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Precision conservation: from visual analysis of soil aggregates to the
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Conservação de precisão: da análise visual de agregados do solo para a utilização de
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ABSTRACT - The concept of precision conservation can be defi ned as a set of space technologies and other procedures
linked to mappable environmental variables, which can be used to program conservation management practices for natural
resources that consider the variability of these variables in space and time within of natural or agricultural systems. In this
context, structural loss of soil through human activities is considered, as with a process with a spatial and temporal variation.
The management of soil aggregation conditions can contribute to more regenerative and sustainable agricultural processes.
It allows spatial analysis technologies through georeferenced visual indicators or even the use of systems with automatic
learning, known as deep learning. In this sense, a fair visual method was developed with an analysis of fuzzy logic to classify
aggregates in terms of shape, surface roughness, and biogenic structures. Thus, in a second stage, a model of the artifi cial
neural network was developed, capable of detecting and classifying different forms of soil aggregates, thus allowing a brief
discussion of the theme and its potential for application in conservation management through the analysis of aggregates via
systems automatic sorting. In this way, elements are presented for the motivation of research and development in adaptive
technologies in supporting decision-making that can help integrate dynamic and spatial information in the understanding of the
soil’s structural condition to preserve the soil more precisely.
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RESUMO - O conceito de conservação de precisão pode ser defi nido como um conjunto de tecnologias espaciais e outros procedimentos
ligados as variáveis ambientais mapeáveis, que podem ser utilizadas para programar práticas de gestão da conservação recursos naturais
que levam em consideração a variabilidade dessas variáveis no espaço e tempo dentro de sistemas naturais ou agrícolas. Nesse contexto,
considera-se a perda estrutural do solo por meio de atividades antrópicas, como com um processo com variação espacial e temporal.
A gestão da condição de agregação do solo pode contribuir para processos agrícolas mais regenerativos e sustentáveis, pois permite a
utilização das tecnologias de análise espacial, por meio de indicadores visuais georreferenciados ou mesmo a utilização de sistemas
com aprendizado automático, conhecidos como deep learning. Nesse sentido, foi desenvolvido um método visual justaposto com uma
análise de lógica fuzzy para a classifi cação dos agregados quanto à forma, rugosidade superfi cial e estruturas biogênicas. Assim, numa
segunda etapa foi desenvolvido um modelo de rede neural artifi cial capaz de detectar e classifi car diferentes formas de agregados do
solo, permitindo dessa maneira, uma breve discussão da temática e seu potencial de aplicação na gestão conservacionista por meio
da análise de agregados via sistemas automáticos de classifi cação. Dessa maneira, são apresentados elementos para a motivação de
pesquisas e desenvolvimento em tecnologias adaptativas, no apoio à decisão que possam auxiliar a integração de informações dinâmicas
e espaciais no entendimento da condição estrutural do solo com a fi nalidade de uma conservação dos solos com mais precisão.

Palavras-chave: Agregado do solo. Lógica fuzzy. Redes neurais artifi ciais. Morfometria.
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INTRODUCTION

The concept of precision conservation emerges
within the universe of space technologies such as global
positioning systems (GPS), remote sensing (RS), and
geographic information systems (GIS), adding the potential
to analyze the spatial interdependence relationships
between and within the data mapped.

Precision conservation was initially defi ned
as a set of space technologies and procedures linked
to mappable environmental parameters. This set of
technologies can be used to program productivity and
conservation management practices that consider these
parameters’ variability in space and time within natural
and agricultural systems (BERRY et al., 2003).

This approach represents a differentiated and
collaborative look about Precision Agriculture, which
mainly guides productivity maximization. Thus, it
seeks to understand the surface and subsurface’s
environmental systems to apply conservationist
management practices that contribute effectively
and sustainably to improve the productive systems
(DELGADO; BERRY, 2008).

In this context, it considers the structural loss of
the soil by human activities, as with a phenomenon of
spatial and temporal variations. The management of soil
aggregation conditions can contribute to more regenerative
and sustainable agricultural processes. It allows spatial
analysis technologies through georeferenced visual
indicators or even the use of systems with automatic
learning, known as deep learning.

