that the density matrices ρR and |Φ̃t〉〈Φ̃t|,
though both referring to system R, represent different
states. The latter is obtained via a projective operation.
Up to a constant factor, it represents the state of R
conditioned to the state |t〉 of the clock, and is a pure
state that evolves unitarily as t flows. In its turn, ρR is
obtained via a partial trace. It represents a time-averaged
state (over the interval [0, T ]) and, in general, is a mixed
state that does not evolve unitarily with the ticking of
the clock.

The entanglement measure (25) is therefore given by

E = 1 − Trρ2
R

= 1 − 1
T 2

∫ T

0
dt

∫ T

0
dt′
∫

Ψ(x, t)Ψ∗(x′, t)×

×Ψ∗(x, t′)Ψ(x′, t′) dx dx′, (27)

which constitutes a particular example of Eq. (9). Ex-
pression (27) can be expressed in a more compact way
as

E(T ) = 1 − 1
T 2

∫ T

0

∫ T

0
|〈Φ̃t|Φ̃t′〉|2 dt dt′. (28)
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It is worthwhile stressing that the dependence of the
entanglement E on a duration of time T (instead of on
time t) originates in Eq. (24), where the complete density
matrix |Ψ〉 〈Ψ| is (partially) traced over the degrees of
freedom of the clock, that acquire values precisely in
the interval [0, T ]. In fact, this partial trace operation
over the degree of freedom t implies that the reduced
density matrix ρR, hence E , will not be a function of the
variable t. Recalling that, as stated below Eq. (26), the
marginal density matrix ρR can be interpreted as the
average state over the period [0, T ], the quantity E(T )
can be interpreted as the average entanglement in such
period.

The second term on the right-hand side of Eq. (28)
is a time average, over the interval [0, T ], of the overlap
|〈Φ̃t|Φ̃t′〉|2 between the states |Φ̃〉 at different instants.
Now, the overlap indicates how indistinguishable the
quantum state |Φ̃t〉 is from the state |Φ̃t′〉 (zero overlap
corresponds to perfectly distinguishable states, whereas
overlap equal to one corresponds to identical —up to a
global phase— states). Consequently, it is intuitively clear
that E can be interpreted as a quantitative measure of
how varied is the life of the state |Φ̃t〉 (or equivalently, the
unnormalized state |Φt〉) over the interval [0, T ]. Indeed,
a varied life is such that each moment is different (that
is, highly distinguishable) from any other moment. That
corresponds to high (close to 1) values of E . On the
contrary, a monotonous life is one where each moment is
similar to (little distinguishable from) any other moment,
leading to a low value of E .

The quantity (28) therefore provides a direct visualiza-
tion of the intimate connection between time evolution
and entanglement: on one hand, it is a quantitative indica-
tor of the entanglement between the rest of the Universe
and the clock, during the time interval [0, T ]. On the
other hand, it constitutes a quantitative measure of the
degree of variety exhibited by the evolving state |Φt〉
during that same period. The interpretation of the right-
hand side of (28) as a measure of the degree of variety of
the system’s state over the interval [0, T ], is justified by
its relation with the mean overlap (or fidelity) |〈Φ̃t|Φ̃t′〉|2,
as explained in the last paragraph, implying that for high
values of (28) the state |Φ̃t〉 is, on average, highly distin-
guishable from any other state |Φ̃t′〉, whereas low values
of (28) indicate that |Φ̃t〉, on average, does not differ
much from |Φ̃t′〉.

