
CLINICAL SCIENCE

A proton nuclear magnetic resonance-based
metabonomics study of metabolic profiling in
immunoglobulin a nephropathy
Weiguo Sui,I Liping Li,I,II Wenti Che,I Guimai Zuo,I Jiejing Chen,I Wuxian Li,III Yong DaiI,IV

I 181st Hospital Guangxi, Central Laboratory, Laboratory of Metabolic Diseases Research, Guangxi Province, China. II Guangxi Normal University, the Life

Science College, Guangxi Province, China. III Key Laboratory of Laboratory Medical Diagnostics of Education Ministry, Chongqiong Medical University,

Chongqing, China. IV Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen,

Guangdong Province, China.

OBJECTIVES: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary
glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal
biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for
use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy
patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human
immunoglobulin A nephropathy metabolic profile.

METHODS: Serum samples were collected from immunoglobulin A nephropathy patients who were not using
immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in
three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as
grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples
were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern
recognition analysis for disease classification.

RESULTS: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of
phenylalanine, myo-Inositol, lactate, L6 lipids ( = CH-CH2-CH = O), L5 lipids (-CH2-C = O), and L3 lipids (-CH2-CH2-C = O)
as well as lower levels of b-glucose, a-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolpho-
sphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine.

CONCLUSIONS: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A
nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy
patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk
groups in our research. These results offer new, sensitive and specific, noninvasive approaches that may be of great
benefit to immunoglobulin A nephropathy patients by enabling earlier diagnosis.
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INTRODUCTION

Immunoglobulin A nephropathy (IgAN) is the most
common primary glomerulopathy worldwide; it is a
mesangial proliferative glomerulonephritis characterized
by diffuse mesangial deposition of immunoglobulin A (1).

The underlying mechanism of IgAN is poorly understood,
and the outcomes of patients vary greatly. Variations in the
methods used to treat IgAN patients account for less than
half of the variability in outcomes (2). Determining an
accurate diagnosis poses great challenges. Multiple observa-
tional cohort studies have identified several risk factors
associated with the progression of IgAN (3,4). Five clinical
features, namely high proteinuria, hypertension, impaired
renal function, hypoproteinemia, and hyperuricemia, are
independent predictors of an unfavorable renal outcome (5).
However, the threshold above which the risk develops is still
debated. IgAN presents with variable clinical symptoms and
pathological patterns, making it difficult to predict the risk of
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progression to end-stage renal failure in individuals. Despite
the fact that the progression of IgAN is generally slow, up to
15-40% of patients with IgAN develop end-stage renal
disease within 20 years (6). As a "gold standard," renal
biopsy is currently the primary diagnostic tool for renal
disease, as well as for treatment and prognosis. Therefore,
renal biopsy has been quite helpful in the understanding of
the different types of human renal diseases and has also
provided insight into their pathogenesis (7). Nevertheless,
renal biopsy requires an inconvenient, invasive, and painful
examination that is lacking in sensitivity, specificity and
reproducibility and that suffers from inappropriate categor-
ization and can even result in some complications (4,8).
Additionally, general physicians find it difficult to perform
biopsies. Thus, although both the clinical and histologic
features of IgAN are highly variable (9), a novel and
convenient strategy for predicting diagnosis from a biopsy-
based pathological evaluation has not been well established
(4). Neither a biomarker nor a biomarker profile is generally
accepted in clinical practice. Therefore, identifying definite,
as well as sensitive, biomarkers for early diagnosis would be
of great significance for making diagnostic and treatment
decisions.

Metabonomics is a well-established field in systems
biology, which refers to the study of individual metabolic
profiles and to their changes over time due to disease, toxicity
and nutritional, environmental, and genetic alterations (10-
12). In a process that is known as ‘‘metabolic fingerprinting,’’
global metabolite profiles of complex samples are used to
identify potential biomarkers, and this process can provide
new and unexpected insights into biological processes (13).
Nuclear magnetic resonance (NMR) spectroscopy appears to
be a cost-effective, useful technique for providing routine
care and screening (14) and is well suited for the analysis of
different types of biological fluids for the evaluation of
individual metabolomes (15). Thus, proton-NMR (H-NMR)
spectroscopic analysis allows for the simultaneous detection,
identification, and quantification of hundreds of low-mole-
cular-weight metabolites (max. 20 kDa) within a biological
matrix (16) for the detection of dynamic changes in global
metabolism and, specifically, of noninvasive blood markers,
which represents a novel and robust method for assessing
organ response to pathophysiologic stimuli (17-18). Due to its
usefulness in evaluating systemic responses to any subtle
metabolic perturbation, 1H NMR-based metabonomics has
been extensively applied for the diagnosis and evaluation of
cancer (19-21), diabetes (22), neurological diseases (23), heart
disease (17), and cerebral infarction (24). To date, no NMR-
based metabolomic studies of IgAN have been reported.

In the present work, we investigated the perturbed
metabolic pattern in serum derived from IgAN patients
and identified potential biomarkers of this disease using
high-resolution NMR spectroscopy coupled with multi-
variate statistical analysis. The integration of metabolic data
could provide a systematic approach for the study of
metabolic profiles associated with IgAN and could facilitate
a detailed examination of the underlying molecular
mechanisms of the disease. We sought to determine
whether we could identify the metabolic phenotypes and
characterize the metabolic changes related to the degree of
IgAN, whether we could distinguish valuable biomarkers
for disease diagnosis, and most importantly, whether
understanding the pathogenetic process of IgAN on a
systemic, metabolic level could hold the key to designing

therapies to arrest the development of IgAN and prevent its
later manifestations. The results highlight the possibility for
"metabolic fingerprinting" to become a new diagnostic
method with improved sensitivity and specificity.

