
Critical Review

Periodontics

Alex Nogueira HAAS(a)  

Flavia FURLANETO(b)  

Eduardo José GAIO(a)  

Sabrina Carvalho GOMES(a)  

Daniela Bazan PALIOTO(b)  

Rogerio Moraes CASTILHO(c)  

Mariano SANZ(d)  

Michel Reis MESSORA(b)

	 (a)	Universidade Federal do Rio Grande do Sul 
– UFRGS, School of Dentistry, Department 
of Periodontology, Porto Alegre, RS, Brazil.

	 (b)	Universidade de São Paulo – USP, School of 
Dentistry of Ribeirão Preto, Department of 
Oral Surgery and Periodontology, Ribeirão 
Preto, SP, Brazil.

	 (c)	Michigan University, School of Dentistry, 
Department of Periodontics and Oral 
Medicine, Ann Arbor, MI, USA.

	 (d)	Complutense University of Madrid, Etiology 
and Therapy of Periodontal and Peri-implant 
Diseases Research Group, Madrid, Spain. 

New tendencies in non-surgical 
periodontal therapy

Abstract: The aim of this review was to update the evidence of 
new approaches to non-surgical therapy (NSPT) in the treatment of 
periodontitis. Preclinical and clinical studies addressing the benefits 
of adjunctive antimicrobial photodynamic therapy, probiotics, 
prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, 
ozone, and epigenetic therapy were scrutinized and discussed. Currently, 
the outcomes of these nine new approaches, when compared with 
subgingival debridement alone, did not demonstrate a significant added 
clinical benefit. However, some of these new alternative interventions 
may have the potential to improve the outcomes of NSPT alone. Future 
evidence based on randomized controlled clinical trials would help 
clinicians and patients in the selection of different adjunctive therapies.

Keywords: Fatty Acids, Omega-3; Periodontal Debridement; Probiotics; 
Ozone; Epigenomics.

Introduction

Periodontal therapy comprises a broad range of interventions applied in 
a stepwise approach with the aim of controlling the infection and arresting 
the inflammation.1 The first step of periodontal therapy includes the 
control of supragingival biofilm, both by the patient and the professional, 
as well as the control of those proven risk factors in the etiopathogenesis 
of periodontal diseases.2,3 For patients diagnosed with gingivitis, this step 
of therapy should be enough to arrest gingival inflammation once biofilm 
accumulation has been removed. For patients diagnosed with periodontitis, 
the first step is a prerequisite before implementing the second step, based 
on the removal of subgingival biofilm and calculus, which is the basic 
mode of periodontal therapy. Subgingival instrumentation may include 
adjunctive local/systemic antimicrobial or anti-inflammatory medications. 

A variety of endpoints have been evaluated in periodontal literature 
to assess the efficacy of these two steps of treatment, most frequently 
average reductions in probing pocket depth (PPD) and gains in clinical 
attachment level (CAL). More recently, there has been a concern to define 
more appropriate endpoints that should be achieved after periodontal 
therapy.4 For instance, in the clinical practice guideline from the European 
Federation of Periodontology (EFP),1 a clear definition of the desired 
outcome after treatment of Stage I-II periodontitis has been established.5 
After the completion of periodontal therapy, a stable periodontitis patient is 
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defined by gingival health on a reduced periodontium 
(bleeding on probing in < 10% of the sites; shallow 
probing depths of 4 mm or less and no 4 mm sites 
with bleeding on probing). When these criteria are 
met after the completion of periodontal treatment, but 
bleeding on probing is present at > 10% of the sites, 
then the patient is diagnosed as a stable periodontitis 
patient with gingival inflammation. 

If the aims of periodontal therapy have not been 
achieved with this sequence of steps 1 and 2, the step 
3 of periodontal therapy needs to be implemented. It 
consists of either repeated subgingival instrumentation 
or other periodontal surgical interventions. Finally, 
the results of step 3 should be reevaluated for the 
accomplishment of the therapy endpoints and, if 
these endpoints are achieved, a strict maintenance 
program should be implemented.6,7,8

Non-surgical periodontal therapy (NSPT) is 
the term used to generally describe subgingival 
mechanical instrumentation performed during the 
second step of treatment. Standard NSPT, mainly 
performed by means of scaling and root planing 
(SRP), is the gold-standard treatment for Stage I-III 
periodontitis.1 Nevertheless, some sites and/or patients 
may present poor response to standard NSPT. This 
may be related to microbial factors, when this mode 
of therapy is not capable of converting the dysbiotic 
infectious process to a homeostatic/commensal 
balance, probably due to residual subgingival 
biofilm in the periodontal pocket after SRP9 and/or 
tissue invasion by periodontopathic bateria,10 or the 
maintenance of a non-resolving chronic inflammatory 
response in spite of the subgingival debridement. 
Therefore, there is a continuous search for adjunctive 
therapies that can improve the outcomes of subgingival 
instrumentation alone. Thus, the purpose of this 
narrative review was to evaluate the evidence from 
clinical or preclinical studies of new therapeutic 
approaches used as adjuncts to NSPT.

