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Biomechanical evaluation of 
subcrestal dental implants with 
different bone anchorages

Abstract: This study evaluated the biomechanical influence of apical 
bone anchorage on a single subcrestal dental implant using three-di-
mensional finite element analysis (FEA). Four different bone anchorage 
designs were simulated on a posterior maxillary segment using one im-
plant with platform switching and internal Morse taper connection as 
follows: 2 mm subcrestal placement with (SW) or without (SO) the im-
plant apex engaged into the cortical bone or position at bone level with 
anchorage only in the crestal cortical (BO) bone or with bicortical fixa-
tion (BW). Each implant received a premolar crown, and all models were 
loaded with 200 N to simulate centric and eccentric occlusion. The peak 
tensile and compressive stress and strain were calculated at the crestal 
cortical, trabecular, and apical cortical bone. The vertical and horizontal 
implant displacements were measured at the platform level. FEA indicat-
ed that subcrestal placement (SW and SO) created lower stress and strain 
in the crestal cortical bone compared with crestal placement (BO and BW 
models). The SW model exhibited lesser vertical and horizontal implant 
micromovement compared with the SO and BO models under eccentric 
loading; however, stress and strain were higher in the apical cortical 
bone. The BW model exhibited the lowest implant displacement. These 
results indicate that subcrestal placement decreases the stress in the 
crestal cortical bone of dental implants, regardless of apical anchorage; 
however, apical cortical anchorage can be effective in limiting implant 
displacement. Further studies are required to evaluate the effects of pos-
sible remodeling around the apex on the success of subcrestal implants.

Keywords: Dental Implants; Dental Stress Analysis; Finite Element 
Analysis.

Introduction
Dental implants are widely used to replace missing teeth, and their 

clinical success is dependent on the primary stability achieved during 
implant placement.1 The threshold of movement within the alveolar bone 
should be 150 µm so that it does not interfere with the healing process.2 
However, in regions of poor bone quality, such as the posterior maxilla,3 
adequate primary stability cannot be achieved at bone level, necessitat-
ing subcrestal placement.4 Moreover, this deeper position may also be 
indicated when there is limited interocclusal height for the restoration 
and for an esthetic emergence profile.5,6
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Subcrestal implant placement seems to result in 
more efficient crestal bone preservation when asso-
ciated with Morse taper connection and platform 
switching. 7,8,9 Although a previous study using finite 
element analysis (FEA) reported that the peak com-
pressive stress at the crestal cortical bone was higher 
around subcrestal implants than around implants 
placed at bone level,10 other studies reported that 
subcrestal placement displaces the stress away from 
the crestal cortical bone.11,12 Therefore, this lower 
stress concentration in the crestal cortical bone can 
explain the occurrence of osseointegration coronal to 
the abutment–fixture interface in cases of subcrestal 
implant placement with Morse taper connection.6

However, in cases of subcrestal implant placement 
in the maxilla, the implant apex can be engaged into 
the cortical bone of the nasal or maxillary sinus floor. 
Bicortical fixation of bone level implants improves 
primary stability and decreases the stress in the 
bone;13 however, the influence of apical anchorage of 
subcrestal implants on stress distribution remains 
unknown. The change in the fulcrum from the implant 
cervix toward the apical region may change the stress 
and strain distribution within the bone and affect 
its resistance to micromovement.

Therefore, given the limited information cur-
rently available on subcrestal implant placement, 
this study was conducted to evaluate the influence 
of apical bone anchorage for a single subcrestal den-
tal implant on bone stress and strain and resistance 
to micromovement using three-dimensional FEA.

Methodology
Three tri-dimensional models of a posterior max-

illary segment were developed using the SolidWorks 
2011 3D software (SolidWorks Corp., Concord, USA). 
The models were of different heights (11, 13, and 15 
mm) and included a 1-mm-thick uniform cortical bone 
layer.14 Subsequently, a computer-aided design (CAD) 
model (Cone Morse Titamax EX; Neodent, Curitiba, 
Brazil) of a 4.0 × 11-mm Morse taper connection cylin-
drical implant was combined with one of the maxil-
lary models to allow the construction of four differ-
ent cortical bone anchorage designs (Figure 1): 2 mm 
subcrestal placement with (SW) or without (SO) the 
implant apex engaged into the cortical bone or posi-

tion at the bone level with anchorage only in the crestal 
cortical bone (BO) or with bicortical fixation (BW).

