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Abstract. A West Nile epidemic model in discrete-time is proposed. The model consists

of two interacting populations, the vector and the avian populations. The avian population is

classified into susceptible, infective, and recovered classes while an individual vector is either

susceptible or infective. The transmission of the disease is assumed only by mosquitoes bites

and vertical transmission in the vector population. The model behavior depends on a lumped

parameter R0. The disease-free equilibrium is locally asymptotically stable if R0 < 1. The

system is uniformly persistent and possesses a unique endemic equilibrium if R0 > 1. Conse-

quently, the disease can persist in the populations if R0 > 1.
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1 Introduction

West Nile virus (WNV) is a kind of arthropod-borne virus that are maintained

in nature through biological transmission between susceptible vertebrate hosts

and blood-feeding arthropods such as mosquitoes. Vertebrates can become in-

fected when an infected arthropod bites them to take a blood meal. The suscep-

tible vectors then become infected once feed on an infected host.

WNV was first isolated from a woman in the West Nile District of Uganda

in 1937 and has emerged in recent years in many regions of the United States

and Canada. The disease presents a threat and challenge to public and ani-

mal health. West Nile virus has been detected in dead birds of at least 138
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species. Although birds, particularly crows and jays, infected with the virus

can die or become ill, most infected birds do survive. We refer the reader to

www.cdc.gov/ncidod/dvbid/westnile for more information about the virus his-

tory and its ecology.

Since data collected for the West Nile virus are usually discrete, we develop

a discrete-time West-Nile model to investigate evolution of the disease between

mosquitoes and bird reservoir hosts. Discrete time West Nile models have been

studied in [15, 17]. However, our modeling assumptions are different from

that given in [15, 17]. In [15] the vector population is partitioned into larval,

susceptible, exposed, and infective classes, and all the newborns are in the larval

class, while in [17] the vector population also has an exposed compartment and

there is no vertical transmission. Moreover, our incidence rate is different from

that studied in [15, 17]. Our model derivation is based on a recent continuous-

timemodel proposed byCruz-Pacheco et al. [5]. Although other vertebrates such

as horses and humans do become infected, these populations are not modeled

here.

The resulting epidemicmodel is a four-dimensional system of difference equa-

tions. Sufficient conditions for which solutions remain nonnegative are derived.

It is shown that the disease-free equilibrium always exists. Its stability depends

on a threshold R0. The disease-free equilibrium is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1. There exists a unique endemic equilibrium and

the system is uniformly persistent when R0 > 1. Consequently, the WNV can

persist if R0 > 1. When there is no disease related death for the avian popula-

tion, it can be shown that the disease-free equilibrium is globally asymptotically

stable for R0 ≤ 1.
In the following section, model derivationwill be presented. Section 3 provides

stability analysis of the model. Numerical simulations and a brief summary are

given in the last section.

2 Model derivation

Our model consists of two interacting populations: birds and mosquitoes. The

transmission of the disease is only by mosquitoes bites and vertical transmission

in the vector population. Let Na(t) and Nv(t) denote the avian and vector pop-
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ulations at time t , respectively for t = 0, 1, . . .. We assume that the mosquito

population under the period of study is a constant, Nv, and the bird population

has a constant recruitment rate �a per unit time due to birth and immigration.

However, the new arrival birds are all susceptible. The death rates of avian and

vector populations are denoted by µa and µv, respectively.

For simplicity, the birth rate of the vector population is µv which is the same

as its death rate. That is, µv is the number of births per individual per unit

time for the mosquito population. It is also assumed that the bird population in

the absence of the disease is governed by the difference equation Na(t + 1) =
�a+(1−µa)Na(t).As a result, the bird population in the absence of the disease
will always stabilize at the level (�a)/(µa).