5. Explicit form of the entanglement
between C and R

To further analyze E it is necessary to actually evaluate
this measure as a function of T in the general case, in
which the wave function Ψ(x, t) evolves according to Eq.
(23). For this purpose we start form the expression (20)

to write

〈Φ̃t|Φ̃t′〉 =
∫

Ψ∗(x, t)Ψ(x, t′) dx, (29)

and expand Ψ(x, t) in terms of the (orthonormal) eigen-
states of ĤR, ĤRϕn(x) = Enϕn(x), as follows:

Ψ(x, t) =
∑

n

ane−iEnt/~ϕn(x), (30)

with
∑

n |an|2 = 1.
The overlap (29) thus rewrites as

〈Φ̃t|Φ̃t′〉 =
∑
nm

a∗
namei(Ent−Emt′)/~

∫
ϕ∗

n(x)ϕm(x) dx

=
∑
nm

a∗
name

i
~ (Ent−Emt′)δnm

=
∑

n

|an|2e
i
~ En(t−t′), (31)

whence Eq. (28) gives

E(T ) = 1− 1
T 2

∑
nm

|anam|2
∫ T

0

∫ T

0
dt dt′ e

i
~ (En−Em)(t−t′)

= 1 − 2
∑
nm

|anam|2 [1 − cos(ωnmT )]
(ωnmT )2

= 1 −
∑
nm

|anam|2sinc2(ωnmT/2), (32)

where we defined ωnm = |En − Em|/~.
Using that

∑
nm |anam|2 = 1, and separating the sum

into those terms for which En = Em (or ωnm = 0), and
those that satisfy En 6= Em (or ωnm 6= 0), we are led to
the following expression

E(T ) =
∑
nm

(ωnm 6=0)

|anam|2[1 − sinc2(ωnmT/2)], (33)

which gives E(T ) once the initial state Ψ(x, 0) (which
determine the expansion coefficients an) is determined.
Equation (33) shows that the entanglement is not a
monotonous function of T , so the life of |Φt〉 in the inter-
val [0, T ] exhibits ups and downs which are determined
not only by T , but also by the transition frequencies, or
rather the accesible states that R can visit during its
evolution.

5.1. Maximal and minimal entanglement

According to Eq. (33), the maximum value of E is

Emax =
∑
nm

(ωnm 6=0)

|anam|2 = 1 −
∑
nm

(ωnm=0)

|anam|2, (34)

and is attained at the zeros of sinc (ωnmT/2), which occur
in the limit T → ∞, or whenever

T = 2πlnm/ωnm, (35)
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with lnm = 1, 2, ... Since ωnm varies in general from term
to term in the sum in (33) whereas T is a fixed quantity,
the condition (35) can be automatically met (assuming
no degeneracies) when: i) There is a single transition
frequency ωnm, that is, when the expansion (30) involves
two terms only, so that the system is a two-level system.
In this case lnm can be any positive integer, and T is
a multiple of the transition period. ii) The system is
an harmonic oscillator of frequency ω0, so that ωnm =
ω0|n − m|. In this case, taking lnm = l|n − m|, with l any
positive integer, guarantees that the oscillator reaches
the maximal entanglement in a time corresponding to l
natural periods. For systems in which condition (35) is
not met, the maximal entanglement is reached only in
the limit T → ∞.

Now, the first sum in Eq. (34) runs over all pair of
indices (n, m) such that ωnm 6= 0, that is, such that
En 6= Em. In the particular case in which there is no
degeneracy, this is the same as summing over all pair of
indices (n, m) with n 6= m, whence we can write

Emax =
∑
nm

(n 6=m)

|anam|2 = 2
∑
nm

(n<m)

|anam|2. (36)

If this particular non-degenerate spectrum is also finite,
it is intuitively clear that Eq. (36) is maximal for an =
1/

√
N for all n, where N is the number of terms in the

expansion (30) (number of nonzero coefficients). In this
(equally weighted) case Eq. (36) leads to

Emax|a2
n=1/N = 2 · 1

N2 · N(N − 1)
2 = 1 − 1

N
. (37)

Therefore, the maximal entanglement increases (tends
to 1) as the number of terms in (30) increases, showing
that the least information we have on the particular
energy eigenstate state in the wave function (30), the
more entangled the system is with the clock, and more
varied the evolution will be.