Antimicrobial photodynamic 
therapy (aPDT)

The major aim of aPDT is to eradicate or reduce 
microorganisms. This is achieved when a non-
toxic light-sensitive “photosensitizer”, excited by a 

visible light or near infrared with the appropriate 
wavelength, stimulates the formation of free radicals 
of singlet oxygen that will act as toxic agents to 
the bacteria. Toluidine blue O and methylene blue 
are the most used photosensitizers in Dentistry, 
although others have been studied. Both have shown 
to be effective for periodontal pathogen control in 
planktonic bacteria and in biofilms.11,12,13 The gold-
standard light for applying aPDT in the treatment 
of periodontitis is the low level laser (LLLT), which 
has shown favorable healing conditions.14 LLLT 
has a potency of 30–100 MW, wavelength of 630–
904 nm, and minimum thermal heat. Its efficacy 
depends on the amount of absorbed light. When 
appropriate, low intensity laser can help restore 
the cell balance, especially because of its influence 
in the inflammatory process per se.15

One of the major advantages of aPDT is that in the 
clinical treatment of local infections it might be less 
injurious to indigenous/commensal biofilms than 
systemic antibiotic therapy.16 The use of aPDT was 
first evaluated in a split-mouth randomized controlled 
trial (RCT) as a sole therapy, compared with SRP in 
the treatment of aggressive periodontitis patients.17 
Although the clinical outcomes and biomarker levels in 
gingival crevicular fluid (TNF-α and RANK-L)18 were 
similar 3 months after therapy, the microbiological 
outcomes (reduction of red complex pathogens) were 
more favorable in the SRP group.19 These findings 
indicated that aPDT should not be considered as a 
single method to eliminate subgingival biofilm, but 
should be implemented as adjunctive to SRP. 

Several preclinical and clinical studies have 
evaluated aPDT as an adjunctive method to SRP17-25 
with the goal of penetrating the soft tissues, thus 
reaching the periodontal pathogens that might have 
infiltrated into the periodontium.22 Moreover, the 
low intensity laser is capable of favoring tissue repair 
by improving cell behavior and collagen synthesis.26

A recent systematic review with meta-analysis 
has summarized the findings of RCTs assessing the 
clinical outcomes achieved with aPDT.27 A total of 
17 trials were included and analyzed separately for 
participants with chronic (n = 13) and aggressive (n = 
4) periodontitis. Six additional studies tested aPDT in 
residual sites after maintenance therapy. In general, 
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the achieved additional benefits did not lead to a 
significant effect compared to standard NSPT. In 
agreement with the conclusions of this systematic 
review, the EFP Clinical Practice Guidelines for 
the treatment of Stage I-III periodontitis do not 
recommend aPDT in a single application (wavelength 
660–670 nm or 800–900 nm) in association with 
SRP for patients with periodontitis based on this 
available evidence.1

The frequency of application of aPDT also deserves 
some discussion, since there are indications that it 
may lead to different clinical outcomes. It has been 
demonstrated that multiple sessions of aPDT bring 
additional benefits. The first study evaluating the 
multiple episodes of aPDT in adjunctive to concomitant 
NSPT25 found greater probing depth (PD) reduction 
and more clinical attachment gain 6 months after NSPT 
alone. Another split-mouth RCT28 demonstrated that 
repeated aPDT applications (baseline, 2, 7 and 14 days) 
adjunctive to SRP were more effective to treat initially 
deep pockets (≥ 7 mm) in aggressive periodontitis 
than SRP alone 90 days after the therapies. 

Other aspects still need investigation, for example, 
the specific patient populations that may benefit 
more from aPDT. It has been hypothesized that 
patients with systemic conditions with impaired 
healing or patients with uncontrolled diabetes may 
benefit from this adjunctive therapy. One study 
found greater reduction in HbA1c after 3 months 
with the association of aPDT with SRP, and IL1-β 
levels were also lower for the association.29 Smokers 
would also represent a target population to be 
treated with aPDT; however, the adjunctive effect 
of aPDT has failed to improve clinical parameters 
in such patients. Also, aPDT associated with SRP 
did not alter periodontal biofilm composition in 
a positive way, either when applied in single30 or 
multiple sessions.31  Nevertheless, this is only the 
beginning of studies in this area of aPDT.

In summary, there is evidence that aPDT, as 
an adjunct to SRP and when applied in multiple 
applications, can improve microbiological and 
immunological outcomes. This application could be of 
interest in patients with systemic comorbidities. The 
advent of new LED lights and/or nano-photosensitizers 
may better target the pathogenic biofilm, possibly 

leading to more significant improvements and, 
consequently, further encouraging new studies to 
assess the use of these technologies.  

