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Influence geometric anisotropy in management zones delineation1

Influência da anisotropia geométrica na delimitação de zonas de manejo
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Santos4, Wellington Donizete Guimarães5 and Matheus de Paula Ferreira4

ABSTRACT - The proper handling soil allows the reduction of contaminants, maximize agricultural productivity, and is
directly related the knowledge spatial variability of soil attributes. This spatial variability can express isotropic and anisotropic
form. The latter being neglected in research related to management zones delineation. In this context, the present study aimed to
evaluate the effect of the geometric anisotropy correction on the management zone delineation. The methodology was applied
under database of soybean productivity and apparent electrical conductivity (CEa) of a rural property in Ponta Porã – MS. By
means of this georeferenced database, maps was interpolated with ordinary kriging. For each combination, attribute (productivity
and CEa) and number of classes, were produced two maps management zones, one without and one with anisotropy correction,
the same were compared through the kappa index, with significance tested by the Z-test. The management zones number was
also evaluated by Fuzziness Performance Index (FPI) and the Modified Partition Entropy (MPE). The area subdivision in
two management zones, without and with anisotropy correction, presented higher Kappa index, with values of 0.89 and 0.91
respectively, but not presented significant differences with each other.
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RESUMO - O manuseio adequado do solo, além de permitir a redução de contaminantes e a maximização da produtividade
agrícola, está diretamente relacionado ao conhecimento da variabilidade espacial dos atributos do solo. Esta variabilidade
espacial pode expressar-se de forma isotrópica e anisotrópica. Sendo a última, negligenciada nas pesquisas relacionadas ao
delineamento de zonas de manejo. Nesse contexto, o presente trabalho objetivou avaliar o efeito da correção da anisotropia
geométrica na delimitação de zonas de manejo. A metodologia foi aplicada sob um banco de dados de produtividade de
soja e condutividade elétrica aparente (CEa) de uma propriedade rural em Ponta Porã - MS. Por meio deste banco de dados
georreferenciados interpolou-se mapas com uso da krigagem ordinária. Para cada combinação, atributo (produtividade e CEa)
e número de classes, foram produzidos dois mapas de zonas de manejo, um sem e outro com a correção da anisotropia, onde
os mesmos foram comparados por meio do índice kappa, com significância testada pelo teste Z. O número de zonas de manejo
foi avaliado quanto ao Índice de Performance Fuzzy (FPI) e a Entropia da Partição Modificada (MPE). A subdivisão da área
em duas zonas de manejo, sem e com correção de anisotropia, apresentou maior índice kappa, com valores de 0,89 e 0,91
respectivamente, não apresentando diferenças significativas entre si.
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INTRODUCTION

The soybean culture presented, in the 2017/18
harvest, an estimated production of 336.7 million
tons, in an area planted estimated at 90.1 million
hectares (UNITED STATES DEPARTMENT OF
AGRICULTURE, 2018). However, this formidable
scenario does not present homogeneous productivity,
being observed variations in small areas of cultivation
(BOTTEGA et al., 2017a), that may be associated to
the spatial variability of the nutrients present in the
soil (FAGUNDES et al., 2018; RICARDO et al., 2016)
and to the effects of complex interaction between soil
chemical properties and culture management practices
(BOTTEGA et al., 2013; PEREIRA et al., 2016).

Geostatistics allows identifying these areas with
low productivity as well as identifying factors that
influence it. Knowledge of the spatial variability pattern
of these factors allows treatment at variable rates in the
subregions of the field. These subregions are referred
to as management zones. The management zone can be
defined as a subregion of the field that needs to receive
the input dosage uniformly, as it presents the same levels
of factors limiting crop productivity (RODRIGUES
JUNIOR et al., 2011). Its use allows soil conservation
(DALCHIAVON et al., 2012), reduction of production
costs and environmental impacts (BOTTEGA et al.,
2017b).