Similar to the idea used by Kermack and McKendrick [12] for modeling epi-

demics, the avian population at time t is separated into three compartments:
susceptible Sa(t), the healthy susceptible individuals who can contract the dis-
ease, infectives Ia(t), the individuals who are infected and are infectious, and
recovered Ra(t), who are cured. That is, Na(t) = Sa(t) + Ia(t) + Ra(t) for
t ≥ 0. Since mosquitos have short life span, the vector population at any given
time t is only classified into susceptible, Sv(t), and infectives, Iv(t). There is no
recovered class for the vector population and Sv(t) + Iv(t) = Nv > 0 for t ≥ 0.
Let b be the average number of bites per mosquito per unit time. The trans-

mission probability from vectors to birds and from birds to vectors are constants

and denoted by βa and βv, respectively. Hence a bird receives on average b Nv

Na
bites per unit time. Therefore the infection rate per susceptible bird is

bβa
Nv

Na
Iv
Nv

= bβa
Iv
Na

,

and the infection rate per susceptible mosquito is

bβv

Ia
Na

.

We assume that the infected birds are recovered at a constant rate γa , and let

αa be the disease related death rate for the avian population. From the data given

in [13, 16] (cf. [5]) it is reasonable to assume that

(H1) αa ≤ γa .
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We remark that assumption (H1) may not be satisfied for some spices of birds

such as American crow and blue jay. However, many other species of birds such

as common grackle, house sparrow, European starling etc. do have small WNV

mortality ([13]), and consequently (H1) will fit in to these particular species of

birds.

Notice the average infectious period for an infected bird is

1

γa + µa + αa
.

Furthermore, it is assumed that all these parameters�a, µa, µv, b, βa, βv, Nv, γa

and αa are positive. Since vertical transmission of the vector population has been

found as an important mechanism in maintaining the virus in natural populations

[3, 7, 10], we assume a constant fraction p, 0 ≤ p ≤ 1, of the offspring of

the infectious vectors is infectious. Under these biological assumptions, the

interaction between vector and avian populations are given below:




Sa(t + 1) = �a + (1− µa)Sa(t) − bβa
Na(t)

Iv(t)Sa(t)

Ia(t + 1) = bβa
Na(t)

Iv(t)Sa(t) + (1− γa − µa − αa)Ia(t)

Ra(t + 1) = (1− µa)Ra(t) + γa Ia(t)

Na(t + 1) = �a + (1− µa)Na(t) − αa Ia(t)

Sv(t + 1) = Sv(t) + (1− p)µv Iv(t) − bβv

Na(t)
Ia(t)Sv(t)

Iv(t + 1) = (1− µv)Iv(t) + pµv Iv(t) + bβv

Na(t)
Ia(t)Sv(t)

Sa(0), Ia(0), Ra(0), Sv(0), Iv(0) ≥ 0, Na(0) > 0.

(2.1)

Notice as the birth and death rates of the vector population are the same and

offsprings of susceptible mosquitoes are born susceptible, the equation for Sv

has the above form.

Discrete time epidemic models have been studied by Allen [1, 2], Lewis et

al. [15], Thomas and Urena [17], and more recently by Franke [9] on periodic

epidemic models. In [1, 2], the models are expressed in terms of time unit �t
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and nonnegativity of the solutions are derived using the quantity �t and model
parameters. Since data for the West Nile epidemics given in the literature [3, 5,

7, 10, 16] are in terms of days, our time unit is taken to be a day and model

(2.1) does not involve time unit �t as in [1, 2]. We now impose the following
conditions on the parameters so that solutions of (2.1) will remain nonnegative

as shown in Proposition 2.1.

(H2) bβaNv ≤ �a , γa + µa + αa ≤ 1, bβv ≤ 1, and µv ≤ 1.
We remark that the first three conditions in (H2) imposed on the parameters are

reasonable restrictions. For example, since the time unit is taken to be one day,

then according to the data given in [5, 16], we have βa = 1, b = 0.75, and the

maximum values of βv is 0.68, of γa is 0.36, of αa is 0.19, of µa is 0.0004, and

of µv is 0.06 for a variety of bird species such as blue jay, common grackle,

American crow, house sparrow, American robin, rock dove etc. and different

species of mosquitos. Therefore the first three conditions in (H2) are easily

satisfied. However, we would need the total population of vector to be small or

the new arrival of birds to be large in our study for the last inequality in (H2) to

be true.

Proposition 2.1. Solutions of system (2.1) remain nonnegative and are
bounded.