Probiotics 

Current concepts of etiopathogenesis of periodontal 
diseases consider the existence not only of specific 
periodontopathogens, but of a synergistic and dysbiotic 
microbial community.32 Microbial dysbiosis leads to 
non-resolving inflammations due to alterations in the 
host’s immunoinflammatory response. Therefore, 
new therapies seeking to regain the microbiome 
ecological balance are currently being investigated 
and appear to be more closely aligned with current 
concepts aiming to restore a healthy oral microbiome 
and periodontal health.33

In a proof of concept study, Teughels et al.345 
introduced Streptococcus species within periodontal 
pockets after SRP in dogs. This adjunctive therapy 
reduced the periodontal tissue inflammation and 
modified the microbial composition of the treated 
sites, reducing and delaying their recolonization 
by periodontopathogens. The study introduced the 
concept of guided recolonization of periodontal 
pockets by using oral health-compatible bacteria 
as a treatment strategy for periodontitis. Therefore, 
host microbiota modulation and direct interaction 
with the immune system are the basic mechanisms 
that can explain the beneficial effects of probiotics 
on periodontal health.

The term “probiotics” was introduced by Lilly 
and Stillwell in 1965.35 The Food and Agriculture 
Organization of the United Nations (FAO) and the 
World Health Organization (WHO) have defined 
probiotics as “living microorganisms that, when 
administered in appropriate amounts, confer 
health benefits to the host”.36 Most of currently used 
probiotics are lactic acid bacteria of the Lactobacillus 
and Bifidobacterium genera, although fungi, species 
of Bacillus, Clostridium, Propionibacterium and Gram-
negative bacteria like Escherichia coli have also been 
used as probiotics.37 It is well documented that lactic 
acid-producing bacteria have antimicrobial effects 
on several periodontopathogens.38-43 A recent in 
vitro study has shown that probiotics alter biofilm 
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formation and the transcription of Porphyromonas 
gingivalis virulence-associated genes.44 Probiotic 
microorganisms provide nutrients, help the host to 
digest food, and compete for space and nutrients 
with potential pathogens. Also, they participate in 
the host’s immunoinflammatory response, since 
they can induce the secretion of antimicrobial 
peptides or anti-inflammatory molecules through 
interaction with various cell populations.45-48 Some 
clinical and preclinical studies analyzing saliva, 
gingival crevicular fluid, and gingival biopsies 
have shown that the ingestion of probiotics can 
interfere with the levels of several pro- and anti-
inflammatory markers.48-55

Although the scope of this article is NSPT for 
periodontitis, probiotics have been mainly evaluated 
for the treatment of gingivitis, either in experimental 
gingivitis models56-59 or in patients with established 
gingivitis.60-62 A recent systematic review with meta-
analysis63 including 10 RCTs has summarized the 
results of using  L. reuteri as a probiotic. It has shown 
that, in half of the included studies,61,63-66 clinical 
parameters of inflammation significantly improved 
when compared with the control group, whereas in five 
studies comparable results in clinical inflammatory 
parameters were reported between test and control 
groups.58,62,67-69  The meta-analysis, however, did not 
demonstrate a statistically significant difference 
between probiotic and placebo groups in clinical 
periodontal inflammatory parameters, although the 
results are very heterogeneous and prevent a fair 
evaluation of the results.

In regard to the adjunctive application of probiotics 
for the treatment of periodontitis, a recent systematic 
review assessed the impact of probiotics on clinical, 
microbial, and immunological outcomes when used 
as adjuncts to NSPT.70 Ten RCTs were included, with 
all patients receiving NSPT with probiotics or placebo 
administration or SRP alone. Both 3- and 12-month 
data have shown significant benefits in the use of 
probiotics, with greater magnitude at 12 months 
in pooled estimates of PPD reductions. The results 
have shown a significant benefit in probiotics in 
both PPD and CAL when baseline mean PPD values 
were ≥ 5 mm. There was no significant difference 
in periodontal pathogen levels between groups at 

3 months. Immunological data were not sufficient 
for quantitative analysis.

Significant inter-individual human microbiome 
variability mediated by factors such as age, diet, 
antibiotic usage, food supplements, underlying 
medical conditions, and patterns of circadian activity 
can impact the effects of probiotics.71,72 In humans, 
marked person-, strain- and gut region-specific 
mucosal probiotic colonization patterns clustered 
individuals into those “permissive” or “resistant” to 
mucosal probiotic colonization. Importantly, these 
distinct colonization states had different impacts on 
probiotics-associated changes in the gut microbial 
community structure and host transcriptome.71 
Regarding the effects of probiotics on periodontal 
diseases, it is also mandatory to analyze the influence 
of the vehicle by which the probiotic strain is 
administered in its therapeutic potential and oral 
colonization, as well as its survival in the oral cavity. 
Additionally, more studies are required to evaluate 
modes of application, different therapeutic regimens, 
and the persistence of probiotic microorganisms in the 
oral cavity after discontinuation of probiotic therapy. 
This will provide further evidence to support the use 
of probiotics for NSPT. Meanwhile, this therapeutic 
alternative is not yet indicated in daily clinical practice. 