Among the issues surrounding the generation of
management zones, it is essential to identify the main
parameters in its implementation (FRIDGEN et al.,
2004). In this sense, we highlight the use of the apparent
electrical conductivity (CEa) of the soil,  whose pattern of
spatial variability relates to the pattern of spatial variation
of cultures and soil physical and chemical properties
(CORWIN et al., 2003). Morari, Castrignano and Pagliarin
(2009) used CEa values and other soil physical properties
to characterize spatial variability using kriging. The results
of this study allowed isolating sources of variations that
acted at different spatial scales. These sources of variation
made it possible to delimit management zones through
the fuzzy k-means algorithm. Molin and Castro (2008)
and Bottega et al. (2017b) also used CEa data and soil
properties in the characterization of spatial variability by
means of ordinary kriging. The interpolated maps were
used in the delimitation of management zones applying
the fuzzy K-means method.

In view of the mentioned studies, it is well
known that the variability of soil attributes, especially
CEa, can help to delimit management zones when using
classification methods. The spatial variability of these
attributes has been modeled and mapped by means of
geostatistical linear predictors. The use of these maps

makes it possible to explain the causes of production
variability (QUEIROZ et al., 2000).

In the delimitation of management zones the
maps of variability have been generated using several
geostatistical interpolators such as ordinary kriging
(ALVES et al., 2013; CHANG et al., 2014; FU; WANG;
JIANG, 2010; MORAL; TERRÓN; REBOLLO, 2011;
SAFANELLI; BOESING; BOTTEGA, 2015; TRIPATHI
et al., 2015), the co-kriging (MORARI; CASTRIGNANO;
PAGLIARIN, 2009), the regression kriging (MORAL;
TERRÓN; SILVA, 2010), the linear programming (CID-
GARCIA et al., 2013) among others.

However, these surveys have ignored the geometric
anisotropy correction. Geometric anisotropy is caused
when the semivariogram presents different patterns of
spatial dependence in different directions. The geometric
anisotropy correction allows greater precision in the
construction of thematic maps that describe the spatial
variability of the soil attributes (GUEDES et al., 2013).
In this context, given the importance of the geometric
anisotropy correction, the present work aims to evaluate
its effect on the delimitation of management zones.

MATERIAL AND METHODS

The methodologies in this work were applied in a
database collected by Bottega (2014) in a rural property
in the city of Ponta Porã - state of Mato Grosso do Sul
(MS). The soil is classified as a Dystroferric Red Latosol,
with a clayey texture (EMPRESA BRASILEIRA DE
PESQUISA AGROPECUÁRIA, 2013). This database
contains measurements, in 160 georeferenced points, of
the CEa attributes and soybean productivity in the 2011
/ 2012 harvest. CEa measurements were obtained with a
depth of 0 to 20 cm.

The georeferencing of the attributes was
performed by a Garmin GPS receiver, model GPSMAP
62. The productivity values were obtained and manually
georeferenced at sample points composed of three lines of
one linear meter, with an area of 1.35 m2 being the values
expressed in kg ha-1.

For each of the measured attributes a spatial
dependence model was adjusted with and without
anisotropy correction. This model was adjusted to the
empirical semivariogram which was obtained from the
calculation of the semivariance γ(h):

                                                                                       (1)

for different separation distances (MANTO, 2005).
Where h is the distance between pairs of observations
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and N(h) is the number of observation pairs Z(xi) and
Z(xi+h) observed at positions xi and xi and  that  are
separated by a distance h.

For the modeling of the structure disregarding the
anisotropy correction, the weighted least squares (WLS)
adjustments were applied to the Gaussian, exponential and
spherical models.

The adjusted models received as initial estimates
the parameters found by Bottega (2014). Each adjustment
was submitted to the linear geostatistical predictor of
ordinary kriging, disregarding the trend effect.

And as a selection criterion, the model that
presented the lowest mean of the kriging cross-validation
errors (Mean Error: ME) was used:

                                                                                       (2)

where Ẑ(xi) is the value of the estimate at the point not
observed xi.

According to Oliver and Webster (2014), even
with a poor choice of the model, the mean of errors equal
to zero ensures that kriging is not biased. In addition to
the ME, to guarantee the correct choice of the model,
we followed the suggestion of the same author and used
the Mean Squared Deviation Ratio (MSDR) with the
expected ideal value, the closest to 1.