Proof. Let (Sa(t), Ia(t), Ra(t), Na(t), Sv(t), Iv(t)) be a solution of (2.1) with
Sa(0), Ia(0), Ra(0), Sv(0), Iv(0) ≥ 0 and Na(0) > 0. It is sufficient to prove

nonnegativity for t = 1. Since Sa(0) + Ia(0) + Ra(0) = Na(0) > 0 and

Sv(0) + Iv(0) = Nv > 0, Sa(1) ≥ �a + (1 − µa)Sa(0) − bβa Iv(0) ≥ �v +
(1 − µa)Sa(0) − bβaNv ≥ (1 − µa)Sa(0) ≥ 0 by (H2) and (H3). It is clear

that Ia(1), Ra(1) ≥ 0 by (H3). Moreover, Sv(1) ≥ Sv(0) + (1 − p)µv Iv(0) −
bβvSv(0) ≥ 0 by (H4). Similarly, Na(1) ≥ �a + (1 − µa − αa)Na(0) ≥ �a

and Iv(1) ≥ 0 by (H3) and (H5), respectively. Therefore, solutions of (2.1)

remain nonnegative by induction.

Notice Na(t + 1) ≤ �a + (1− µa)Na(t) for t ≥ 0 implies
lim sup
t→∞

Na(t) ≤ �a

µa
.
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As Sa(t), Ia(t), Ra(t) are nonnegative and satisfy Sa(t)+ Ia(t)+ Ra(t) = Na(t)
for t ≥ 0, we have

lim sup
t→∞

Sa(t) ≤ �a

µa
, lim sup

t→∞
Ia(t) ≤ �a

µa
, and lim sup

t→∞
Ra(t) ≤ �a

µa
.

Moreover, since Sv(t + 1) + Iv(t + 1) = Nv for t ≥ 0 and solutions remain

nonnegative, Sv(t), Iv(t) ≤ Nv for t ≥ 0. Therefore, solutions of (2.1) are

bounded.

It follows from the proof of Proposition 2.1 that Na(t) ≥ �a for t ≥ 1

if Na(0) > 0. Therefore system (2.1) is well-defined. Furthermore, since

Ia(t) + Sa(t) + Ra(t) = Na(t) and Sv(t) + Iv(t) = Nv for t ≥ 0 from modeling
assumptions, we are able to reduce the dimension of system (2.1) so that sys-

tem (2.1) is equivalent to the following four-dimensional system of difference

equations


Sa(t + 1) = �a + (1− µa)Sa(t) − bβa
Na(t)

Iv(t)Sa(t)

Ia(t + 1) = bβa
Na(t)

Iv(t)Sa(t) + (1− γa − µa − αa)Ia(t)

Na(t + 1) = �a + (1− µa)Na(t) − αa Ia(t)

Iv(t + 1) = (1− µv)Iv(t) + pµv Iv(t) + bβv

Na(t)
Ia(t)(Nv − Iv(t))

Sa(0), Ia(0), Iv(0) ≥ 0, Na(0) > 0.

(2.2)

3 Mathematical analysis

Wefirst study the existence of steady state solutions of (2.2). Clearly there always

exists a trivial steady state E0 = (
�a
µa

, 0, �a
µa

, 0
)
, the disease-free equilibrium.

The Jacobian matrix of (2.2) evaluated at E0 has the following form

J (E0) =



1− µa 0 0 −bβa
0 1− γa − µa − αa 0 bβa
0 −αa 1− µa 0

0 µabβvNv/�a 0 1− (1− p)µv


 . (3.1)
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Let J1 be the lower 3× 3 submatrix of J (E0). Then J1 is similar to
 1− γa − µa − αa bβa 0

µabβvNv/�a 1− (1− p)µv 0

−αa 0 1− µa


 . (3.2)

Therefore eigenvalues of J (E0) are 1− µa of multiplicity 2 and eigenvalues of

J2 =
(
1− γa − µa − αa bβa

µabβvNv/�a 1− (1− p)µv

)
. (3.3)

Notice

tr J2 = 2− γa − µa − αa − (1− p)µv

and

det J2 = (1− γa − µa − αa)[1− (1− p)µv] − b2µaNvβvβa

�a
.