Prebiotics and synbiotics

Prebiotics are substrates, either naturally present 
in certain foods or synthetically produced, which 
are selectively used by beneficial microorganisms 
colonizing the host. These substrates are intended to 
multiply and/or become activated metabolically to 
beneficially alter the composition of the host microbiota 
in the intestine or elsewhere in the organism.73,74,75 

The concept of using prebiotics involves 
three assumptions: a substance (substrate), a 
mechanism, and a beneficial effect.73 Oligosaccharide 
carbohydrates inulin, fructooligosaccharides (FOS), 
galactooligosaccharides (GOS), xylooligosaccharides 
(XOS), and polydextrose are among the most studied 
prebiotics.76 Several health benefits have been 
attributed to their application: relief of poor digestion 
of lactose, increased resistance to bacterial infection, 
and improved immune response. 
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The main mechanism of action of prebiotics is 
through the selective stimulation of the growth 
of beneficial bacteria in the host. Some of these 
microorganisms have specific enzymes that can 
hydrolyze prebiotic oligosaccharides, which results 
in the proliferation of these beneficial bacteria.77 This 
selective action prevents changes in the microbial 
composition associated with diseases, suppressing 
the growth of pathogenic species.75,78 Furthermore, 
prebiotics can offer protection against pathogens 
through direct interactions.79 Oligosaccharide 
derivatives contain sugars that are specific receptors 
for epithelial cells. Therefore, these receptors become 
unavailable for the adhesion of pathogenic bacteria, 
which will lose their ability to colonize and will 
be eliminated.80,81 

The fermentation of prebiotics in the large intestine 
leads to the production of short-chain fatty acids.82 
These molecules increase the intestinal absorption 
of calcium, reducing intestinal pH, and promote the 
development of intestinal villi, leading to changes 
in the intestinal microbiota.83 In addition, there is 
evidence that some prebiotics have direct effects on 
the host immune system, regardless of their effects on 
resident bacterial populations.80,84 These effects include 
stimulation of IL-10 and interferon-γ expression, 
increased IgA secretion, modulation of inflammatory 
responses to pathogens, and stabilization of the 
intestinal mucosal barrier.80

The ability of certain prebiotics to increase the 
growth of resident commensal intestinal bacteria, 
particularly bifidobacteria and lactobacilli, is well 
documented.80,85 It is expected that prebiotics can 
cause changes in any host microbial ecosystem.79 There 
is evidence in the medical literature that prebiotics 
may be useful in preventing several diseases, like 
atherosclerosis, osteopenia and/or osteoporosis, and 
other bone pathologies,83,86 but only recently has the 
oral cavity been suggested as a relevant target for 
the application of this approach.87 In ​​Periodontics, 
the first studies identified potential prebiotics that 
could stimulate beneficial bacteria and suppress 
the growth of pathogenic species in vitro.75,87 Two 
compounds, named beta-methyl-D-galactoside and 
N-acetyl-D-mannosamine, were able to modify two-
species biofilm communities to a predominantly 

beneficial composition.75 In another experiment, using 
multispecies biofilms, N-acetyl-D-mannosamine 
led to a biofilm composition with more than 97% 
beneficial microorganisms.87

The pioneering study to evaluate the effects 
of a prebiotic on periodontitis was carried out 
with β-glucans fiber from Saccharomyces cerevisiae, 
administered to rats that underwent diabetes and 
periodontitis inductions.81 It demonstrated that 
prebiotic therapy led to reduction of alveolar bone loss 
and serum levels of TNF-α, and improved pancreatic 
β-cell function and intestinal morphology.81 Another 
preclinical study, which evaluated the effects of 
the mannanoligosaccharide prebiotic in animals 
with experimental periodontitis, demonstrated 
that the therapy led to a reduction in periodontal 
destruction and levels of TNF-α and IL-1β, and an 
increase in TGF-β. Also, it is important to highlight 
that animals with experimental periodontitis 
have been shown to present changes in intestinal 
morphology, pointing to a possible interrelation 
between oral and intestinal ecosystems.53,88,89 In the 
preclinical study with the mannanoligosaccharide 
prebiotic, the animals treated have shown intestinal 
morphology more similar to that of animals without 
disease, which demonstrated the protective role 
of prebiotics in the intestinal environment under 
conditions of oral dysbiosis.88 When the results 
of this study are compared to other preclinical 
studies with probiotics, similar beneficial effects 
are found. However, to date, there are no clinical 
studies evaluating the effects of prebiotics in the 
management of periodontitis.