Even though it has relevance for analyzing soil
quality in natural conditions and agricultural production
processes, structural evaluation through aggregates
still requires research and development. Different
methodologies can evaluate the structural loss of the soil.
However, the analysis of aggregates and their different
forms are easy to interpret and expeditious. Thus, the
main factors that interfere with soil aggregation are the
contents and types of clays, polyvalent metals, calcium
carbonate, iron, aluminum, and manganese oxides
and hydroxides and mainly the biological activity that
contributes with organic exudates from the roots, organic
substances from the action of microorganisms and other
biogenic substances.

Thus, the management of soil aggregation
conditions can contribute to more regenerative and
sustainable agricultural processes in terms of loss and
improvement. Even though it has relevance for analyzing
soil quality under natural conditions and agricultural
production processes, structural evaluation through
aggregates still requires research and development.

Visual assessment methods are becoming
increasingly popular among farmers, organizations, and
companies searching for management models suitable for
assessing the soil’s productive condition (VAN LEEUWEN
et al., 2018; BALL et al., 2017). These methods are
based on the weighted evaluation of several observable
characteristics with values attributed to the quantifi cation
of their relative importance (VAN LEEUWEN et al., 2018;
FRANCO et al., 2019).

Because it represents a low-cost and expeditious
form of analysis, the visual analysis represents a valuable
addition to chemical and physical soil analysis to interpret
land degradation issues (MCKENZIE, 2013). However,
the method must be reproducible and the observations
made are correct, so there is a need for the evaluator to be
adequately trained and standards to be established.

The aggregation can be analyzed in the fi eld.
However, it requires methodological guidelines to train
technicians in using the diagnosis for decision-making
purposes in soil management (RALISCH et al., 2017).

In general, environmental studies involve both
uncertainties and subjective judgments and assessments
of factors related to environmental components. Such a
condition makes it diffi cult to obtain consistent, valid,
and comprehensive results. Thus, the association of
visual analysis with fuzzy inference systems, based on
fuzzy logic, represents an advance for the construction of
more robust or even automated methods, such as neural
networks.

These systems represent mathematical tools
capable of handling heterogeneous information affected
by uncertainty and imprecision (PECHE; RODRIGUEZ,
2012). However, few initiatives have explored the
adoption of these two approaches together, mainly in
assessing soil quality (KAUFMANN et al., 2009).

In studies of the condition of aggregation,
examples are even scarcer, with a predominance of
methods aimed at analyzing the shape, employing
digital images and a set of image processing measures
(MARTÍNEZ et al., 2015; WHALLEY et al., 2005;
KRAVCHENKO et al., 2011).

In this context, the use of artifi cial neural networks
in the assessment and classifi cation of soil aggregation
can contribute to intelligent systems development. These
systems are based on visual analysis methods and can
help soil conservation management through machine
learning and remote information collection. The research
activities developed around artifi cial neural networks
were originated and motivated in modeling how biological
nervous systems promote information processing (DEEP
LEARNING BOOK, 2019).
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Artificial Neural Networks (ANNs) are a form
of artificial intelligence that tries to mimic the human
brain and nervous system (SHAHIN, 2001). According
to Sarmiento-Ramos (2020), neural networks are
presented as an instrumental basis for machine
learning processes aiming to create systems that learn
automatically. For this learning, the systems seek to
identify different recognition patterns using sound
patterns and images being common. Thus, it becomes
possible to identify and classify primary information.
These characteristics enable artificial neural networks
to predict behaviors by capturing each object’s unique
characteristics and generalizing information from data
sets (ARTOLA, 2019).

Some networks are based on deep learning
algorithms, that is, networks arranged in a spatial
architecture, with which pattern learning can be
achieved (PADARIAN et al., 2019). This concept is the
Convolutional Neural Network (ConvNet /Convolutional
Neural Network /CNN), which consists of a Deep Learning
algorithm that can identify and capture an input image and
assign importance in weights and biases. Thus, it allows
the detection of various aspects and objects of the image,
differentiating one from another.