After implant positioning, a 3.3-mm diameter 
abutment CAD model (Munhão Universal CM; 
Neodent, Curitiba, Brazil) was imported into each 
model and aligned to the implant. To compensate the 
implant depth and maintain the same crown height, 
a 1.5-mm-high abutment was used on the bone level 
implants and a 3.5-mm-high abutment was used on 
the subcrestal implants (Figure 1). Next, a solid-dis-
play stereolithographic image of a second premolar 
crown, based on cone-beam computed tomography 
images (Kodak 9000 3D Extraoral Imaging System; 
Carestream Dental LLC, Atlanta, USA), was posi-
tioned on each abutment, simulating an acrylic resin 
crown with a 50-µm cement layer.15

After construction, the four models were exported 
to ANSYS Workbench FEA software (ver. 13.0; Swan-
son Analysis Inc., Houston, USA) for the analysis of 
peri-implant stress and strain and implant micromove-
ment under load. Cortical and trabecular bone were 
considered anisotropic, homogeneous, and linearly 
elastic, while titanium, cement, and acrylic resin were 
considered isotropic, homogeneous, and linearly elas-
tic.16 The mechanical properties are listed in Table 1.

Figure 1. Using a 1-mm-thick cortical layer and different 
trabecular bone heights, four models are created using one 
4.0 × 11-mm implant with platform switching and internal 
Morse taper connection. Implants were positioned 2 mm sub-
crestally with (SW) or without (SO) apical engagement into the 
cortical bone or positioned at the bone level with anchorage only 
in the crestal cortical bone (BO) or with bicortical fixation (BW).
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To improve accuracy and ensure the compara-
bility of results, the analysis was accomplished by 
mesh refinement at a 5% level. The mesh was gener-
ated with 0.6-mm quadratic tetrahedral elements of 
10 nodes (ANSYS solid187), enabling the simulation 
of irregular structures. A frictional contact coeffi-
cient between bone and implant surfaces of 0.3 was 
used, while all other contacts were considered per-
fectly bonded.17 The models were constrained in all 
directions at nodes on the mesial and distal borders.

The models were loaded with 200 N divided over 
three 1.5-mm² areas (at the lingual and buccal sides 
on top of the lingual cusp and at the grinding ridge of 
the buccal cusp), and the load was applied perpendic-
ular to the surfaces to simulate centric occlusion.18 To 
simulate lateral excursion, a 200-N load was applied to 
the middle of the grinding ridge of the buccal cusp.18

The principal stress was computed at the crestal 
cortical, trabecular, and apical cortical bone. This 
offers the possibility of distinguishing between ten-
sile and compressive stresses;10 the maximum princi-
pal stress represents the peak tensile stress and the 
minimum principal stress assigns the peak compres-
sive stress. In addition, bone strain was computed 
and horizontal and vertical implant displacements 
measured at the platform level.

Results
On centric loading, FEA showed that subcrestal 

placement (SW and SO) decreased the peak compres-

sive stress at the crestal cortical bone and transferred it 
toward the trabecular bone (Table 2). However, the SW 
model exhibited a higher peak tensile stress and strain 
at the crestal cortical and trabecular bone and high 
compressive stress at the apical cortical bone (Figure 2).

On eccentric loading, the subcrestal implants (SW 
and SO) transferred the compressive stress from the 
crestal cortical toward the trabecular bone (Table 
3) more efficiently. However, the peak compressive 
stress at the cortical bone around the apex of the SW 
model was almost 8.5 times higher than that around 
the apex of the BW model (Figure 3).

The vertical and horizontal displacements that 
occurred when the implants were subjected to cen-
tric and eccentric loading are presented in Figure 4. 
The SW model exhibited lower micromovement com-
pared with the BO model under eccentric loading, 
while the SO and BW models exhibited the highest 
and lowest implant displacement, respectively, under 
both loading simulations.