Since oligosaccharides that act as prebiotics can 
also improve the ability of probiotic strains to adhere 
to intestinal cells and mucin, it has been suggested 
that the use of prebiotics with probiotics, that is, 
synbiotic compounds, may be a potential tool to 
increase the numbers of probiotic bacteria and the 
time they remain in the body. This could even reduce 
the period of administration of the probiotic therapy 
in some cases.90,91 A randomized placebo-controlled 
clinical study evaluated the effects of a synbiotic 
containing multispecies probiotics and FOS prebiotic 
as an adjunct to SRP in patients with periodontitis and 
type 2 diabetes mellitus.92 The group that received 
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the synbiotic presented better results than patients 
in the control group in relation to CAL gain, plaque, 
bleeding on probing, total antioxidant capacity, 
glutathione peroxidase, and also in the reduction of 
IL-1β and malondialdehyde.

In this context, prebiotic or synbiotic therapies 
can be considered potential adjunct strategies for 
the prevention and/or treatment of periodontal 
diseases. The concept of prebiotic was only recently 
introduced in oral health, and knowledge about 
its possible effects is still in its “childhood stage” 
in Dentistry.87 It is necessary to perform studies to 
assess the effects of prebiotics and synbiotics on 
periodontal diseases, as well as on the modulation 
of oral and intestinal microbiomes, in order to help 
maintain and enhance the benefits provided by the 
beneficial microbiota to the host. 

Statins

Statins are inhibitors of 3-hydroxy-3-methylglutaryl-
Coenzyme A reductase (HMG-CoA reductase) 
and act directly in the inhibition of cholesterol 
biosynthesis.93 The mechanism of action of statins is 
through their anti-inflammatory, anticoagulant, and 
antioxidant effects.94 In addition, statins inhibit the 
hepatic synthesis of apolipoprotein B100 and decrease 
the synthesis and secretion of triglyceride-rich 
lipoproteins.95,96 Furthermore, it has been proposed 
that statins have pleiotropic properties, which leads 
to improved endothelial cell function and modulation 
of the inflammatory response.97 Statins constitute an 
important group of drugs used in the treatment of 
several conditions, such as hypercholesterolemia, 
and are aimed to decrease the risk of developing 
cardiovascular diseases.98 There are several types 
of statins, such as atorvastatin, ezetimibe (usually 
administered in combination with another drug), 
fluvastatin, lovastatin, pitavastatin, pravastatin, 
rosuvastatin, and simvastatin.99

The application of statins in the treatment of 
periodontitis has been evaluated by local application 
in the periodontal pockets. Preclinical studies 
have evaluated the effects of statins (simvastatin, 
rosuvastatin, atorvastatin) in animals subjected 
to periodontitis induction. In general, it was 

observed that the treatment led to reduction in 
bone resorption, reductions in pro-inflammatory 
markers and inflammatory infiltrate, as well as to 
an increase in anti-inflammatory mediators and 
antioxidant substances.100-104 

Clinical investigations have assessed the 
association of several types of statins with SRP in the 
treatment of periodontitis.8,105,106 A recent systematic 
review with meta-analysis included 12 studies that 
applied 1.2% atorvastatin, simvastatin, or rosuvastatin 
gel subgingivally as an adjunct to non-surgical 
periodontal therapy. Considering intrabony defects, 
there was an overall mean difference of 2.25 mm in 
PPD reduction and 2.19 mm in CAL gain at 9 months 
between the use of statin gels and placebo. Moreover, 
statin gels provided greater reductions in the mean 
intrabony/furcation defect depth than placebo at 
6 months.107 However, very high heterogeneity 
was found, putting into question the efficacy and 
predictability of statins as adjuncts to SRP. Other 
systematic reviews with meta-analyses corroborate 
these findings.108,109

Considering the data available so far, it is not 
possible to conclude which type of statin is the 
most effective.107,109 Two studies concluded that 
rosuvastatin gel is more effective than atorvastatin 
gel in the reduction of PD in both intrabony and class 
II furcation defects.110,111 One study did not find any 
difference in PD improvements when locally applied 
atorvastatin and simvastatin gel were compared.113 
Nevertheless, a systematic review with meta-analysis 
and meta-regression concluded that simvastatin was 
the only statin to provide significant improvements in 
all parameters analyzed (PPD reduction, CAL gain, 
resolution of intrabony defects), when compared 
with placebo.108

The use of statins in the management of periodontitis 
can be considered a potential adjunctive approach. In 
addition, statins have low cost, are widely accessible 
and do not appear to pose risks of complications or 
allergic/adverse reactions. Nevertheless, it is important 
to consider that the same research group performed 
all the clinical trials using locally applied statins until 
the present moment. Therefore, additional controlled 
and randomized clinical studies performed by other 
research centers, including greater numbers of 
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patients and longer follow-up times, are needed to 
corroborate the current findings and determine the 
best protocol (dose, duration, and type of statin) to 
be used in periodontal treatment.