                                                                                       (3)

where Ẑ(xi) the kriging estimate of the variable sampled at
point xi and ô2

k(xi) the estimate of the kriging variance of
the variable sampled xi.

The selected model was then used to measure the
spatial dependency index (SDI) proposed by Zimback
(2001). Such index is defined as the percentage of
the contribution in relation to the level. Thus, spatial
dependence can be classified as: strong for IDE > 75%,
moderate for IDE between 25% and 75% and weak for
IDE < 25%.

All steps mentioned above were also used in the
modeling whose anisotropy correction was considered.
In this case, the value of the semivariogram depends
not only on the length of the vector h, but also on its
direction.

For each adjustment referenced above, it was
followed if the steps described in Manto (2005) first
identified whether the anisotropy axes (major and minor
axes) by means of experimental semivariograms in
different directions (0º, 45º, 90º and 135 ºc with a tolerance
of 22.5º).

Then, a translation of the axes of the data matrix
was made, coinciding with the axes of the anisotropy by
means of the rotation matrix R:

                                                                                       (4)

where α is the angle in the north direction with the largest
axis of the ellipse. Then, the directional semivariograms
are combined into a single semivariogram, where the
range is normalized to size 1 using the matrix T:

                                                                                       (5)

where αmax and αmin are the axes of the ellipse of
anisotropy with greater and smaller range, respectively.
Then, the rotational matrices R and translation of T axes
are combined to obtain a single isotropic semivariogram,
given by y(xi-xj) = y(||TR(xi-xj)||). Diggle and Ribeiro
Junior (2007) also used the same process using linear
transformation (rotation and translation) through matrix A:

                                                                                       (6)

In this way, the geometric anisotropy correction is
defined by the parameters α (direction of greater spatial
continuity) and anisotropy factor Fα=α2/α1, being α2 and
α1, respectively, the higher and lower range values of the
directional semivariograms.

All the methodological mechanisms used in the
spatial dependence structure modeling were conducted
with the use of Software R (R CORE TEAM, 2016) using
the geoR package (RIBEIRO JUNIOR; DIGGLE, 2016).

After the spatial dependence modeling, the
interpolated maps for the CEa attributes and soybean
productivity were processed by the KrigMe software
(VALENTE et al., 2012), which uses the fuzzy k-
means classification method to delimit the management
zones.

The fuzzy k-means classification algorithm
determines the number of management zones by means of
the Fuzziness Performance Index (FPI) and the Modified
Partition Entropy (MPE), that relate the disorganization
of the data regarding the definition of management zones.
When these two indexes have minimum values, we have
the optimal number of classes established (SONG et al.,
2009).

For each combination, attribute and number of
classes, two maps of management zones were produced,
one without and the other with anisotropy correction,
where they were compared using the kappa index. This
index was evaluated for its significance by the Z test,
which consequently allows us to gauge the similarity
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between the maps. Thus, maps whose kappa coefficient
is equal to zero, are totally different. And the closer to
one, the greater the similarity. Thus, limits of similarity
between the maps were established by means of the kappa
coefficient as proposed by Landis and Koch (1977), so
that the level of similarity between maps is classified as
poor for kappa values between 0.00 and 0.19, reasonable
for kappa values between 0.20 to 0.39, good for values
between 0.40 and 0.59, very good for values between 0.60
and 0.79 and excellent for kappa values greater than or
equal to 0.80.

RESULTS AND DISCUSSION

Descriptive analysis: the descriptive statistics
associated to the productivity and CEa attributes are
presented in Table 1.

Despite the difference of scale in the measurement
of the attributes, the productivity presented a lower
percentage variation of the data around the mean,
than that presented for the CEa. Similar coefficient of
variation (35.1) for this same attribute was also verified
by Aggelopooulou et al. (2013). This author also obtained
a distribution of CEa values with positive asymmetry).
Productivity, on the other hand, presented a distribution
with negative asymmetry.

Variographic analysis without anisotropy
correction:  where the parameters of the omnidirectional
semivariogram models selected based on the cross-
validation statistics for the productivity and CEa attributes
are presented (Table 2).