Starting from a method of visual assessment of
soil aggregates, and within the concepts of convolutional
neural networks applied to precision agriculture systems
or intelligent agriculture, this work sought to present the
potential of neural networks in the identifi cation and
classifi cation of soil aggregates aiming at applications
in the structural conservation of soils using remote
intelligent systems.

Thus, a juxtaposed visual method with an analysis
of fuzzy logic was developed to classify aggregates
in shape, texture, and biogenic structures. Thus, in a
second stage, a model of the artifi cial neural network
was developed, capable of detecting and classifying the
different forms of soil aggregates according to the visual
analysis, thus allowing a brief discussion of the theme and
its potential for application in conservation management
through aggregate analysis via smart remote systems.

MATERIAL AND METHODS

Visual inspection and weighting of convergent
attributes

For the visual inspection and weighing of
the attributes, an experimental condition was set up,
taking samples of a medium-textured Red Oxisol in a
commercial grain production area. In this condition,

two locations were selected, with different treatments:
one with the application of Microgeo® aggregating
biofertilizer and the other without. The aggregates
of the soil samples were obtained by the Dry Method
following the recommendations of EMBRAPA (2017).
Thus, for the removal of samples, 400 aggregates were
collected per sieve to allow the quarter in samples with
100 aggregates. Table 1 presents a description of the
treatments used in the study.

Code Sample Treatment Sieve
C27 With aggregator 4 -5 mm
C36 With aggregator 3-4 mm
C35 With aggregator 2-3 mm
C24 With aggregator 1-2 mm
C13 With aggregator 0,5-1 mm
S37 Without aggregator 4 -5 mm
S36 Without aggregator 3-4 mm
S35 Without aggregator 2-3 mm
S54 Without aggregator 1-2 mm
S33 Without aggregator 0,5-1 mm

Table  1  - Sample codes and description of treatment
characteristics

Taking the set of images of the aggregates
generated using a digital microscope, a methodological
proposal was established for visual inspection and
subsequent classifi cation of the aggregate to the
convergent attributes of soil aggregation through fuzzy
logic. For this analysis, the following characteristic input
attributes were used: Form of the aggregate, Aggregate
roughness and Presence of biogenic structures in the
aggregate. In this way, sets of pertinence functions were
built for each attribute.

The shape was evaluated using fi ve patterns,
relating its semantic attributes to a scale of numerical
values, defi ned according to a Fuzzy membership function
(Figure 1). If the soil aggregate were fully defi ned in one
of the pre-established forms, the degree of certainty (or
pertinence) would be maximum, with the assigned value
corresponding to one of the integer values: 0 (zero)
Prismatic; 1 (one) Angular; 2 (two) Subangular; 3 (three)
rounded or 4 (four) round.

The roughness of the aggregate surface and the
presence of biogenic structures were evaluated using
the same procedures. Thus, using visual perception to
analyze the aggregates, three attributes of roughness
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Figure 1 - Reference table used to typify the shape of the aggregates

relative to the surface with their weights were taken: 0
(zero) for smooth, 1 (one) for Partially smooth, and 2
(two) for Rough. In this bias to analyze the presence of
biogenic structures, the following attributes and weights
were used: 0 (zero) for Absent, 1 (one) for Partial, and 3
(three) for Present.

Fuzzy Inference System

The Fuzzy Rules-Based System (SBRF)
construction was carried out using the pertinence
functions established in the visual analysis process
of the aggregates as input attributes. An Aggregate
Classifi cation Index (ITA) was established as an output,
defi ned through the membership function that segregates
its values into fi ve classes (Figure 2).

The Inconsistent outlet represents predominantly
mineral particles from the soil, with a very low biological
activity intensity. The little consistent output denotes the
mineral particles of the soil in which an initial stage of
aggregation is observed, with evidence of some biological
process, however, still with a predominance of mineral
particles. The Regular class represents aggregates in the
initial formation stage, where it is possible to observe
evidence of partial biological processes and partial
agglomeration of soil particles through the action of

cementing biological agents. The Consistent and Very
Consistent classes represent aggregates in the full
stage of development, where it is possible through the
presence of biogenic structures and surface roughness
to prove that the aggregation process has occurred or
has been occurring, with the differentiation between
these classes given by the intensity of the processes
involved.