Pro-resolving mediators

Specialized pro-resolving mediators (SMP) are 
endogenously biosynthesized chemical mediators 
released during acute inflammation that are both 
pro-resolving and anti-inflammatory. Omega-3 
polyunsaturated fatty acids (PUFA)—eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA) in 
particular—are the precursors of these molecules, 
namely l ipoxins, resolvins, protect ins, and 
maresins.113,14,115 The mechanisms underlying the mode 
of action of such mediators comprise a complex cascade 
of events during the acute phases of inflammation, 
and these mediators are potent agonists that control 
their duration and magnitude. In general, they act 
as receptor agonists, controlling the resolution of the 
inflammation and promoting healing.116 

When compared to conventional anti-inflammatory 
drugs, these synthetically developed molecules may 
have the advantage of controlling inflammation 
through positive agonist/receptor mediated cellular 
signals without eliciting any side-effects. Their 
application, therefore, aims to enhance the off-signal 
rather than inhibit the on-signal.113,114,116

Evidence for the application of pro-resolving 
mediators in the treatment of periodontitis is still 
in preclinical phases,117 and  two SMPs have been 
investigated in animal models: resolvin E1 (RvE1) 
and benzo-lipoxin A4 (bLXA4). Their activity on 
the periodontal tissues in these experimental in 
vivo investigations up to 2017 has been recently 
summarized in a systematic review.118 A total of 
6 studies119-124 from a single research group were 
reported to have applied pro-resolving mediators 
locally in periodontal defects. Major findings 
revealed that these mediators lead to bone gain 
and consequently bone regeneration by reducing the 
inflammatory cell infiltration and osteoclastic activity. 
Although these mediators do not have a direct 
effect on the microbiota, the resulting regulation 
of the inflammation shifted the composition of 

the microbiota, probably through changes in the 
local environment secondary to the inflammation 
resolution.118 Between 2017 and 2020, other preclinical 
studies confirmed previous findings and provided 
new insights on their biological mechanisms126-128 
In summary, these preclinical studies have shown 
promising results that need to be confirmed with 
clinical studies.

Omega-3 and -6

Fatty acids (FA) mainly act as an essential source 
of energy and as precursors of inflammatory and 
anti-inflammatory signaling molecules.128 Long-chain 
FAs (LCFAs) comprise those with more than 12 
carbons and can be sub-grouped into saturated, 
mono-saturated, or polyunsaturated (PUFAs). The 
first carbon double bond position denominates n-6 or 
n-3 PUFAs, or Omega-6 and Omega-3 respectively.129 

Different chemical routes of Omega-6 and 
Omega-3 may drive the cellular inflammatory 
response. Omega-6 (linoleic acid) cascade originates 
arachidonic acid (ARA).128 After being incorporated 
in the phospholipid membrane of mammalians’ 
cells, ARA acts as a substrate to cyclooxygenase 
(COX), lipoxygenase (LOX), and cytochrome P450 
enzymes that originate the so-called eicosanoids. 
Eicosanoids [prostaglandins (PGs), thromboxanes 
(Tr), and leukotrienes (LTs)] are responsible for a 
pro-inflammatory condition and linked to several 
systemic chronic conditions, such as rheumatoid 
arthritis, atherosclerotic plaque rupture, critical 
illness, sepsis,128,130,131,132 and periodontal diseases. On 
the other hand, Omega-3 (α-linolenic acid) originates 
eicosapentaenoic (EPA) and docosahexaenoic (DHA) 
acids that, in turn, produce resolvins, which possess 
anti-inflammatory effects, as described above. 

The effect of Omega-3 supplements on the 
treatment of periodontal diseases was first investigated 
using the experimental gingivitis model, and a 
tendency to improve the inflammatory condition was 
reported.133,134 In regard to periodontitis, cross-sectional 
data have shown an association between dietary 
intake of Omega-3 and Omega-6 and periodontal 
health.135 Additionally, there is evidence that Omega-3 
intake may improve clinical signs of periodontitis 
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in interventional studies. A systematic review of 
the use of Omega-3 supplements has concluded 
that, depending on the duration and dosage of the 
supplementation, periodontal disease progression 
might be reduced. Higher plasma concentrations 
of EPA and DHA correlated with CAL gain, less 
severe periodontitis, and a higher number of teeth.136  
More recently, one RCT138 and a meta-analysis138 
concluded that the intake of Omega-3 as an adjunct 
to periodontal therapy reduced pocket depth and 
increased CAL gain.

Altogether, these results show that Omega-3 has 
the potential benefit of reducing periodontal disease 
progression and improving NSPT outcomes. However, 
clinical studies are still needed and should evaluate 
the ideal dosage of Omega-3, duration and origin of 
supplementation (diet or capsules), side effects, and 
a better description of periodontal outcomes.