Table 1 - Descriptive statistics associated with productivity and apparent electrical conductivity attributes

Prod - Productivity (kg ha-1); CEa - Apparent electrical conductivity of the soil (mS m-1); N - Number of observations; SD - standard deviation;
CV - Coefficient of variation (%); CA - Coefficient of Asymmetry; CK - Coefficient of kurtosis

Table 2 - Specifications of omnidirectional models adjusted without anisotropy correction

Prod - Productivity (kg ha-1); CEa - Apparent electrical conductivity of the soil (mS m -1); ME - Mean of errors of the kriging cross-validation;
MSDR - Mean Squared Deviation Ratio of cross-validation of kriging, R 2Adj - Adjusted coefficient of determination

Attributes N Minimum Medium Mean SV CV CA CK Maximum
Prod 160 1225,06 2.345,26 2.302,75 298,44 12,96 -0,35 0,85 3.244,49
CEa 160 2,74 5,94 6,19 2,13 34,44 2,24 9,29 19,31

Attributes
Parameters

Nugget Effect Level Practical Range ME MSDR R2Adj
Prod 18.948,7 108.527 374,92 0,48 1,3 0,61
CEa            3,11 3,88 836,24 0,00 1,0 0,20

For both attributes the Gaussian model adjusted
by the weighted least squares method was selected. The
criterion of selection of this model resulted from the use
of the mean of the kriging cross-validation errors. The
lower the mean of the kriging cross-validation errors,
the greater the accuracy (SILVA JUNIOR et al., 2012).
Additionally, we verified the weighted mean square error
of the kriging c0ross-validation, whose value should be
the closest one.

The semivariogram models selected for the
productivity and CEa attributes respectively explained
that 83% and 20% of the total data variation are due to
spatial dependence, according to the spatial dependence
index by Zimback (2001).

Variographic analysis with anisotropy
correction: The acquisition of directional empirical
semivariograms verified the existence of anisotropy. It
was verified for the productivity attribute, anisotropy
angle at 0º and anisotropy factor 1.5; while in the CEa
attribute, anisotropy angle was found at 90º and anisotropy
factor 2.0.

The anisotropy parameters of each attribute were
applied to the linear transformations of spatial coordinates
of their respective georeferenced samples. After the linear
transformations in the spatial coordinates, new directional
semivariograms were constructed in the directions of
greater and smaller spatial continuity and respective
anisotropy factor.

The parameters of the directional semivariograms
of the Gaussian model obtained after transformations of
the spatial coordinates are presented in Table 3.
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Table 3 - Gaussian model parameters of the directional semivariograms relative to the angles of greater and lesser spatial continuity,
after linear transformations in the georeferenced coordinates of the attributes

Attribute Angle  Nugget Effect Level Practical Range

Productivity (kg ha-1)
0º 20.436 105.025 110

90º 19.986 92.442 90

CEa (mS m-1)
90º 3,11 5,84 685
0º 2,62 3,73 597

When comparing the estimates of the
semivariograms parameters adjusted at the 0º and 90º
angles for the productivity attribute, a similar value is
observed for the estimate of the nugget effect parameter
and that the axis of greater spatial continuity is close to
20% of the axis of lesser spatial continuity. In addition, the
estimate of the Level does not exceed 15% of the axis of
greater spatial dependence.

Similar behavior was also observed for the CEa
attribute, in which the percentage increase in the estimate
of the Nugget Effect does not exceed 20%, when the
estimates of the axis of lesser spatial continuity to the one
of greater spatial continuity are countered. In the Practical
Range estimates, only a percentage increase of less than
0.15% is observed.

These results indicate that the linear transformations
were able to correct the anisotropy effect to such an extent
that, when adjusting variogram on the two anisotropy
axes (0º and 90º), the adjusted models presented similar
estimates for the parameters (Nugget, Level and Range).

Therefore, to correct the geometric anisotropy, the
georeferenced coordinates of the sampled points were
submitted to linear transformations and an omnidirectional
semivariogram model was obtained for each of the
attributes (Table 4).