Let us now consider the second equality in Eq. (34),
and write it in the form

Emax = 1 −
∑
nm

(En=Em)

|anam|2

= 1 −
∑

E

 ∑
n

(En=E)

|an|2


 ∑

m
(Em=E)

|am|2


= 1 −

∑
E

P 2(E), (38)

where we introduced the probability distribution

P (E) =
∑
m

(Em=E)

|am|2, (39)

which gives the probability of getting the value E when
an energy measurement is performed (taking into ac-
count degeneracy). The sum in Eq. (38), performed over

all indices {n}, is therefore equivalent to sum over all
energies En (again, taking into account degeneracy), and
Eq. (38) can be expressed as

Emax = 1 −
∑

E

P 2(E) = SL(E), (40)

where SL(E) stands for the linear entropy associated to
the energy measurement. Finally, this gives

E(T ) ≤ SL(E), lim
T →∞

E(T ) = SL(E), (41)

which is a sort of ‘energy-evolution’ uncertainty relation.
For a stationary state (a single term in the expan-

sion (30)) it follows immediately that E vanishes, as
should be expected. The other (non-trivial) minimum
of E is attained, according to Eq. (33), when each term
sinc2(ωnmT/2) reaches its maximum value. In its turn,
this occurs at the local maxima or minima of sinc (ωnmT/2),
which correspond to those points that satisfy the condi-
tion sinc (ωnmT/2) = cos(ωnmT/2).

5.2. Entanglement Measure Based on the von
Neumann Entropy

Due to the importance of the von Neumann entropy,
discussed in Section 2, it is instructive to analyze here
the entanglement indicator based on SvN , and given by
(see Eq. (11))

EvN ≡ SvN [ρR] = −Tr [ρR ln ρR]
= SvN [ρC ] = −Tr [ρC ln ρC ]. (42)

For this purpose we are first going to obtain an expression
for ρC . From Eq. (17) we get for the complete R + C
density matrix:

|Ψ〉〈Ψ| = 1
T

∫
Ψ(x, t)Ψ∗(x′, t′)|x〉〈x′| |t〉〈t′|dx dx′dt dt′,

(43)
and consequently the reduced, marginal density matrix
of the clock reads

ρC = TrR |Ψ〉 〈Ψ|

=
∫

〈x′′|Ψ〉〈Ψ|x′′〉dx′′

= 1
T

∫
Ψ(x, t)Ψ∗(x′, t′)〈x′′|x〉 〈x′|x′′〉×

× |t〉 〈t′| dx dx′ dx′′ dt dt′

= 1
T

∫ [ ∫
Ψ(x, t)Ψ∗(x, t′)dx

]
|t〉 〈t′| dt dt′

= 1
T

∫
〈Φ̃t′ |Φ̃t〉 |t〉 〈t′| dt dt′, (44)

where in the last line we used Eq. (29). Resorting now
to Eq. (31) we are led to

ρC =
∑

n

|an|2 |αn〉 〈αn| , (45)
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with
|αn〉 = 1√

T

∫
e− i

~ Ent |t〉 dt. (46)

Notice that the states |αn〉 are normalized (in the tem-
poral interval [0, T ]), yet are not necessarily orthogonal
to each other. Indeed, one has

〈αn|αn′〉 = i~
T (En′ − En)

[
e

−iT
~ (E′

n−En) − 1
]

, (47)

so in the limit T → ∞, the states |αn〉 corresponding to
different energies En become orthogonal to each other.
It is important to realize that, even though the states
{|αn〉} are not orthogonal to each other, they are linearly
independent.

Let us denote with {E(j)} = {E(0), E(1), . . .} the suc-
cession, in increasing order, of different energy values
appearing in the set {En} = {E0, E1, . . .} of energy eigen-
values. Notice that, while some of the En’s may be equal
due to degeneracy, all the E(j)’s are different, and satisfy
the strict inequalities, E(0) < E(1) < . . .. Moreover, in
contrast to what happens with the En’s, the index j
appearing in E(j) does not refer to the eigenvalue of the
Hamiltonian’s j-th eigenstate, but rather labels a par-
ticular value among the set of energy eigenvalues. This
notation allows us to write the sum (45) over the states
n, as a sum over the energy values E(j) as follows. First
we decompose (45) in the form

ρC =
∑

n

|an|2 |αn〉 〈αn| (48)

=
∑
m

(Em=E(0))

|am|2 |αm〉〈αm| +
∑

l
(El=E(1))

|al|2 |αl〉〈αl| + . . .

