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1 Introduction

The Manakov equation

i
qu = §(Q1xx +2(lq11* + lg2)q1).
(1)

i

3 (@20 +2001 7 + la21)42),

9 =

where ¢, g, are potentials, is nothing but the 2-component vector nonlinear
Schrédinger equation and sometimes is referred to as the coupled nonlinear
Schrodinger equation. Manakov first examined equation (1) as an asymptotic
model for the propagation of the electric field in a waveguide [1]. Subsequently,
the system (1) was derived as a key model for lightwave propagation in optical
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2 AN INTEGRABLE DECOMPOSITION OF THE MANAKOV EQUATION

fibers [2]. The system admits vector-soliton solutions, the solution collision is
elastic and the dynamics of soliton interactions can be explicitly computed [3].

The nonlinearization of spectral problem (NSP), which was put forward by
Cao [4, 5], is a powerful tool to study integrable systems in (1+1)-dimensions.
With it we can generate new finite-dimensional integrable Hamiltonian systems,
decompose (1+1) dimensional integrable systems into a pair of compatible finite-
dimensional integrable Hamiltonian systems, and thus construct explicit or nu-
merical solutions of the (1+1) dimensional integrable systems. During the past
two decades, many powerful techniques of generalizations of the NSP have
been obtained. For example, the binary NSP, which was presented for the first
time by Ma and Strampp [6], has been studied [7, 8]. After that the higher-order
symmetry constraint method [9] and binary nonlinearization of spectral prob-
lems under higher-order symmetry constraints [10] were discussed. The nonlin-
earization and binary nonlinearization of the discrete eigenvalue problem were
introduced [11, 12], respectively. And then Ma and Zhou proposed the adjoint
symmetry constraint method [13, 14]. The adjoint symmetry constraint can be
used to solve the multicomponent AKNS equations associated with degenerate
spectral problems. Because the spectral matrix of the Manakov equation is de-
generate, general methods of the NSPs are impossible for the success of making
integrable decompositions. Therefore, the introduction of the adjoint symmetry
is very crucial for the integrable decomposition of the Manakov equation.

In this paper, we will present an integrable decomposition of the Manakov
equation. As is well known, equation (1) can be reduced from the 4-component
AKNS equation by imposing the reality condition » = —¢gf. Therefore, we
can make the integrable decomposition of equation (1) through the following
procedure: couple the spectral problems of equation (1) with their complex
conjugates and then reduce these problems to that of the 4-component AKNS
equation by introducing new variables. The paper is organized as follows. Firstly,
we recall the integrable decomposition of the 4-component AKNS equation with
the help of the adjoint symmetry constraints and the binary NSP. Secondly, on
the basis of section 2, we study the integrable decomposition of the Manakov
equation and finally obtain a pair of finite-dimensional completely integrable
Hamiltonian systems.
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2 An integrable decomposition of the 4-component AKNS equation

In Ref. [15] the multi-wave interaction equations associated with the 3 x 3 ma-
trix AKNS spectral problem were decomposed into finite-dimensional Liouville
integrable Hamiltonian systems by carrying out binary Bargmann symmetry
constraints. As a special case, in this section, following [13, 15] we review the

integrable decomposition of the 4-component AKNS equation.

2.1 The 4-component AKNS hierarchy of equations

It is well known that the 4-component AKNS hierarchy of equations is associ-
ated with the following spectral problem

=2ir g1 @
O, =U(u, L), U, ) = 71 ix 0 , 2)
ry 0 ir

where A is a spectral parameter and ¢, g2, 71, 7, are four potentials,
=@ ¢ ¢), u=(.q.rn.n". g=@G.q). r=0.rn".
From the adjoint representation equation
Ve=[UV]=UV -VU, 3)
with
° (k) (k)
V= X(; ( a(k) b(k) ) A