For the classifi cation of aggregates with the
fuzzy inference system, the rules base was built with
six specialists in soil science from the Agronomic
Institute of Campinas and the Institute of Environmental
Sciences Technology at UNESP Sorocaba. All possible
combinations of the input variables’ linguistic terms were
determined, and through the group, meetings defi ned the
respective outputs. The Mandani inference method was
used, with defuzzifi cation through the Center of Gravity
(Equation 4) and normalization of values   in the range
between 0 and 1.

Where: Y is the normalized value; X is the input
value; Emin represents the smallest input value; Emáx is
the highest input value; Smin is the lowest output value;
Smax is the highest output value.
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Figure 2 - Relevance function used as an output from the Fuzzy Inference System

Statistical Analysis

The results were evaluated using the descriptive
statistical analysis guidelines in each sieve and the
treatments, with the calculation of the mean, median,
maximum and minimum values, standard deviation,
coeffi cient of variation, coeffi cient of asymmetry, and
kurtosis. Also, the sieves’ classifi cation was carried out
taking quintile separatory measures, with their organization
in histograms and control charts

Calculation of the aggregation effi ciency index

In the fi nal step of the visual analysis method, the
sample aggregation effi ciency index was determined by
taking the values obtained from the aggregate typifi cation
index values, according to the guidelines taken in the
previous chapter (Equation 5).

Where:

● IFA represents the aggregation effi ciency index;

● N0- are the values obtained from the typifi cation index;

● Nmax - represents the maximum value for the typifi cation
index (1).

Potentialities and assessment of neural network
learning in the detection of aggregate morphometry

For the development of the neural network model
capable of identifying the shapes of the aggregates, the
mobilenetv2 architecture and “Python3” programming
language were used with the “Keras” and “TensorFlow”

library, with the application of the supervised learning
technique in fi ve classes aggregate morphometrics
being: prismatic, angular, subangular, rounded and
round, according to the visual analysis proposal already
described. Thus, based on the visual analysis classes, it was
sought through the neural network training to identify the
differences and similarities of the morphometric images
of the aggregates aiming at applications in precision and
intelligent systems for the structural maintenance of the
soils.

The evaluation of the proposed neural network
model’s learning responses was carried out through
a confusion matrix, which allows the analysis of the
network’s learning performance in recognition of patterns.
The confusion matrix makes it possible to relate the
prediction to the actual response so that the lines indicate
the predicted patterns. In contrast, the columns indicate
the actual answers. Table 2 shows a confusion matrix.

Table 2 - Confusion matrix and its elements

True False
True VP FP
False FN VN

The matrix elements represent the following
relationships between prediction and reality: A true positive
(VP) happens when the forecast is accurate and the real
as well; a false positive (FP) occurs when the prediction
is correct and is incorrect; a false negative (FN) occurs
when the forecast is incorrect, and in reality it is true; a
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real negative (VN) happens when the forecast is false, and
the reality is also false. Thus, it becomes possible to build
the following metrics for analyzing network learning,
according to Table 3.

In possession of the results, some potentialities of
using neural networks in the structural evaluation of soils
were described.

RESULTS AND DISCUSSION

Rules base for visual inspection

All combinations of shape attributes (prismatic,
angular, sub-angular, rounded and round), surface
roughness (rough, partially smooth and smooth), and
presence of biogenic structures (present, partial and
absent), were considered valid by experts, resulting in 45
rules for the fuzzy inference system.