Jury conditions imply that eigenvalues λ of J2 satisfy |λ| < 1 if and only if

| tr J2| < 1 + det J2 < 2 [8]. It follows from (H2) that tr J2 > 0 and thus we

need to verify tr J2 < 1+ det J2 < 2 for the local stability of E0.
Notice det J2 < 1 is trivially true and thus 1 + det J2 < 2 holds. To verify

tr J2 < 1 + det J2 we shall separate our discussion into two cases: 0 ≤ p < 1

and p = 1. When 0 ≤ p < 1, a simple computation yields

tr J2 < 1+ det J2 if and only if b2µaNvβaβv

�aµv(1− p)(γa + µa + αa)
< 1.

Let

R0 = b2µaNvβaβv

�aµv(1− p)(γa + µa + αa)
. (3.4)

It follows that E0 is locally asymptotically stable if R0 < 1, and unstable if

R0 > 1. When p = 1,

tr J2 = 2− γa − µa − αa and det J2 = 1− γa − µa − αa − b2µaNvβvβa

�a
.

Therefore tr J2 < 1+ det J2 if and only if

2− γa − µa − αa < 2− γa − µa − αa − b2µaNvβvβa

�a
.
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The above inequality is never valid. Therefore E0 is always unstablewhen p = 1.

Observe that
bµa Nvβv

�a(γa+µa+αa)
can be interpreted as the number of infections pro-

duced by a single infected bird during its infectious period in a susceptible

mosquito population when the avian population is stabilized at the population

level�a/µa . Similarly,
bβa

(1−p)µv
is the number of infections produced by a single

infectious mosquito during its lifetime in a susceptible avian population. There-

fore,
√
R0, the geometric mean of these two quantities, may be regarded as the

basic reproductive number of the disease.

We proceed to examine the existence of an interior steady state. An interior

steady state (S̄a, Īa, N̄a, Īv) must satisfy


�a − µa S̄a − bβa
N̄a
Īv S̄a = 0

bβa
N̄a
Īv S̄a − (γa + µa + αa) Īa = 0

�a − µa N̄a − αa Īa = 0

−µv Īv + pµv Īv + bβv

N̄a
Īa(Nv − Īv) = 0.

(3.5)

Adding the first two equations of (3.5) resulting

�a − µa S̄a − (γa + µa + αa) Īa = 0.

Let

A = γa + µa + αa.

Then

S̄a = �a − AĪa
µa

,

and S̄a > 0 if and only if Īa <
�a

A
. The third and fourth equilibrium equations

imply

N̄a = �a − αa Īa
µa

,

and

Īv = bβvµaNv Īa
(�a − αa Īa)(1− p)µv + µabβv Īa

.
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Substituting these into the second equilibrium equation we have for 0 ≤ p < 1,

Īa > 0 must satisfy

Âx2 + B̂x + Ĉ = 0, (3.6)

where

Â = αa
[
bµaβv − (1− p)αaµv

]
,

B̂ = 2�a(1− p)µvαa − b�aµaβv − (1− p)A�aµvR0, and

Ĉ = �2
aµv(1− p)(R0 − 1).

Let

f (x) = Âx2 + B̂x + Ĉ .

Notice

f (0) = Ĉ
and since A = αa + γa + µa ,

f
(

�a

A

)
= 1

A2
[
b�2

aµaβv(αa − A) − (1− p)�2
aµv(A − αa)

2
]

< 0.

When R0 < 1, Ĉ < 0 and hence for f (x) to have at least one positive root in
(0,�a/A) it is necessary that

Â < 0 <
−B̂
2 Â

<
�a

A
and B̂2 − 4 ÂĈ > 0.

Notice that the last inequality is equivalent to
−B̂
2 Â

>
−2Ĉ
B̂
, and

−2Ĉ
B̂

>
�a

A

if and only if

bµaβv − Aµv(1− p)R0 + 2(µa + γa)µv(1− p) > 0.

Substituting R0 by the expression (3.4) and using (H2), one can see that the
above inequality is trivially true. Therefore there exists no feasible solution Īa
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for (3.6) in (0,�a/A) if 0 ≤ p < 1 and R0 < 1. Consequently, system (2.2)

has no interior steady state if 0 ≤ p < 1 and R0 < 1.