B0 = (50, 59), ¢® = (0, )T g — (4

b(l) (1) a(l) 0, dl'(jl) =0,
1 1
bl(z) = —§‘Zi,x, ,(2) ;ri,m
a? = i(6111”1 +qury), dP = —l’”'(]'
3i T 3i
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1
b = 5[ = 2@r1 + 2],

1
@ = _5[”’” —2(qir1 + qar)r]s

where | <i,j <2.
Consider the following auxiliary problem

o, =VPo, VW =0V, n=>0. 4)

From the compatibility condition of (2) and (4)

U=V +1U 7™ =0,
we obtain the 4-component AKNS hierarchy of equations
T _3l~b(n+1)T
utn = ( q ) = ( - ( 1 ) . (5)
r 3ic+h
ty
The first nontrivial equation or the 4-component AKNS equation is

1
[qj,xx - 2(q1r + qﬂ”z)q]'],

qdj5, = _5
X l<j=2, (6)
Fin = E[rj,xx —2(qir1 + (12”2)1”/'],
which admits spectral problem (2) and
(I)tz = V(Z) (qv r, )")(bv (7)
where
-2i 0 O 0 q1 q2
VO, r) = 0 i 0|2+l rn 0 0 |2
0O 0 n 0 0
(3
; —(qir1 +q2r2)  qix Qox
+ = —Fix rigr riqa
—Tx nqr 1q>
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2.2 Adjoint symmetry constraint

In order to preform the binary NSPs of the 4-component AKNS hierarchy, we
take N distinct eigenvalue parameters A;,1 < j < N, and N copies of the
3 x 3 matrix spectral problem for AKNS hierarchy (2) and their adjoint spectral
problems as follows

G1jx = =2ihjp1; + q1d2; + G293,
$2jx =ih;h2; + 1165,
G3jx =1hj@3; + 12015,

1 . 1<j=<N, 9)
Vijx = 20091 — 1y — ravs;,
Vajx = =ik — @1,
V3 = —idj¥s; — g2,
which can be written as the following compact form
h1x = —2iAP1 + q192 + 23,
oy = 1Ay + 1161,
‘ 3y = i AP3 + 1201, 10)

Yix = 204y — iy — s,
Yoy = —i Ay — q1Y1,
Y3 = —iAYs — @291,

where

¢j = (¢jl» "'ad)jN)T? W} = (le, "'7ij)T7 A= diag()"lv "-a)‘-N)-

Following [13], we consider the following Bargmann adjoint symmetry con-
straint

3i .
g =——1, V1), 1=j=2, (1D)
Vi+1 — V1
3i .
rp=——(¢j41, V1), 1=<j=<2, (12)
Yi+1 — V1

where < -, - > refers to the standard inner product of the Euclidian space and
V1, V2, V3 are distinct parameters.
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2.3 Completely integrable Hamiltonian system

Substituting (11) and (12) into (10), then we get the finite-dimensional Hamil-
tonian system

3
1o = —2i A1 + ——— (1, Y2)hn
Y2 — W
P (g1, 1) = _om
yi—yi o oy
G =1 AP + <¢ V1)é A
2 = iAg2 + o — 2, Y1 0
. 1 oH*
G3x =1 AP; + (3, Y1) = — ,
3= Y3
1 . (13)
Yix = =2 Ay — (¢2, Vi)Y
Vo —
3i oH*
T o (@3, Y1) Y3 = e
) 3i oH*
Yoo = —i Ay — (D1, Y)Y = ——,
V2=V 09,
3i oH*
VY3 = —iAYs — : (b1, Y3)¥1 = ——,
Vs — Vi 03

where

H* A¢l’ 1/’1

MN

—(b1, Y1 )(Djv1, Y1)
= LY+l TN

2
—i ) (Aj 1, V).
J=1

Under the control of (11), (12) and (13), we can get the following Hamiltonian
system

OH" oH" 0H"
¢1,t2 — _a_lﬁl, ¢2,l‘2 — _8_%’ ¢3,t2 — _a_%a
(14)
OH" OH" OH"

wl,tz == va ]/fz,tz = T’Sz, l//3,t2 = T%’