However, the relationship between the inputs
and outputs, defi ned by the rules, was permeated by
some peculiarities derived from the experts’ knowledge
regarding the phenomenon of soil aggregation. As the
fuzzy surfaces demonstrate (Figure 3), there is no strictly
linear relationship between the approximation of the round
shape and the increase in the aggregate typifi cation index
(ITA) since there is the possibility of a particle of rock
(granule) taking over the round or round shape. In this
way, a particular particle with this shape pattern would
only be considered a consistent or very consistent soil
aggregate if it had at least partial roughness (Figure 3A)
and partial presence of biogenic structures (Figure 3B).
As sub-angular aggregates are formed by an aggregation
of smaller particles, which characterizes their shape,
under conditions of roughness and low biological activity,
they are more consistent in aggregation than an isolated
rounded or round particle in smaller aggregates dimension.
Therefore, as shown in Figure 3 A and B, the rule base was
sensitive to the experts’ knowledge, with the representation
of these assumptions in the system’s construction.

Table 3 - Metrics for assessing the learning of the proposed network

The accuracy indicates the proportion of the number of
correct predictions to the total number of predictions Accuracy = VP + VN/VP + FN + FP +VN

The precision or precision metric aims to identify how
many samples were positively classifi ed. Precision = VP/VP + FP

The recall or recall metric has the same idea as precision,
but for false negative samples. Recall = VP/VP + FN

The F1 score metric is defi ned as twice the harmonic
average between precision (recall) and recall (recall) F1 Score = 2 x Precision x Recall/Precision + Recall

Another aspect considered was the relationship
between biogenic structures and surface roughness.
A developed aggregate (consistent or very consistent)
necessarily lacks a high surface roughness since, to present
an advanced degree of development, several soil particles
must be agglomerated. Therefore, it was established that
there would be no possibility of an aggregate with high
biological activity, however, smooth or partially smooth,
assuming a high degree of consistency. It represents an
aggregate in the initial/intermediate stage of development.
Figure 3 (C) elucidates these assumptions based on rules,
where, for a partially smooth or smooth aggregate (values
less than 1), with partial or present biogenic structures
(costs higher than 2), the value 0.5 is attributed to ITA,
being a higher degree of consistency would only be
obtained in situations where the surface roughness also
tends to values above 1 (partial grade for the roughness).

Typifi cation results of soil aggregates

According to Table 4, the samples presented a
range of variation between 0.6 and 0.8, except the C24
sieve (with an aggregator, 1-2 mm), which assumed
the maximum amplitude value (Table 4). However, the
coeffi cient of variation’s values remained close for all
sieves and both treatments, between 25 and 35%.

Quartile measurements demonstrate that the
C24 sieve (1-2mm) tended to have higher values in the
typifi cation index (ITA), also assuming a high kurtosis and
asymmetry greater than -1 (frequency distribution shifted
to the right - Figures 15 and 16). All sieves also showed
negative asymmetric values, with mean and median values
greater than 0.6, and some variations in kurtosis measures.
Therefore, together with the analysis of Figures 4 and 5,
there is a predominance of consistent or very consistent
aggregates, which suggests a good / very good (C24)
aggregation condition in the sample.

In this sense, consistency was analyzed using
sample histograms (Figure 4) and the reference standards in
Figure 5. As noted in (Figure 4), all the sample histograms
without aggregator can be classifi ed into two classes,



Rev. Ciênc. Agron., v. 51, Special Agriculture 4.0, e20207733, 2020 7

Precision conservation: from visual analysis of soil aggregates to the use of neural networks

Figure 3 - Fuzzy surfaces generated from the rules base for typing soil aggregates

Table 4 - Results of descriptive statistical analysis for the soil aggregation typifi cation index

* The SXX samples correspond to those without aggregator and the CXX samples with aggregator

Parâmetro estatístico
ITA
S37

ITA
C27

ITA
S36

ITA
C36

ITA
S35

ITA
C35

ITA
S54

ITA
C24

ITA
S33

ITA
C13

Samples 100 100 100 100 100 100 100 100 100 100
Minimum 0.18 0.16 0.20 0.19 0.17 0.20 0.19 0.00 0.16 0.28
1° quartile 0.54 0.56 0.50 0.43 0.45 0.51 0.50 0.63 0.51 0.50

Median 0.68 0.66 0.66 0.61 0.63 0.62 0.64 0.77 0.62 0.65
Average 0.64 0.65 0.63 0.58 0.60 0.62 0.61 0.74 0.60 0.64