We then observe that in each sum (characterized by a
given value of the energy), all the |αn〉’s coincide. Thus,
for example, in the first sum Em = E(0) for all m, whence

|αm〉 = 1√
T

∫
e− i

~ Emt |t〉 dt

= 1√
T

∫
e− i

~ E(0)t |t〉 dt ≡ |αE(0)〉 . (49)

This gives

ρC =
∑
m

(Em=E(0))

|am|2|αE(0)〉〈αE(0) | +

+
∑

l
(El=E(1))

|al|2|αE(1)〉〈αE(1) | + . . .

=
∑
E(j)

∑
n

(En=E(j))

|an|2 |αE(j)〉 〈αE(j) | . (50)

Finally, resorting to Eq. (39) we arrive at

ρC =
∑

E

P (E) |αE〉 〈αE | , (51)

where the sum runs over all different values of the energy
(we dropped out the superindex (j) in E(j)), and any
possible degeneracy has been taken into account. The
marginal density matrix of the clock is thus a statistical
mixture of the pure states |αE〉, with statistical weights
P (E).

Now, in general it is not possible to obtain a closed
expression for the von Neumann entropy SvN [ρC ], be-
cause it depends on the particular form exhibited by
the energy spectrum of the Hamiltonian HR. However,
we can obtain a useful upper bound for SvN [ρC ], if we
assume (as done here) that the Hilbert space of system
R has finite dimension, so the sum in (51) is also finite.
In general, when one has a convex linear combination of
density matrices of a finite-dimensional quantum system,
ρ =

∑
i λiρi, with 0 ≤ λi ≤ 1 and

∑
i λi = 1, one has

that SvN [ρ] ≤
∑

i λiSvN [ρi] −
∑

i λi ln λi [32]. Applying
this inequality to (51) one gets,

EvN = SvN [ρC ] ≤ −
∑

E

P (E) ln P (E) = S(E), (52)

where we have used that the entropy of a pure state
vanishes (so that SvN [|αE〉 〈αE |] = 0), and S(E) denotes
the Shannon entropy, S[E] = −

∑
E P (E) ln P (E), of

the probability distribution P (E) associated with the
possible results of measuring the energy of the system R.
Equation (52) thus shows that the entanglement EvN is
bounded from above by the Shannon entropy, an upper
bound similar to the upper bound (41) associated with
the linear entropy.

As already mentioned, in the limit T → ∞, the states
|αE〉 become orthogonal to each other. It follows from
Eq. (51) that in that limit, the values of P (E) coincide
with the eigenvalues of ρC , and the inequality in (52)
becomes an equality (see Eq. (12)). Therefore, we have

lim
T →∞

EvN = S(E). (53)

That is, in the limit T → ∞, the entanglement between
the clock and the system R (as measured by the von
Neumann entropy of either ρR or ρC), equals the Shannon
entropy associated with the measurement of the energy
of R.

5.3. Entanglement and energy fluctuations

We have seen above that in a stationary state, i.e., when
the energy dispersion

σ2
E = 〈Ψ| Ĥ2

R |Ψ〉 − 〈Ψ| ĤR |Ψ〉2 (54)

vanishes, the entanglement E vanishes as well. This sug-
gests a relation between σ2

E and E , that we shall now
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explore. Equation (54) in the general state (30) becomes

σ2
E =

∑
n

|an|2E2
n −

(∑
n

|an|2En

)2

=
∑
nm

|anam|2E2
n −

∑
nm

|anam|2EnEm

=
∑
nm

|anam|2En(En − Em). (55)

Making n ↔ m in the last line, and combining both
expressions we get

σ2
E = 1

2
∑
nm

|anam|2(En − Em)2 (56)

= ~2

2
∑
nm

(ωnm 6=0)

|anam|2ω2
nm.