Comp. Appl. Math., Vol. 31, N. 1, 2012



SHOUTING CHEN and RUGUANG ZHOU 7

where

H? = 2i(A7¢, Y1) — i (Ao, ¥o) — i (47 ¢3,1/f3)

T i <¢1, Vo) (Ada, Y1) — <¢1, Vo) (Ags, Y1)
31
Y2 — Y
Y
(- n)
Y
()2
Y
(Vz y1)?
N 3i
2=y —n)
. 3i
2=y —n)

3
+ ———— (D1, ¥3) (b3, Y1) (93, ¥3).
(3 —v1)

3i
(P2, V1) (A1, ¥2) — —— ” (B3, Y1) (A1, ¥3)
(@1, V)2, Y1) (1, Y1)
(@1, ¥3) (@3, Y1) (b1, V1)

(@1, Y2 ) (D2, Y1) (P2, ¥r2)

(@1, Vo) (@3, Y1) (b2, ¥3)

(@1, Y3) (2, Y1) (b3, ¥2)

Hamiltonian systems (13) and (14) allow Lax representations

4o = TG LI Py
de(,\) =[U@, 1), L], dtzL(x) = [V, », L], (15)

respectively, where

v 0 0 N G b ¢
LOOy=10 yn 0 [+3 5| ¥y v do¥s |, (16)
0 0 y J= T\ @3V dsvny b0,
Al, A2, -+, Ay are N distinct parameters, and U (i, 1), v (u, A) are the con-

straint spectral matrices generated from U, ¥® under constraint (11) and (12).
To analyze the integrability of (13) and (14), we define a symplectic structure

3 3 N
602 = Zd¢, N dw; == sz¢lv AN dWis- (17)
i=1

i=1 s=1
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8 AN INTEGRABLE DECOMPOSITION OF THE MANAKOV EQUATION

The corresponding Poisson bracket is given by

X af ag  af og ey
{f’g}zzz(awma%_ad)isawi‘v)’ fgecrE.8)

i=1 s=1

Furthermore, it has been shown that Lax matrix (16) satisfies an 7-matrix
relation [13]. Therefore, we can get 3N conserved integrals

Fii = (A1, y1) + (4" o, va) + (A4 3, ¥3), (19)
By = (v + v (A 01, yn) + 1 + ) (A o, )

(A'p1, ) (A'pr, ¥)

(Ao, Y1) (A, 2)
(A'pr ) (AP, ¥3)| (A o, ¥) (A b, 3) (20)
(A'ps, Y1) (A3, ¥3) (A3, Yn) (A, )| |

B = yys(A 00, 91) + niys (A5 0o, vn) + viya (A5 s, 3)

(A'p, ¥r2) (Ao, ¥3)
+
H;z {” (A, ) (Al )

i,[>0

+ 0y (A4 s )+ Y [

i+1=k—2

i,[>0

+

(A1, ¥1) (A, ¥3)
(A'¢3, Y1) (A3, ¥3)

(A1, v1) (A1, ¥)

+
" (Al i) (Al )

V3

(A1, yn) (A'p1,yn) (A1, ¥3)
+ ) [(An ) (Al ) (A )| @1
k3 (A0 s, ) (A3, Y) (A", )

A direct check shows that
Fiy, 1<i<3,1<k=<N,

are in involution and functionally independent. Thus Hamiltonian systems (13)
and (14) are completely integrable in the sense of Liouville. Bringing these
together, we arrive at the following proposition.
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Proposition 1. If' ¢, ¢o, @3, V1, Yo, V3 satisfy both (13) and (14), then
3i 3i )
g = —Ao1, V1), rj=—""(bjx1, Y1), 1=j=2,
Vi+1 — W1 Vi+1 — V1

solve the 4-component AKNS equation (6).