3° Quartile 0.76 0.80 0.75 0.72 0.75 0.74 0.74 0.89 0.70 0.80
Maximum 0.90 0.92 1.00 0.98 0.99 0.99 0.99 1.00 0.88 0.99

Range 0.72 0.76 0.80 0.79 0.82 0.79 0.80 1.00 0.72 0.71
Variance (n-1) 0.03 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.02 0.03

Standard Deviation (n-1) 0.17 0.18 0.17 0.20 0.20 0.16 0.21 0.19 0.15 0.18
Coeffi cient of Variation 0.26 0.27 0.26 0.34 0.32 0.26 0.33 0.26 0.24 0.28

Skewnell -0.85 -0.68 -0.35 -0.26 -0.35 -0.45 -0.35 -1.10 -0.51 -0.22
Kurtose 0.35 -0.03 -0.52 -0.78 -0.90 -0.12 -0.53 1.63 -0.27 -0.92

regular and adequate consistency, proving that the sample
is not in balance; however, no signifi cant deviations in the
surface of the sieves are identifi ed.

In the sample with aggregate (Figure 4), the
histograms can be classifi ed into consistent, regular,
useful, and very good. Therefore, it is proved that the
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Figure 4 - Histograms of aggregation consistency classes obtained through the soil aggregation typifi cation index for samples without aggregate

*The samples with CXX prefi x represents soil with soil aggregator and the samples represented as CXX the     samples without soil aggregator
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sample is also not in equilibrium, with the presence of
three consistency classes present. However, the result
obtained does not necessarily represent a negative aspect
since there is a tendency to transition to a higher degree
of consistency (perfect), indicating that the sample is
developing a better aggregation condition.

Aggregation effi ciency index [IFA]

The soil aggregation effi ciency index showed
values with a slightly higher trend for treatment with
aggregate (Figure 6). Still, it is observed that the surface
roughness represented the parameter that reached the
highest values, followed by the shape and later by the
biological activity. Therefore, for practical purposes of
soil management and improvement of the aggregation
state, it is observed that the process of biological activity
represented the limiting factor in the condition of
aggregation of the sample.

This result demonstrates consistency with the
frequency distribution of the entire sample (Figure 7).
The aggregate treatment showed a higher percentage of
the sample of soil aggregates belonging to the consistent
class and lower rates associated with the regular, poorly

Figure 5 - Reference table for characterization of aggregation in soil samples based on theoretical frequency distributions obtained
through quartile measurements

consistent, or inconsistent rank. Therefore, these results
indicate a better quality of the aggregation process in this
treatment.

Analysis of potentialities and assessment of neural
network learning in the detection of aggregate
morphometry

The results of the neural network learning metrics
on aggregate morphometry are presented in Figure 8.
Accuracy can be seen in the upper left corner of the same
fi gure, with 73%. The number of epochs for this experiment
was 20. The epoch consists of how many complete
passages of the data set (epochs) must be carried out. The
number of seasons is not an elementary task because if
we use a few seasons, underfi tting problems may arise;
that is, the network cannot express its maximum learning.
However, if we use a broader set of times, the opposite
problem may occur, overfi tting; that is, the network seeks
excess patterns to adjust “noise” in the training data, not
the full signal, as (DEEP LEARNING BOOK, 2019).

By the very defi nition of accuracy as the proportion
of cases that were correctly predicted, whether true positive
or real negative, notes that the network did not present
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Figure 6 - Results of the aggregation effi ciency index (IFA) for soil treatments with and without aggregator

Figure 7 - Histogram of soil treatments with and without aggregate for the classifi cation of soil aggregates

Figure 8 - Neural Network Performance Evaluation Metrics a satisfactory performance since 73% for analysis of the
form is low when compared with studies on forms and
types of melanoma tumors Artola (2019) and also in the
mapping of land use by (ZHU; NEWSAM, 2015). This
low-performance condition is even more notorious when
one observes the other performance metrics, mainly the
precision that in the highest value was 40% for rounded
and 25% for angular.