Ozone therapy 

Ozone, also known as triatomic oxygen and 
trioxygen, is a highly oxidative gas found in the 
atmosphere. Based on its alleged healing and 
antimicrobial properties, it has been used in Dentistry 
for various indications, such as treating early caries, 
ulcerations, herpetic lesions, and disinfecting root 
canals. Additionally, the application of ozone as 
an adjunctive treatment has been suggested as a 
new strategy in the management of periodontitis.139 
Its in vitro mechanism of action is based on the 
production of free radicals leading to an acute 
and controlled oxidative stress in human cells, 
resulting in the modulation of antioxidant response, 
oxygen metabolism, and cellular energy, which will 
foster positive biological responses.140 Moreover, 
ozone’s high solubility and instability warrant 
its entire absorption and prevent toxicity in the 
tissues.141 Its effects would not lead do antimicrobial 
resistance. In addition to the ozone action in bacteria, 
viruses, and fungi, there is in vitro evidence of action 
against biofilms.142,143 

Ozone therapy has been administrated in 
different ways, but applications in gas and aqueous 
formulations have been the most common. There 
are studies that tested ozone as ozonized/ozonated 

water,139,144 gaseous ozone,145,146 and ozonized oil.147 
Despite its promising in vitro evidence, the clinical 
application of ozone in the treatment of periodontal 
diseases has not achieved a minimum level of 
efficacy. In general, most clinical trials did not 
show statistically significant differences in plaque 
index, gingival index, PPD, and CAL when any 
kind of ozone therapy was used as an adjunct to 
NSPT as compared to NSPT alone. In addition, the 
impact of ozone application on microbiologic and 
biochemical outcomes was limited.144,145,148 These 
limited outcomes may be due to its high volatility 
and instability, resulting in low substantivity and 
activity when applied clinically. Additionally, the 
low quality of studies may have also impacted the 
clinical outcomes. These findings were summarized 
in a recent systematic review with meta-analysis of 
randomized clinical trials, which concluded that 
there is no scientific support for the use of ozone 
therapy for NSPT.149 

Epigenetic therapy

Epigenetics has been defined as the change in 
gene expression that is not encoded in the DNA 
sequence, and includes chemical changes in the 
DNA and its related proteins (called histones), 
which leads to the remodeling of chromatin and 
the resulting activation/inactivation of the targeted 
gene.150 Epigenetic mechanisms dynamically regulate 
gene functions (activation or inactivation) and 
can change in response to different stimuli.151 For 
example, systemic (smoking and diabetes mellitus) 
and local influences (bacteria and their virulence 
factors) can lead to changes in the epigenetic 
status of cells. These events may induce changes in 
immunological responses and thus contribute to 
the pathogenesis of chronic inflammatory diseases, 
such as periodontitis.152 In spite of the early stage of 
studies about epigenetics in periodontitis, the recent 
accumulation of evidence has suggested the possible 
etiopathogenic role of epigenetic changes in the 
initiation and progression of periodontitis. It has been 
reported that the levels of multiple cytokine-encoding 
genes and inflammatory response-related genes may 
be regulated epigenetically.153

8 Braz. Oral Res. 2021;35(supp2):e095



Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR

Although several epigenetic changes have been 
described in periodontitis, there is little information 
on the resolution of these changes after periodontal 
therapy. In addition, the possible effect of adjunctive 
treatments using epigenetic drugs (known as Epidrugs) 
is currently unknown. Only in vitro and preclinical 
in vivo studies are available assessing the effect of 
these molecules on gingival tissues.154,155,156 

DNA methylation
DNA methylation is a regular epigenetic 

modification in nuclear cells, characterized by 
the addition of methyl groups in cytosines within 
cytosine-guanosine (CpG) dinucleotides, regulated by 
different DNA methyltransferases. DNA methylation 
related to disease can occur by hypermethylation 
or hypomethylation as a result of elevating or 
suppressing the expression of specific genes.157 
Several studies have investigated DNA methylation 
of inflammatory cytokines such as IL-6, -8 and TNF-α 
in different forms of periodontitis.156,158-161 In addition, 
other inflammation-related genes were analyzed in 
periodontitis, such as Toll-like receptors (TLRs)163 
and Interferon gamma (IFN-γ).163 

It is noteworthy that studies have not tested 
interventions aiming to change DNA methylation; 
however, it has been demonstrated that periodontal 
treatment may alter DNA methylation. For instance, 
Asa’ad et al.156 demonstrated that periodontal therapy 
was able to redefine the DNA methylation status 
of the inflammatory gene for COX-2 in patients 
with periodontitis, even though DNA methylation 
levels for TNF-α and IFN-γ remained similar in the 
experimental groups. Andia et al.164 found no change 
in methylation levels between groups after three 
months of periodontal therapy. However, variations 
in methylation status between groups were not 
assessed at the beginning of the study. As a whole, 
these findings suggest that periodontal therapy can 
influence epigenetic changes. 