3 An integrable decomposition of the Manakov equation

This section is devoted to an integrable decomposition of the Manakov equation.
It is known that equation (1) may be reduced from the 4-component AKNS
equation by imposing the reality condition » = —¢q'. Moreover, the Manakov
equation associates with the following spectral problems

&, =U(q,r, )0, r=—4q, (22)
o, =VP4q,r,0®, r=-—q", (23)

and the adjoint spectral problems

v, =-Ul(qg,r, )V, r=—q, (24)
v, =V @, 0¥, r=-—q", (25)

where U(q, r, 1), V®(q, r, 1) are defined by (2), (8).
On the basis of the reality condition » = —g ' we have the following lemma.

Lemma 1. Letr = —q%, (¢1, ¢a, $3)7 solves (22), (23), and (Y1, Y2, ¥3)T
solves (24), (25),

(i) If parameter X is nonreal complex, then (yi, Y5, ¥i) solves (22) and
(23) with parameter 1*. In the same time, (¢, ¢5, ¢§‘)T solves (24) and
(25) with parameter \*.

(ii) If parameter X is real, then (¢}, 3, $3)7 solves the adjoint spectral
problems (24) and (25) with parameter \.

Now let us carry out the binary NSPs of the Manakov equation. We take N
parameters: A1, -+, Ay, Apyg,--- , Ay, Where Aq, .-+, A, are distinct nonreal
complex numbers, X; # )L;‘., 1<i,j<r,and X, o, ---,Ayare N — r distinct
real numbers.
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10 AN INTEGRABLE DECOMPOSITION OF THE MANAKOV EQUATION

Guided by Lemma 1, we introduce new variables and notation

51 —_ ( (r) w;k(r) ¢(N V)) (’52 — ( w;(r) ¢(N F))
253 (r) w;(r) ¢(N V))

U =

where

AV = diag(Ay, -, An), AN = diag(Ary1, -+ 5 Ay),
(r) = (¢kl9 R ¢k}’)T7 (N_r) == (¢k,r+l7 Ty ¢k,N)T’
w = Wpts- V)T W D= W Vi)’

(s
1,71 ( ) ¢>1i<(r) ¢*(N r)) {EZ — ( ) ¢;<(r) ¢*(N r))
( (r) ¢;i<(r) ¢*(N r)) :4\ = diag (A(”),A(”),A(N*”)),

(26)

27

and then we can get the following vector form of spectral problem (22) and (24)

coupling with their complex conjugates

b1 = —2i APy + 162 + 9285,

brx = iAGs + 111,

b3x = i4ds + 121, r=—q"
Yix = 2049 — i — 12,

Var = —iAVs — qi¥,

Ve = —i A3 — a1,

(28)

which is just a compact form of special 3 x 3 matrix spectral problems for

AKNS hierarchy and their adjoint spectral problems. Therefore, we only need to

modify the procedure of the binary NSPs of the 4-component AKNS hierarchy
by replaCing Variables ¢17 ¢2’ ¢3’ wla 1#27 WS Wlth ¢ls ¢2$ ¢3’ wlv w2a w3 SuCh

that the reality condition » = —¢ holds.
Now we consider the constraint of the Manakov equation

3i ~ o~ 3i

g = ——— (1. ¥j01) = ——— (o) ¥ ))
! Yit1 — N T Yit1 — N I
+g" e T+ L e,
R R S 3—<<¢§’_:1, )
Vi+1 — V1 Vi+1 — V1

+(@ 7 o T+ (L D),

Comp. Appl. Math., Vol. 31, N. 1, 2012
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SHOUTING CHEN and RUGUANG ZHOU 11

which solves
r:—qT,1§j§2.