Discussion
The cortical bone is responsible for the distribution 

and transmission of occlusal forces to the peri-implant 
bone tissue.19 Therefore, subcrestal implants that are not 

Table 1. Mechanical properties of the materials included in 
finite element analysis.

Young’s modulus 
(MPa)

Shear modulus 
(MPa)

Poisson’s 
ratio

Cortical 
bone

Ex 12,600 Gxy 4,850 Vxy 0.30

Ey 12,600 Gyz 5,700 Vyz 0.39

Ez 19,400 Gxz 5,700 Vxz 0.39

Trabecular 
bone

Ex 1,150 Gxy 6,800 Vxy 0.001

Ey 2,100 Gyz 4,340 Vyz 0.32

Ez 1,150 Gxz 6,800 Vxz 0.05

Titanium 104,000 38,800 0.34

Cement 17,000 14,500 0.30

Acrylic resin 1,800 1,700 0.30

The subscripts x, y, and z correspond to the axis of the global 
coordinate system.
E = Young’s modulus, G = Shear modulus, V = Poisson’s ratio

Table 2. Peak tensile and compressive stresses (MPa) and 
maximum strain (µm) in the crestal cortical, trabecular, and api-
cal cortical bone measured under centric loading simulations.

Region Model Peak tensile 
stress

Peak compressive 
stress

Strain

Cortical 
bone

SW 87.2 44.3 0.0013

SO 8.8* 18.8 0.0004*

BO 51.3 233.9* 0.0037

BW 39.4 78.1 0.0024

Trabecular 
bone

SW 89.3* 66.7 0.2260*

SO 23.6 48.2 0.1220

BO 13.5 41.2 0.0346

BW 12.8 11.6* 0.0720

Titanium SW 106.9* 403.1* 0.0110*

SO 6.1 6.1 0.0002

BO 4.6 5.6 0.0002

BW 26.3 61.1 0.0018

SW = subcrestal implant with apex anchored in cortical bone; 
SO = subcrestal implant anchored only in trabecular bone; 
BO = bone level implant anchored only in the crestal cortical 
bone; BW = bone level implant with bicortical fixation; *indicates a 
significant difference between models.
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engaged in the crestal cortical bone exhibit a biomechan-
ical behavior different from that exhibited by implants 
placed at the crestal level. In the present study, engage-
ment of the apex into the cortical bone decreased the 
displacement of subcrestal implants, albeit at the cost 
of higher stress in the bone around the implant apex.

Although there is no clinical evidence on the level 
of stress at which bone remodeling ceases and resorp-
tion begins,20 the ultimate bone strength is assumed to 
be the physiological limit of the cortical bone.12 More-
over, the peak compressive stress has been found to 
provide more reliable information in the analysis of 
bone resorption compared with the peak tensile stress.10 
Therefore, bone resorption due to overloading should 
be expected when the compressive stress exceeds 100 
to 130MPa in the cortical bone.21

In the present study, the implant placed at the 
crestal level (BO model) exerted a peak compressive 
stress of 233.9 MPa under centric loading, which is 
above the physiological limit for cortical bone tis-
sue. This can explain the common clinical findings 
of crestal bone loss around the implant neck and the 
report of higher failure rates for implants placed in 
the posterior maxilla.19 All other models exhibited 
safer values of compressive stress under centric load-
ing: 44.3, 18.8, and 78.1 MPa for the SW, SO, and BW 
models, respectively. However, under eccentric load-
ing, only the SW and SO models presented safe val-
ues. This decrease in compressive stress and strain 
in the crestal region can explain some clinical find-
ings of bone ingrowth coronal to the fixture–abut-
ment interface6 and a higher success rate with an 
increase in the depth of placement.22

Figure 2. Compressive stress (MPa) around implants with different anchorage designs under centric loading.
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Table 3. Peak tensile and compressive stresses (MPa) and max-
imum strain (µm) in the crestal cortical, trabecular, and apical 
cortical bone measured under eccentric loading simulations.