Within a comparative analysis of the learning
performance in the confusion matrix metrics, there is a
better performance of the network in the classifi cation of
the Rounded and Angular classes. However, this metric
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quantifi cation is low since the purpose of precision is to
identify how many samples were positively classifi ed.

Another possibility of analyzing the performance
of learning a network is the visual interpretation of the
confusion matrix’s color intensity. Ideally, the count
should be concentrated on the main diagonal of the matrix.
In Figure 9, note that the highest intensity was for the
rounded count.

This clarifi cation shows that the ANN’s learning
performance was low and that to improve the learning

Figure 9 - Confusion matrix with values

performance, it will be necessary a more homogeneous
collection with a higher resolution of the images with
constant illumination. In this insertion, another relevant
aspect of improving learning consists of the segmentation
of images. However, there may be a need for a larger
number of samples, as the use of morphometric classes
of aggregates similar to the visual analysis methodology
requires more information for better classifi cation and
learning. The visual analysis method requires specialized
knowledge, according to the methodological description.
In this context, improving the neural network’s learning
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also requires the insertion of stable information and
methods to maximize the quality of the input information
and minimize errors in the learning process. The critical
analysis of the visual method helps to understand soil
aggregates and provides notable elements for neural
networks.

It is noted in this insertion that the use of
neural networks applied in this type of study is still
at an early stage. Thus, it is worth describing some
brief experiences in order to highlight potentialities
and applications. In a study developed to train the
architectures of neural networks, VggNet16, ResNet50,
and Inception-v4 in the classification of soil aggregate
sizes in tillage operations, Azizi et al. (2020) achieved
an average classification accuracy of these networks
above 95%, being the highest precision achieved with
the ResNet50 architecture (98.72%).

With the use of neural networks, the indicators’
interactions were evaluated: the degree of saturation,
moisture content, voids index, porosity, and the DMG
of Aggregates. The trained neural network allowed
classifi cation of the soil’s condition in little degraded
or very degraded, with an accuracy of 85% (MELO,
2014).

In this bias, Ribeiro et al. (2016) used a Kohonen
map-type neural network model to classify different
groups of degraded soils in open-pit mines in the
Amazon rainforest in order to recover them. Swetha
et al. (2020) describe a new low-cost confi guration
using a smartphone, a custom-made darkroom, and an
application for predicting soil texture using dry, ground
and sieved samples in the laboratory.

Many works on neural networks are applied in
the diagnosis or treatment of specific problems. The
uses of artificial neural networks make up the evolution
of geographic information systems. This evolution
is correlated with the amount and variety of research
that uses neural networks in geographic information
systems (BOLFE et al., 2011). In the medical sciences,
there are several models of ANN for the diagnosis
of tumors (PEREIRA et al., 2016); (TORREGROSA
LLORET, 2018); (JOSÉ; ORTEGA, 2019). Thus, it
is understood that ANN has multiple uses and many
potential applications in the most different areas of
human knowledge.

Thus, this text sought to present a brief discussion
of the theme and its potential for application in the
conservation management of the structural condition,
regardless of the exemplifi ed neural network’s low
learning performance. As just as in visual analysis, the path
is promising, the training of a neural network may be able
to analyze the roughness parameters of the aggregates,

shape, biogenic activity, and others, being of signifi cant
contribution to the soil’s structural management remotely
and intelligent.

CONCLUSIONS

1. The use of visual methods marked by specialists and
transcribed in supervised neural network algorithms
can assist in the structural management of the soil
remotely and automatic learning. In this way, we are
contributing to more regenerative and sustainable
agricultural production processes;

2. The proposed aggregation efficiency index proved
to be adequate and can be indicated as a reference for
the aggregation quality of agricultural soil samples;

3. The assessment of neural network learning in the
morphometric analysis of soil aggregates using the
classification system and images from the database
originating from the visual analysis method was not
satisfactory. However, within the established learning
metrics, the network tended to differentiate the
rounded and angular shape, a condition of extremes;

4. The article presented elements for the motivation in
research and development of adaptive technologies,
supporting the decision that can help the integration of
dynamic and spatial information in the understanding of
the structural condition of the soil with the purpose of
conservation with more precision.
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