Substituting (29) into (28), then we get the finite-dimensional Hamiltonian

system
v _ 0" »n _ 97 «r) _ OH”
Ix — aw(r) ’ Ix — a¢(r)’ 1x 8W*(r)’
1
v _ 0" » _ 97 iy _ OH
2x T aw(r) ’ 2x T a¢(r)’ 2x aw*(r)’
2 2
v _ 0" » _ 9H” iy _ OH
3x T )’ 3x T )’ 3x *(r)
Y5 d¢s Y5
. N (30
x0) _ OH” (N=r) _ OH” sN-r) _ OH*
1x 8¢>x<(r)’ Ix - a¢*(N o x(N=r)® Ix - 8¢(N r)’
w(r) _ OH” (N=r) _ oH” sN—r) _ OH*
2x 8¢*(r)’ 2x - 8¢*(N r)’ 2x - 8¢(N r)’
w(r) _ OH” (N=r) _ oH” *(N=r) _ OH
3x 8¢>x<(r)’ 3x - 8¢*(N o x(N=r)® 3x - 8¢(N r)’
where

ﬁx = 2Z(<A(V)¢(r) 1/fl(r))+<A(r)1l’T(r),¢T(r)> <A(N r)¢(N ) ¢*(N r)>)
_i(<A(V)¢§r)’v/2(r)>+<A(r)w;(r)’¢;(r)> ( (N r)¢(N r) 1/f*(N r)>)
—i((ADGY Y )+ (RO 10y 4 (AN Ny

3i
_ m— (<¢(i’) 2(r)> + (w;k(r)’qs;(r)) + (¢ (N—r) ¢*(N r)>)
x (67 0 0) + (O, GEO) 4 (N, gr V)

3i .
_V3—ZV1(< oy + (0 3 + 0, e Y)

x (837 ™) + W37 0 ) + (@5 ).

Comp. Appl. Math., Vol. 31, N. 1, 2012
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Similarly, we can get the temporal Hamiltonian system

=, ~ =,
g0 = 9 g0 = g0 = H”
I — 8w(r>’ Iy — 8¢(")’ I — awi“(”)’
Tt Tt it
¢(i’) — oH" w(r) — oH" ¢*(r) — aH"
2t 8w(r) ’ 2ty 8¢§r) ’ 2ty al/fz*(r) )
Tt Tt iyt
g = 9 v _ 9H" g0 = H”
3t 8w(r) ’ 3t 8¢§r) ’ 3t aw_;k(r) ’
I (1)
e oH" N-py _ _ OH" 5HND) 9H"
1t 8¢*(}’) ’ 1t 8¢>;<(N7r)’ 1t 8¢(N,r)
1 1
Py dH" ~N-r _ __OH" «(N—r) 0 H"
2t a¢*(r) ’ 2t a¢*(N7r) ’ 2t a¢(N7r) ’
2 2
PO = dH" ~N-r _ __ OH" sN-ry _ OH"
3, = , 3 = RN 31 =
2 a¢*(r) 2 8¢;( r) 2 a(f); r)
where

A [ 7l " A *r —r)? r * r
2 = 21(<A()¢$)’wl()>+<A(r) W1(>»¢1()> (A(N )¢(N ) v (N— )>)
) 2 4 _rz r r r)? r r
—i((A PP ) + (A Y3, 930 4 (AN N gy Ny

. )2 (r r N *(r —r)? r *(N—r
—l((A() §),w3()>+<A(r) w3()’¢3()> (A(N )¢(N ) w (N— )))
3l r v *(r *(r r * r
———— (@, v + W, )+ T 6T
V2=
x ({07957 ") + (AOY 7 17) + (AN 1)

. 3i (< ir)’ (r)> <wi}<(r) ¢*(r)> <¢N r) ¢*(N r)>)

33—
X (<A(V)¢§r)’ wfi’)) + (Ww;(l’)’¢f(r)> <A(N r)¢(N r) ¢*(N r)>)
3i r r *(r *(r r * r
_ (<¢() ()) <w2() ¢ ()) <¢§N ) ¢ (N— )))
V2 =N
x (A", 3”) + (AP 57y + (AN, 3N
3i

pivenes y(<¢<’> N 4 (0, oy (N7, @ N

Comp. Appl. Math., Vol. 31, N. 1, 2012
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X

(AV87 957 + (A, 93 7) + (AV GV, 9377
3
(2 — n1)?
(@, vy + (W5, o1y + (95N, i)
(< ;r)’ 1(r)> <w*(r) ¢>k(r)> <¢§N r) ¢*(N r)>)
%
(ys —n)?
% (< gr)’ 1(r)) <v/*(r) ¢*(r)) <¢(N r) ¢*(N r)>)
x (07 )+ W 61 0 )
3i
()/2 —y1)?