Histone acetylation
Histones can be acetylated or deacetylated 

on the tails of amino acids in chromatin. While 
histone acetylation (addition of acetyl groups) is 
regulated by histone acetyltransferases (HATs), 

histone deacetylation (removal of acetyl groups) is 
regulated by histone deacetylases (HDACs). Unlike 
DNA methylation, which is associated with gene 
expression, histone acetylation is associated with 
gene transcription (activation or repression).165

Different histone deacetylase inhibitors have 
been investigated as a potential treatment for 
bone-related diseases, since they epigenetically 
regulate the expression of genes associated with 
osteoclast differentiation, maturation, and activity. 
In this sense, some histone deacetylase inhibitors 
have already been approved by the US Food and 
Drug Administration (FDA), and evidence across 
therapeutic modalities has shown good results in 
the treatment of different cancers.112 

In Periodontics, some promising results in 
preclinical research have been demonstrated. 
The early results seem to point to an increase in 
histone acetylation in induced-periodontitis models. 
Cantley et al.166 reported that 1179.4b, a histone 
deacetylase inhibitor, suppresses bone loss in the 
induced-periodontitis model by oral inoculation 
with Porphyromonas gingivalis. However, the analysis 
revealed that 1179.4b reduced bone loss despite having 
no effect on gingival inflammation. The authors 
suggested HDACi as a potential therapeutic option for 
periodontitis in the future. Moreover, HDACi MS-275 
has been shown to have an effect on osteoclastogenesis 
in vitro and in vivo.167 MS-275 inhibited osteoclast 
differentiation of bone marrow-derived macrophages 
by suppressing RANKL-induced expression, 
suggesting a potential therapeutic value of HDACi 
for bone disorders associated with increased bone 
resorption. Bromodomain and extra-terminal protein 
(BET) inhibitors have also been studied in alveolar 
bone loss. BET proteins are regulatory molecules 
of chromatin that bind to acetylated histones. JQ1, 
a BET inhibitor, was studied by Meng et al.168 in an 
experimental periodontitis model, which demonstrated 
that JQ1 suppressed the transcription of inflammatory 
cytokines activated by LPS and osteoclast markers 
promoted by RANKL. 

Although the results with histone acetylation 
inhibitors are promising, there are numerous types of 
cells present at the site of bone destruction, including 
inflammatory cells. Thus, inhibition of histone 
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deacetylases might have the opposite effect on those 
cells, resulting in increased bone resorption or raised 
inflammatory reaction. Therefore, further research 
is required to prove the combined effect of histone 
deacetylase inhibitors in the treatment of localized 
bone destruction.

MicroRNAs (miRNAs)
miRNAs are also epigenetic mechanisms that 

regulate gene expression through post-transcriptional 
modifications. These molecules describe a group of 
small non-coding RNAs.169 MicroRNAs play critical 
roles in inflammatory responses by modulating 
cellular processes, such as cell growth, apoptosis, and 
differentiation. Given this fact, miRNAs are linked 
to the development of diseases such as rheumatoid 
arthritis and cancer.170 In the last years, miRNAs 
have been investigated in bone-related diseases and 
bone-remodeling processes due to their importance 
in osteoclastogenesis, osteogenesis, and osteoclast/
osteoblast differentiation. In addition to that, miRNAs 
have been shown to play a relevant function in the 
differentiation of periodontal ligament stem cells. An 
in vitro study demonstrated that one type of miRNA 
stimulated osteogenic differentiation of periodontal 
ligament stem cells.171

miRNAs have also been involved in the control of 
TLR reaction to bacteria. A recent study172 reported 
that infection by three important periodontal 
pathogens (Porphyromonas gingivalis, Treponema 
denticola, Tannerella forsythia) increased the expression 
levels of miR-146a in mice with experimental 
periodontitis. The authors also reported that 
cultured cells simultaneously stimulated with all 
three periodontal pathogens showed that TNF-α 

imbalance may be signal for this expression 
of miRNA.

In summary, our current understanding of the role 
of epigenetic factors in periodontitis development is 
still insufficient. However, emerging studies highlight 
that DNA methylation, histone modifications, and 
miRNAs are modified during the oral mucosa response 
to bacteria, environmental factors, and inflammatory 
processes. Future translational studies are needed to 
further explore and understand these discoveries and 
enable the development of highly desirable therapies 
for periodontal disease based on the regulation of 
the host immune response.

Concluding remarks 

This review addressed the available literature for 
nine therapeutic approaches with potential benefits 
over standard NSPT. At the moment, there is a lack of 
solid and sound evidence to recommend most of these 
new tendencies in NSPT in daily practice. SRP alone 
reduces bleeding in up to 63% of the sites and results 
in 74% of closed pockets (PPD ≤ 4mm and no BOP).173 
Clinical outcomes observed with new therapies 
approached in this review have not demonstrated 
minimally acceptable consistency and benefits 
over those achieved with SRP alone. Consequently, 
SRP should still be considered the gold-standard 
treatment for periodontitis. Importantly, evidence 
is growing, and some of these new tendencies 
have great potential to improve NSPT outcomes. 
Future RCTs applying comparable estimates of 
clinical outcomes are encouraged in order to assist 
clinicians and patients in their clinical decision 
about alternative treatments.
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