On the other hand if R0 > 1 then since Ĉ > 0 and f (�a/A) < 0, it is

clear that (3.6) has a unique solution Īa ∈ (0,�a/A). As a result, system (2.2)

has a unique endemic equilibrium E1 = (S̄a, Īa, N̄a, Īv) if 0 ≤ p < 1 and

R0 > 1. If 0 ≤ p < 1 and R0 = 1, then Ĉ = 0 and f (x) = 0 has solutions 0

and−B̂/ Â. Notice B̂ = �a(1−p)µvαa−(1−p)(µa+γa)�aµv−b�aµaβv < 0

by (H1). If Â > 0 then it is straightforward to show that −B̂/ Â > �a/A, and
if Â < 0 then it is trivial that −B̂/ Â < 0. Therefore if 0 ≤ p < 1 and R0 = 1,

there is no feasible Īa . We conclude that system (2.2) has no interior steady state
if 0 ≤ p < 1 and R0 ≤ 1, and has a unique endemic equilibrium if R0 > 1.

When p = 1, the threshold R0 in (3.4) is not defined and the Ia-component,
Īa > 0, of an interior steady state must satisfy (3.6) with

Â = αabµaβv, Ĉ = b2βaβvµaNv�a

A

and

B̂ = −b�aµaβv − b2βaβvµaNv.

Since Â > 0, Ĉ > 0 and f (�a/A) < 0, f (x) = 0 has a unique solution

Īa in (0,�a/A). Consequently, (2.2) has a unique endemic equilibrium E1 =
(S̄a, Īa, N̄a, Īv)when p = 1. Recall in this case that the disease-free equilibrium

E0 = (�a/µa, 0,�a/µa, 0) is unstable. The above discussion is summarized

below.

Proposition 3.1. If 0 ≤ p < 1 and R0 ≤ 1, then E0 = (�a/µa, 0,�a/µa, 0)

is the only equilibrium and E0 is locally asymptotically stable if R0 < 1. If
0 ≤ p < 1 and R0 > 1, then E0 is unstable and system (2.2) has a unique
interior steady state E1 = (S̄a, Īa, N̄a, Īv). If p = 1, then E0 is unstable and E1
exists for (2.2).

Our next goal is to determine local stability of the steady state E1. When
p = 1, it follows from (3.5) that Īv = Nv. Therefore the Jacobian matrix of
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system (2.2) evaluated at E1 has the following form

J (E1) =



1− µa − bβaNv/N̄a 0 bβaNv S̄a/N̄ 2a −bβa S̄a/N̄a

bβaNv/N̄a 1− A −bβaNv S̄a/N̄ 2a bβa S̄a/N̄a
0 −αa 1− µa 0

0 0 0 1− bβv Īa/N̄a


.

Clearly 1− bβv Īa/N̄a is an eigenvalue of J (E1) which is less than 1 but greater
than zero by (H4). The upper 3 × 3 submatrix of J (E1) − λI is similar to the
following matrix

Ĵ =

1− µa − λ 1− A − λ 0

bβaNv/N̄a 1− A − λ −bβaNv S̄a/N̄ 2a
0 −αa 1− µa − λ


 .

Using the third row expansion we see that 1− µa is another eigenvalue and the

rest of the two eigenvalues satisfy

λ2 + tr J̄λ + det J̄ = 0,

where

tr J̄ = bβaNv/N̄a − 2+ µa + A

and

det J̄ = (1− A)(1− µa) − bαaβaNv S̄a/N̄ 2a − (1− A)bβaNv/N̄a.

Since det Ĵ < 1, applying the Jury conditions, we need to very that−1−det J̄ <

tr J̄ < 1 + det J̄ . A straightforward calculation yields tr J̄ < 1 + det J̄ if and
only if

Aµa + AbβaNv

N̄a
− bαaβa S̄aNv

N̄ 2a
> 0.

Since S̄a < N̄a and A > αa , the above inequality is clearly true. Moreover,

−1− det J̄ < tr J̄ if and only if

−µa A + (1− A)
bβaNv

N̄a
+ bαaβaNv S̄a

N̄ 2a
<
bβaNv

N̄a
.