(6" 97) + 7 837 + (8" 7. 5

X

X

(@7, ) + (W7, 657 + (9N, 03V

(6" v2™y + . 3 7) + (@ . 5 ).

Hamiltonian systems (30) and (31) are completely integrable systems. In fact,
first of all, it is not difficult to check that (30) and (31) allow the following Lax
matrix

vi 0 0 p ! O1;V1; PV P
L= 0y 0|+ 5|0y v do¥s
0 0 j=1 T\ vn b3ty B3

r 1 ‘//1*]¢T] wr](ﬁ;] Ilfl*j¢;j
D | et ves vies (32)
J= / v/;j¢ikj W;j‘ﬁ;j w;j¢;j
N 1 |¢1j|2 ¢1_/¢;j ‘Z’lj‘p;}
* 2 *
+ Z Py 21 P21 D205, | -
j=r+1 $307, 0305 16317 )

Introducing symplectic structure

3 r

3 N—r
=Y (dei Adis AL AdGL) + DY ddis Ade], . (33)
i=1 j=1

i=1 s=1

Comp. Appl. Math., Vol. 31, N. 1, 2012



14 AN INTEGRABLE DECOMPOSITION OF THE MANAKOV EQUATION

The corresponding Poisson bracket is given by

of og of d9g | of d9g  9df og
1.8} = 2121 (31/% 00 Oy Wi | 085, 0V OV, 8¢;§)

3 N- of dg
Y ()

zr+j 8¢l ey

By a direct check, we come to a conclusion that L ()) satisfies the »-matrix
relation

{L1(A), Ly(w)} = [ri2(A, ), Li(A)] + [ra1(A, ), Lo()],

where Li(A) =LA ® 1, Lr(nw) =1 & L(u), Iisthe3 x 3 unit matrix,
ei; Qeji eij ®eji
rio(h, ) = — ——— i, p) =— - 34
120, ) E,ﬁ o e 1},;53 Y (34)

and e;; is the matrix with the element 1 at the (i, j) position and zeros
elsewhere.
We can expand (19), (20), (21) as follows

Fu = (A9, 40 + (A0 1@ g0

+(A(N k= 1¢(N r) ¢*(N r)>) + ((A(r)k 1 (r) (r)>

+<A(,) 1//;‘(’),¢§(’)) (AN 1¢<N ") ¢*(N r>>)

_}_(<A(r)k*1 @) w("))+(A(r) w*(r) ¢*(f )

+ (AN N N0y (35)
B = r+ (A0 760, p0) 4 (A0 g ¢7)

+<A(N —ryk-1 ¢(N r) ¢*(N r)>)+(yl +y3)(<A(r)k ! (r)’ 2(r)>

+<A(r) lﬁz*(r),qﬁ;‘(r)) +<A(N—r)k*1 (N—r) ¢*(N r)>)

+(]/1+)/2)((A(r)k71 ) 1/,(r>>_,_<A(r) w*(r) ¢*<r)>
—pyk=l 7 *(N—r
+<A(N ) ¢(N ) ¢ (N— )))
. Ay AL Ay Al
I I 1 1
itl=k—2 A21 A22 A31 A33

i,[>0

i i
A22 A23
1 1
A32 A33

} : (36)