For the CEa attribute, the adjusted coefficient of
determination was identical to that found in variography
that disregarded the anisotropy, as well as the mean of
the cross validation errors. Already the productivity
attribute remained with the same adjusted coefficient of
determination.

Table  4  - Gaussian model parameters of the omnidirectional semivariograms after linear transformations in the georeferenced
coordinates of the sampled points where the productivity and CEa attributes were measured

Prod - Productivity (kg ha-1); CEa - Apparent electrical conductivity (mS m-1);  ME - Mean of errors of the kriging cross-validation; MSDR - Mean
Squared Deviation Ratio of cross-validation of kriging; R2Adj - Adjusted coefficient of determination

Attribute ME MSDR R2Adj Nugget Effect Level Practical Range
Prod 0,09 0,80 0,61 20.000 92.250 138
CEa 0,00 1,1 0,20 2,97 3,34 635

The parameters of these omnidirectional
semivariogram models were then used in the linear
geostatistical predictor of ordinary kriging. The use of this
predictor allowed to express the spatial variability maps
of the attributes.

Definition of management zones: both the maps
developed in the analysis without anisotropy correction
and those developed in the analysis with anisotropy
correction were submitted to the fuzzy k-means algorithm
for the design of the management zones with different
numbers of classes.

In each map produced, the Fuzziness Performance
Index (FPI) and Modified Partition Entropy (MPE)
were evaluated for both attributes, productivity and CEa
(Figure 1).

As well as Peralta et al. (2015) and Chang et al.
(2014), the indexes were evaluated in up to six classes. As
can be seen in (Figure 2), for the productivity attribute, as
the number of classes increases, both the indexes with and
without anisotropy correction approximate zero. Already
the CEa attribute presented opposite behavior.

When comparing the indexes with and without
anisotropy correction, values closer to zero were obtained
after anisotropy correction. These values indicate a better
organization of the data in relation to the other analysis,
since the FPI estimates the degree of separation of the
members in different zones and the MPE estimates the
degree of disorganization created by the number of zones.
These indexes present values between 0 and 1, the optimal
number of management zones is obtained when both
indexes are minimized (SONG et al., 2009).



Rev. Ciênc. Agron., v. 50, n. 4, p. 543-551, out-dez, 2019548

D. P. Barbosa et al.

For each number of classes verified for the indexes
mentioned (FPI, MPE), maps with their respective
management zones were produced. The maps produced
without anisotropy correction were compared to those
corrected for anisotropy, for both attributes (productivity and
CEa) for each number of classes. The comparison was made
with kappa index and respective Z Test (p-value < 0.01).

Figure 2 - Kappa index, as a function of the number of classes,
comparing maps with and without anisotropy correction, for
productivity (Prod) and apparent electrical conductivity (CEa)

A Figure 2 shows that, as the number of classes
increases, the kappa values tend to reduce, however,
regardless of the number of classes, all kappa values
were significant at 5% probability by the Z Test. Thus,
the level of similarity between the maps compared in the
productivity attribute presented an excellent classification
when using two or three classes, as proposed by Landis
and Koch (1977), however, for four or five classes was
classified as very good.

For the CEa attribute, only with the use of two
classes, the level of similarity between the maps can be
classified as excellent, whereas with three classes there
was a very good classification and with four or five classes,
it was classified as good.

The kappa values presented in Figure 2 are similar
to those obtained by Guedes et al. (2013) when comparing
kriging maps with isotropic and anisotropic structure for
simulated soil chemical attributes data. The same author,
when considering actual values of a case study, obtained
values of kappa between 0.7 and 1 for a sample of 100
observations with anisotropy factor of 1 to 5.

Thus, considering the lower values of FPI and
MPE, and the significance of the kappa, it is recommended

Figure 1 - Fuzziness Performance Index (FPI) and Entropy of Modified Partition (MPE) relative to the number of classes in the
delimitation of management zones for the attributes: A) Productivity, disregarding anisotropy correction; B) Productivity, considering
anisotropy correction; C) CEa, disregarding anisotropy correction and D) CEa, considering anisotropy correction
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Figure  3  - Map of management zones for the CEa attribute
obtained without geometric anisotropy correction

to use two classes in the generation of management zones
without the need for geometric anisotropy correction.
Thus, Figure 3 shows the map of management zones
obtained without the anisotropy correction, for the CEa
attribute aiming at obtaining higher productivity in the
soybean plantation for the study area.