This inequality also holds as A > αa and S̄a < N̄a . We now summarize our
discussion in the following proposition.
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Proposition 3.2. System (2.2) has steady states E0 = (�a/µa, 0,�a/µa, 0)

and E1 = (S̄a, Īa, N̄a, Īv) when p = 1, where E0 is unstable and E1 is locally
asymptotically stable.

It is not easy to verify whether the endemic-equilibrium E1 is locally asymp-
totically stable when 0 ≤ p < 1 and R0 > 1. We show that the disease can

persist by showing that the system is uniformly persistent. We first briefly dis-

cuss terminology used in Hofbauer and So [11] which will be adopted for our

analysis. Let (X, d) be a metric space and h : X → X be continuous with a
closed subspace Y such that X \Y is forward invariant under h. It is assumed that
X has a global attractor A. Let M be the maximal compact invariant set in Y .
Then h is uniformly persistent (with respect to Y ) i.e., there exists m > 0 such

that lim inf t→∞ d(ht(x), Y ) > m for all x ∈ X \ Y if and only if M is isolated

inA and Ws(M) = {x ∈ X : ht(x) → M as t → ∞} ⊂ Y [11, Theorem 4.1].

Theorem 3.3. System (2.2) is uniformly persistent if either 0 ≤ p < 1 and
R0 > 1 or if p = 1.

Proof. Let X = R
4+ and Y = ∂R4+, the boundary of X . Let H denote the

map induced by system (2.2). It follows from the proof of Proposition 2.1

that Sa(t), Ia(t), Na(t), Iv(t) > 0 for t ≥ 1 if the initial condition is positive.

Therefore X \ Y is positively invariant for system (2.2). Clearly system (2.2)
has a global attractor and the only invariant set in Y is {E0}, which is moreover
isolated in {(Sa, Ia, Na, Iv) ∈ R4+ : Sa + Ia ≤ �a/µa, Na ≤ �a/µa, Iv ≤ Nv}.
To show Ws({E0}) ⊂ Y , suppose on the contrary that there exists a solution

(Sa(t), Ia(t), Na(t), Iv(t)) with Sa(0) > 0, Ia(0) > 0, Na(0) > 0, and Iv(0) >

0 such that limt→∞ Sa(t) = limt→∞ Na(t) = �a/µa and limt→∞ Ia(t) =
limt→∞ Iv(t) = 0. Then for any ε > 0 there exists t0 > 0 such that

1− ε <
Sa(t)
Na(t)

< 1+ ε, 0 < Ia(t), Iv(t) < ε, and Na(t) < �a/µa + ε

for t ≥ t0. We first consider the case when 0 ≤ p < 1 and R0 > 1. Since

R0 > 1, we can choose ε > 0 such that

b2µaβaβv(Nv − ε)(1− ε)

(�a + εµa)µv(1− p)(γa + µa + αa)
> 1. (3.7)
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We have by system (2.2) that

Ia(t + 1) ≥ bβa(1− ε)Iv(t) + (1− γa − µa − αa)Ia(t)

Iv(t + 1) ≥ bβv

�a/µa + ε
(Nv − ε)Ia(t) + [1− (1− p)µv]Iv(t)

for t ≥ t0. Consider the following linear system

x(t + 1) = (1− γa − µa − αa)x(t) + bβa(1− ε)y(t)

y(t + 1) = bβvµa

�a + εµa
(Nv − ε)x(t) + [1− (1− p)µv]y(t)

x(t0) = Ia(t0), y(t0) = Iv(t0).

(3.8)

LetA denote the map induced by system (3.8). Notice each entry of A is positive

and it follows from (3.7) that the spectral radius of A is larger than unity. Since

x(t0) = Ia(t0) > 0 and y(t0) = Iv(t0) > 0, solutions of (3.8) are unbounded.

As a result, Ia(t) and Iv(t) also become unbounded large as t → ∞. We obtain
a contradiction and conclude that Ws({E0}) ⊂ Y . Therefore, system (2.2) is
uniformly persistent with respect to Y by [11, Theorem4.1], i.e., there existsm >

0 such that lim inf t→∞ Sa(t) ≥ m, lim inf t→∞ Ia(t) ≥ m, lim inf t→∞ Na(t) ≥
m and lim inf t→∞ Iv(t) ≥ m for any solution (Sa(t), Ia(t), Na(t), Iv(t)) with
positive initial condition. The case when p = 1 can be shown similarly using

instability of E0.
Although it is known that the crow family of birds have very high WNV

mortality rate, the mortality rate of some other species of birds such as house

barrow and common grackle are usually very small. In particular, European

starling, rock dove, American robin, and several other species of birds have

zero WNV mortality rate as shown in an experimental study by Komar [13].