Comp. Appl. Math., Vol. 31, N. 1, 2012



SHOUTING CHEN and RUGUANG ZHOU 15

P = s (A9 00, gy + (A0 g0 1)y
+ (AN 1Y) £y (AT )
I <W"‘1w;(r)’¢;(r)> I <A(Nfr)k_'¢£N—r)’ ¢;(N—r)>)
+)/1)/2(<A(r)k71 gr)’ 1p3(r)) + <mk_lw3*(r)’ ¢;k(r)>
H (AN N gV

L T I VTR IR e
i l i l 1 I
idl=k—2 A2] A22 AS] A33 A32 A33
i,[>0
Ay Al Al
Y Ay Ay ALl (37)
AR A AL, A

where 1 <k <N +vr,
Aoy = (AT B0 )+ (A g0, )+ (MY N, g ),

It can be checked that I?lk, I?zk, 1?3;{, 1 <k <N +r, are 3(N + r) integrals
in involution. To establish the completely integrability of Hamiltonian systems
(30) and (31), it is essential to prove the functional independence of the above
3(N + r) integrals by making use of a small epsilon technique [16].

In fact, let P, be a point of C3V+7) satisfying ¢y = ¢,1 <i < 3,1 <s <
N +r, where ¢ is a small constant, and 745:-5, %S, 1<i<3,1<s<N+vr, are

defined by (26). At this point P, by a direct calculation, we have

I(Fits s Finers Bots oo Fovars 1y oo F3vgr)

J = — =~ =~ =~ = —
A(Vits s Wit V21s oo Voo Y3Ls s W3 N4r)
0N+r 9N+r 9N+r
= £V 0n+ )00 1+ 1) 1+ 1Y)y [H 0N
V2V30N+r V1730N8 4 V1V20n4r

— 83(N+l‘) det(Q:; ® 9N+r) + 0(83(N+r)+1)

— 83(N+r) 1_[ (yl _ VJ)N 1_[ ()\‘J _ )\'i)3 + 0(83(N+r)+1)’

1<i<j<3 1<i<j<N+r
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where

1 1 1
QB =\ nt+yn n+try n+tr |,
V2V3 Y1V3 Y12

Oy = (ei(]'N))NxN’ Anyi =2, 1<i<r

Since the Jacobian is a polynomial function of ¢;,, Vs, ¢/, ¥, 1 <i < 3,
1 <s < N +r, it is not zero over a dense open subset of C>*¥+7) Therefore,
the functions Fik, 1 <i<3,1<k< N +r, are functionally independent over
that dense open subset of C3(V+7),

Moreover, a direct computation shows that the following proposition holds.

Theorem 1. ]fd);.’), 1//‘,(.”, d)}‘(”, w;("), d)J(.N_r), qu(N_r), 1 < j < 3, satisfy both
(30) and (31), then
3i

= m« o+t e T ), 1<) <2,
J

q;

solve the Manakov equation (1). This means that (30) and (31) constitute an

integrable decomposition of the Manakov equation.

4 Concluding remarks

In this paper, we have presented the integrable decomposition of the Manakov
equation. The main idea of this method is to couple the spectral problems of
the Manakov equation with their complex conjugates and then reduce these
problems to that of 4-component AKNS equation by introducing new variables.
Finally, the integrable decompositions of the Manakov equation are obtained by
applying the corresponding results of the 4-component AKNS equation.

As indicated in [17], usually it is very complicated to deal with the soliton
equation with reduction conditions or reality conditions. In [18, 19], one of
the author (Zhou) proposed an approach to construct integrable decompositions
of soliton equations with reality conditions such as the nonlinear Schrodinger
equation, real-valued mKdV equation and the nonlinear derivative Schrodinger
equation. But the approach can only be used to the cases that all the eigen-
value parameters A, ..., Ay are nonreal complex. In the present paper, such

Comp. Appl. Math., Vol. 31, N. 1, 2012
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restrictions are released by using binary nonlinearizations of spectral problem,

instead of mono-nonlinearization of spectral problem. Viewing from (33), we

can easily find that whether the eigenvalue parameters are real or not leads to

completely different symplectic structures.
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