Now, coming back to Eq. (33), and resorting to the
Taylor series of the sinc function

sinc (z) =
∞∑

l=0

(−1)lz2l

(2l + 1)! , (57)

we find that to lowest orden in T , E becomes

E(T ) = 1
3

∑
nm

(ωnm 6=0)

|anam|2(ωnmT/2)2 = T 2

6~2 σ2
E , (58)

so the dispersion in the energy determines the initial rate
of grow of E .

5.4. An example. The qubit case

We now focus on a qubit (two-level) system, considering
the expansion (30) with two terms only,

Ψ(x, t) = a1e−iE1t/~ϕ1(x) + a2e−iE2t/~ϕ2(x). (59)

We can compute for this example the marginal density
matrix of R,

ρR =
(

|a1|2 e
i(E2−E1)T

2~ sinc ω12T
2 a1a∗

2

e
i(E1−E2)T

2~ sinc ω12T
2 a∗

1a2 |a2|2

)
(60)
with eigenvalues

λ1,2 = 1
2(1 ±

√
1 − 4|a1a2|2

(
1 − sinc2 ω12T

2

)
. (61)

In this case, Eq. (33) reduces to

E(T ) = 2|a1a2|2
(

1 − sinc2 ω12T

2

)
, (62)

and the energy standard deviation σE =
√

σ2
E takes the

simple form (see Eq. (56))

σE = |a1a2|~ω12. (63)

This gives

E(T ) = 2|a1a2|2
(

1 − sinc2 σET

2~|a1a2|

)
. (64)

When TσE/~ = 2π|a1a2| l, with l = 1, 2, ..., E(T ) reaches
its maximum value Emax = 2|a1a2|2 (such condition is
equivalent to condition (35)). Moreover, if a1 = a2 =
1/

√
2, E(T ) becomes

E(T )|a2
n=1/2 = 1

2

(
1 − sinc2 σET

~

)
, (65)

and the maximum value is Emax = 1/2. Thus, whenever
σET = ~πl, the maximum value of E is attained for a bal-
anced coherent superposition of (two) energy eigenstates
(of ĤR).

It is instructive here to consider the von Neumann
entropy SvN , or equivalently the entanglement indicator
EvN (see Eq. (42)), which in this case can be computed
directly as follows. By combining Eqs. (61) and (62) we
get,

λ1 = 1
2(1 +

√
1 − 2E), λ2 = 1

2(1 −
√

1 − 2E), (66)

and inserting the eigenvalues λ1,2 into EvN = SvN =
−λ1 ln λ1 − λ2 ln λ2 (see Eq. (12)), we obtain a closed
expression for EvN —which measures the entanglement
between the system R (in this case the qubit) and the
clock— as a function of the entanglement indicator E :

EvN = −1
2(1 +

√
1 − 2E) ln

(
1
2(1 +

√
1 − 2E)

)
−

−1
2(1 −

√
1 − 2E) ln

(
1
2(1 −

√
1 − 2E)

)
. (67)

Figure 1 shows that SvN (and, consequently, also EvN )
is a monotonic increasing function of the entanglement
indicator given by the linear entropy SL, or equivalently
of the average distinguishability discussed at the end
of Section 4. This confirms the tight relation between
evolution and entanglement, whether the latter is quan-
titatively assessed using the linear or the von Neumann
entropy.

Figure 1: von Neumann entropy as a function of the linear
entropy for an evolving qubit system.
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6. Concluding remarks

A pedagogical discussion of entanglement within the
timeless approach to quantum mechanics was presented.
This is a scenario in which evolution and time are not
primitive ingredients of the description of the physical
world but, rather, emergent phenomena. The Universe
is viewed as consisting of a clock C and a system R
(the rest of the Universe) that are jointly in a stationary
state. The time evolution of the system R arises from
the quantum entanglement between the clock C and R.
Using a minimum of formalism, we showed that there is
a direct and quantitative relation between the quantum
entanglement exhibited by the R + C composite and
the dynamical evolution experienced by the system R.
Indeed, the entanglement between the clock and the
system R closely related to the average distinguishability
between the states of R corresponding to different times.
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