Therefore, it is reasonable to consider the special case when there is no WNV

related mortality for the avian population. In this situation limt→∞ Na(t) =
�a/µa and (2.2) has the following three-dimensional limiting system


Sa(t + 1) = �a + (1− µa)Sa(t) − bβaµa
�a

Iv(t)Sa(t)

Ia(t + 1) = bβaµa
�a

Iv(t)Sa(t) + (1− γa − µa)Ia(t)

Iv(t + 1) = (1− µv)Iv(t) + pµv Iv(t) + bβvµa

�a
Ia(t)(Nv − Iv(t))

Sa(0), Ia(0), Iv(0) ≥ 0.

(3.9)
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Notice R0 becomes

R0 = b2µaNvβaβv

�aµv(1− p)(γa + µa)
.

We show that the disease-free equilibrium (�a/µa, 0,�a/µa, 0) is globally

asymptotically stable for (2.2) if 0 ≤ p < 1 and R0 ≤ 1.

Theorem 3.4. The disease-free equilibrium E0 = (�a/µa, 0,�a/µa, 0) is the
only equilibrium which is moreover globally asymptotically stable for system
(2.2) if αa = 0, 0 ≤ p < 1, and R0 ≤ 1.

Proof. It is clear that (2.2) has only the disease-free equilibrium. Since Sa(t)+
Ia(t) ≤ �a/µa and Iv(t) ≤ Nv for t ≥ 0, we let

� =
{
(x, y, z) ∈ R3+ : x + y ≤ �a

µa
, z ≤ Nv

}
.

We construct a Liapunov function V

V : � → R+ by V (Sa, Ia, Iv) = Ã
(

�a

µa
− Sa

)
+ B̃ Ia + C̃ Iv,

where nonnegative Ã, B̃ and C̃ will be determined later. Let G denote the map
induced by system (3.9). Then V ≥ 0 on � and

V (G(Sa, Ia, Iv)) ≤ Ã(1− µa)
�a

µa
+
[
B̃(1− γa − µa) + C̃ bβvµa

�a
Nv

]
Ia

+ [
Ãbβa + B̃bβa + C̃(1− µv) + C̃ pµv

]
Iv.

We choose Ã = 0. Then B̃ and C̃ must satisfy

B̃(1− γa − µa) + C̃ bβvµa

�a
Nv ≤ B̃ and B̃bβa + C̃(1− µv + pµv) ≤ C̃ .

We now let

C̃ = 1 and B̃ = bβvµaNv

�a(γa + µa)
.

Then C̃ and B̃ clearly satisfy the above inequalities as R0 ≤ 1. Hence V (G(Sa,
Ia, Iv)) ≤ V (Sa, Ia, Iv) and V is a Liapunov function on �.
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LetM = {(Sa, Ia, Iv) ∈ � : V (G(Sa, Ia, Iv)) = V (Sa, Ia, Iv)}. ThenM =
{(Sa, Ia, Iv) ∈ � : Ia = Iv = 0} and the only invariant set inM is (�a/µa, 0, 0).

Therefore, (�a/µa, 0, 0) is globally asymptotically stable for system (3.9) by

the LaSalle’s invariance principle [8, 14]. Since the limiting system (3.9) has

only one equilibrium which is moreover globally asymptotically stable when

R0 ≤ 1, applying [6], we conclude that the disease-free equilibrium is globally

asymptotically stable for system (2.2) when αa = 0, 0 ≤ p < 1, and R0 ≤ 1.