The area whose data were collected for this research
was presented with free flow, without occurrence of ditches
and/or furrows, with soil classified as Dystroferric Red
Latosol, with a clayey texture (EMPRESA BRASILEIRA
DE PESQUISA AGROPECUÁRIA, 2013) and excellent
drainage. In cases where the soil is anisotropic or has
unsatisfactory drainage, it has been modeled considering
such an anisotropic characteristic (VALIPOUR, 2012;
VIERO; VALIPOUR, 2017).

In addition to the occurrence of anisotropic soils, its
physicochemical properties same may present anisotropic
spatial dependence pattern. However, several studies
have neglected this possibility (ALVES et al., 2013;
CHANG et al., 2014; CID-GARCIA et al., 2013; FU;
WANG; JIANG, 2010; MORAL; TERRÓN; REBOLLO,
2011; MORAL; TERRÓN; SILVA, 2010; MORARI;
CASTRIGNANO; PAGLIARIN, 2009; SAFANELLI;
BOESING; BOTTEGA, 2015; TRIPATHI et al., 2015).

In view of this omission, the objective was
to evaluate the effect of geometric anisotropy on the
delimitation of management zones for CEa data of the
soil. The use of such an attribute is strongly related to
the spatial variability of soybean productivity and sample
questions.

The spatial variability pattern of CEa presented
with Gaussian structure in both analyses, with and
without geometric anisotropy correction. Such behavior
is characterized by low distance variations, since it is
presented continuously (ISAAKS; SRIVASTAVA, 1989).
Similar results were also obtained by Bottega (2014) in
disregarding the geometric anisotropy correction.

The definition of the number of management
zones when using the maps obtained in fuzzy k-means
was based on the FPI and MPE indexes. These indexes
are based on the better separation and organization of
the data in the delimitation of the management zones
(RICARDO et al., 2016).

The indexes obtained were close to those found by
Bottega (2014) for productivity (FPI = 0.3276 and MPE
= 0.3215) and CEa (FPI = 0.2071 and MPE = 0.2668).
In addition to the similarity obtained by Bottega (2014),
Valente et al. (2012) also found similar values of FPI and
MPE for CEa (0.22 and 0.27). Peralta et al. (2015), found
lower values of FPI and MPE for CEa (0.03 to 0.07),
however the depths used by the authors were 0 to 30cm
and 0 to 90 cm. The authors Morari, Castrignano and
Pagliarin (2009) using maps interpolated with kriging
found similar values of FPI and MPE to those obtained
by Peralta et al. (2015), varying between 0.06 and 0.04,
however, the evaluated attributes were sand, clay and
gravel.

The values obtained for the FPI and MPE indexes
were lower for the corrected anisotropy maps than
for the uncorrected ones ().-C and ).-D). However, the
kappa index showed no significant difference in the
maps of management zones with and without anisotropy
correction. Thus, as much as the anisotropy correction
increases the precision in the construction of thematic
maps (BOISVERT; MANCHUK; DEUTSCH, 2009;
CHORTI; HRISTOPULOS, 2008; FACAS; MOONEY;
FURRER, 2010; GUEDES et al., 2013; ZIMMERMAN,
1993), the design of the management zones was not
affected.

Similar results were found by Guedes et al. (2013)
when comparing these spatial dependence structures
using the kappa index. This author observed that, even
with high values of anisotropy (3.4 and 4.5), there
is similarity between the maps generated. This same
similarity was also observed through global accuracy
and Tau index.
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CONCLUSION

Although the FPI and NCE indexes presented
values closer to the ideal with the anisotropy correction,
the kappa index did not detect a significant difference in
relation to those that were obtained without the correction.
Thus, it can be understood that ignoring or transforming
a geometric anisotropic variable into isotropic does not
necessarily significantly affect the grouping of data into
classes by means of the fuzzy k-means algorithm, which in
turn delimits the management zones.
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