Region Model Peak tensile 
stress

Peak 
compressive 

stress

Strain

Crestal 
cortical 
bone

SW 86.8 56.6 0.0045

SO 24.6* 34.1 0.0016*

BO 67.4 199.2* 0.0048

BW 66.6 127.4 0.0038

Trabecular 
bone

SW 85.2 65.6 0.2210*

SO 39.0 54.3 0.1460

BO 60.9 46.3 0.0750

BW 12.9* 17.6* 0.1079

Apical 
cortical 
bone

SW 124.2* 527.8* 0.0167*

SO 6.6 6.7 0.0026

BO 14.4 14.9 0.0005

BW 24.3 61.5 0.0014

SW = subcrestal implant with apex anchored in cortical bone; 
SO = subcrestal implant anchored only in trabecular bone; 
BO = bone level implant anchored only in the crestal cortical 
bone; BW = bone level implant with bicortical fixation; *indicates a 
significant difference between models.
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This study was the first, as per our knowledge, 
to evaluate apical cortical bone anchorage for sub-
crestal implants. When the SW and SO models were 
compared, a shift in the stress and strain around the 
implant apex was evident in the SW model, confirm-
ing that stresses are primarily dissipated through 
the cortical bone.21 This was most evident when the 
implants were subjected to eccentric loading, dur-
ing which the higher compressive stress and strain 
around the implant apex can be a consequence of a 
greater lever arm due to the displacement of the ful-
crum to the apical region.23 Moreover, the tapered 

apex decreases the surface area available to dissipate 
the stress, explaining the high stress and strain in 
the apical region and highlighting the importance 
of macrodesign on stress distribution around imme-
diately loaded implants.17 This may not be critical 
because the resistance to fatigue failure in the cor-
tical bone is greater during compression than dur-
ing tension.24 Deposition and resorption of the bone 
matrix can be regulated by the mechanical environ-
ment;25 therefore, possible remodeling of the cortical 
bone around the implant apex should be assessed in 
future in vivo studies or clinical trials.

With regard to tensile stress, however, the SW model 
showed higher values in all bone regions compared 
with the other models. It was previously shown that 
tensile stress can induce ossification by increasing the 
expression of bone morphogenetic protein (BMP)-2 and 
BMP-4, which are bone growth factors.25 Therefore, this 
residual tensile stress can also explain why there is 
bone formation above the implant platform when the 
implants are placed subcrestally.6 On the other hand, 
this can be the consequence of the assumption that 
cortical and trabecular bones are homogeneous and 
perfectly bonded in the analysis because the implant 
platform is only 1 mm away from the trabecular/cor-
tical interface. Because there is no threshold value to 
stimulate bone apposition, and because excessive ten-

Figure 4. Vertical and horizontal implant displacement (µm) 
during centric and eccentric loading simulations.
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Figure 3. Compressive stress (MPa) around implants with different anchorage designs under eccentric loading.
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sile stress reportedly causes bone resorption,26 load-
ing forces should be controlled by careful occlusal 
adjustments to avoid bone resorption.

Both subcrestal models were more efficient in 
decreasing the strain in the crestal region compared 
with the model with bicortical fixation. However, 
the strain generated was above the value considered 
risky for bone fracture; furthermore, it is difficult to 
estimate cellular and tissue responses to different 
levels of strain.27 Moreover, the subcrestal implant 
positioned only in the trabecular bone produced 
the lowest stress and strain in all evaluated regions. 
The low elastic modulus of trabecular bone acts as 
a stress breaker that promotes better dissipation of 
stresses from the occlusal loading.28

However, the peak stress was substituted by higher 
implant displacement. In the present study, all models 
exhibited implant displacement below the threshold of 
150 µm required to prevent fibrous tissue formation;2 
these are in the same range reported by a previous 
study using FEA.29 However, previous in vitro studies 
reported displacement values of 100 to 340 μm in type IV 
bone samples,30 which were above the stated threshold.

The limitation of the present study was that the 
trabecular bone was considered to be a uniform and 
homogeneous material. It is important to consider 
the morphology and density of the trabeculae in tra-
becular bone to determine its biomechanical influ-
ence on subcrestal implants. Future studies should 
evaluate the effects of possible remodeling around 
the apex on the success of subcrestal implants.

Conclusions
Subcrestal implant placement decreases the stress in 

the crestal cortical bone around dental implants, regard-
less of apical anchorage; however, apical cortical anchor-
age can be effective in limiting implant displacement.
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