4 Discussion

It is showed in the previous section that the West Nile virus can be wiped out

when R0 ≤ 1 and µa = 0, and the disease can persist within the populations

when R0 > 1. Although it is proved that the disease-free equilibrium is globally

asymptotically stable if µa = 0, 0 ≤ p < 1 and R0 ≤ 1, it is suspected that

the disease-free equilibrium is globally asymptotically when R0 < 1, µa > 0,

and 0 ≤ p < 1. Since stability analysis does not provide any information about

the transient behavior of the model which may be very important in terms of

eradication and management plans, we next use simple numerical methods to

study (2.2).

To simulate model (2.2), we adopt the following parameter values: �a = 140,

γa = 0.1, αa = 0.1, µa = 0.02, b = 0.7, βa = 1.0, βv = 0.38, µv = 0.06,

Nv = 200 and p = 0.2. Initial conditions are chosen to be Sa(0) = 1000,

Ia(0) = 0, Na(0) = 1000 and Iv(0) = 100 for all simulations presented.

Notice in this case that R0 = 0.5038 < 1 and system (2.2) has only the disease-

free equilibrium. Simulations for this set of parameter values are plotted in

Figure 1(a). Both infected populations go to a peak at approximately the same

time before they are diminished. Therefore there is a serge of the disease for a

short period of time even when R0 < 1.

We next keep the same parameter values but change βv from 0.38 to 0.78.

Then R0 = 1.0341 > 1 and system (2.2) has a unique endemic equilibrium

according to Theorem 3.3. The time evolution of the infected populations are

plotted in Figure 1(b). It can be seen that both infected populations also in-

crease before they decrease to the equilibrium levels for initial conditions with

Iv(0) ≥ 10. When 0 < Iv(0) < 10, then both infected populations increase
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to equilibrium levels with increasing time. It is known that vertical transmis-

sion of virus in the vector population is an important factor for contributing the

spread of the disease [3, 7, 10]. We shall investigate this factor using our built

model. We vary the parameter value p with the above fixed parameter values
so that R0 > 1. When p = 0.2, it is calculated R0 = 1.0341, when p = 0.3,

R0 = 1.1818, and R0 = 1.3788 when p = 0.4. The resulting time series of the

infected mosquitoes and birds are plotted in Figure 1 (c) and (d) respectively.

We see from these two plots that increasing the vertical transmission rate p in-
creases the equilibrium levels and hence increases severity of the epidemics as

the peaks of infectives increase with increasing p. However, the time that these
peaks occurred is approximately independent of p.
In this manuscript, a simple West Nile epidemic model in discrete-time is pro-

posed and analyzed. Our modeling assumptions are based on a continuous-time

model developed by Cruz-Pacheco et al. [5]. In particular, the avian population

in the absence of the disease is stabilized in a constant population level and the

transmission of the virus is either through infectedmosquito bites or natural birth

of infected vectors. The dynamics of the epidemics depend on a lumped param-

eter R0. The disease-free equilibrium E0 is the only equilibrium and is locally
asymptotically stable if R0 < 1. It is proved that E0 is globally asymptotically
stable when there is no disease related mortality for the avian population and

R0 ≤ 1. As a result, the disease can be wiped out in this special situation. How-
ever, the epidemic can persist if R0 > 1. From the data given in [5, 16], it is very

often that R0 > 1 for many species of birds along with vertical transmission of

the vector population. Therefore, very likely that the West Nile epidemic can

persist in natural populations as it has been observed in recent years in the U.S.

It is demonstrated numerically via simulations that both infected populations

increase initially even when R0 < 1 and the transient behavior of the model

depends on initial conditions when R0 > 1. If the initial infected vector popu-

lation is small, then both infected populations will increase until they reach the

equilibrium levels. However, if the initial infected vector population is large,

then both infected vector and host populations will reach a maximum number

which is much larger than the equilibrium value in a short period of time be-

fore they decrease to the equilibrium levels as shown in Figure 1. Therefore in
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this situation there will be a severe outbreak of the disease in the beginning of

the epidemic.
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Figure 1 – (a) and (b) plot infective populations when R0 < 1 and R0 > 1, respectively.

The solid lines are for the mosquito population and the dotted lines are for the bird

population. (c) and (d) plot number of infective mosquitoes and birds versus time for

different values of p, respectively. Solid lines are for p = 0.2, dotted lines are for

p = 0.3, and dash-dotted lines are for p = 0.4.
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