MATERIALS AND METHODS

Subjects
Before starting this study, the patients and controls were

informed of the study protocol and signed written consent
forms, which were approved by the Regional Ethics
Committee of the 181st Hospital Guilin, Guangxi.

For this study, 35 IgAN patients and 23 age- and sex-
matched healthy controls were recruited from the
Nephrology Department of the 181st Hospital Guilin,
Guangxi, China, from August 2010 to December 2010. All
patients with biopsy-proven primary IgAN were reviewed.
The subjects were classified into three groups: a control
group consisting of 23 healthy subjects, a low-risk group
consisting of twenty-three IgAN patients with diseases of
grades I-III based on renal biopsies stained for IgAN-A, and a
high-risk group composed of twelve IgAN patients with
diseases of grades IV-V based on biopsies stained for IgAN-B.
The inclusion criteria for IgAN were (1) patient age ranging
from 18 to 60 years and evidence of predominant mesangial
IgA deposits from a renal biopsy, and (2) absence of
corticosteroid or immunosuppressive therapy in the previous
10 weeks in both the patients and controls. The exclusion
criteria were (1) presence of a secondary cause of IgAN, such
as systemic lupus erythematous, Schönlein-Henoch purpura,
chronic liver disease, malignancies, active peptic-ulcer dis-
ease and other autoimmune disorders; (2) diagnosis of
diabetes mellitus, acute interstitial nephritis, Alport’s syn-
drome, acute myocardial infarction or stroke; (3) evidence or
suspicion of severe uncontrolled hypertension (systolic blood
pressure $220 mmHg and/or diastolic blood pressure
$120 mmHg); and (4) history of alcoholism, smoking or oral
contraception within the previous six months.

Approximately 4 mL of peripheral venous blood was
collected in separate biochemistry tubes from the IgAN patients
and healthy volunteers in the morning following a 12-h fasting
period. The blood was allowed to clot for 60 min at room
temperature and was centrifuged at 20006g for 10 min. The
supernatants were then divided into 0.5-mL polyethylene tubes
and were stored at –80 C̊ until the NMR analysis was
performed.

Clinical chemistry and histopathology
Clinical chemistry analyses of serum samples were

conducted, using an automatic chemistry analyzer (MOL-
300, Heal Force, China) with enzymatic methods using
commercially available kits, for the measurement of several
serum parameters, including proteinuria, alanine amino-
transferase, aspartate aminotransferase, total protein, albu-
min, globulin, glucose, urea nitrogen, creatinine, uric acid,
cholesterol, triglyceride, HDL cholesterol, and LDL choles-
terol. The values were expressed as the means ¡ SDs.
Statistical comparisons were performed using SPSS 11.5
software (SPSS Inc., Chicago, IL, USA), and differences were
considered significant when p,0.05.

Renal tissue was obtained from all patients by percuta-
neous renal biopsy. Histopathological changes in kidney
tissue were assessed in at least 20 randomly selected tissue
sections from each group under study. Sections of 2-3 mm in
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thickness were paraffin-embedded and stained with Mayer’s
hematoxylin and eosin for direct immunofluorescence
observations. The pathological diagnosis of IgAN was made
according to the previous World Health Organization
diagnostic system and its reference standard of clinical type
based on Lee’s classification scheme (45).

Proton nuclear magnetic resonance spectroscopy
For the NMR experiments, the serum samples were

thawed at room temperature and centrifuged at 30006g for
5 minutes at 4 C̊. The supernatants were then adjusted to
pH 7.4 with sodium phosphate buffer solutions and mixed
with 100 mL of deuterium oxide solution to calibrate the
NMR spectrometer. Finally, an aliquot of the prepared
mixture (500 mL) was transferred to a 5-mm NMR tube
(Wilmad, Buena, NJ, USA).

The 1H NMR spectra were acquired using a Varian Unity
INOVA-600 MHz NMR spectrometer (Varian Inc., Palo
Alto, CA, USA) operating at a 599.93-MHz frequency and
a temperature of 300 K. The spectra were acquired using
a conventional presaturation pulse sequence with a
NOESYPR 1-D solvent suppressor (RD-90 -̊t1-90 -̊tm-90 -̊
ACQ). Standard two-dimensional (2-D) total correlation
spectroscopy (TOCSY) NMR spectra were also acquired for
spectral assignment purposes in the selected samples. 1H-1H
TOCSY experiments were performed using the tntocsy
pulse sequence. For each sample, the free-induction decays
were collected with 128 transients into 32K data points
using a spectral width of 8000 Hz with a relaxation delay of
2.1 s, an acquisition time of 1 s and a mixing time of 100 ms.
All of the spectra were multiplied by an exponential
weighting function corresponding to a line-broadening of
1.0 Hz prior to Fourier transformation (25).

Data reduction and multivariate pattern
recognition analysis

All of the NMR spectra were phased, baseline-corrected,
and data-reduced to 225 integrated regions of d0.002 in
width, corresponding to the region of d0.5 to d9.0, using
TopSpin software (Varian 3.0, Bruker Biospin, Germany).
The 1H-NMR spectra of the serum samples were referenced
to the internal lactic acid CH3 resonance at 1.33 ppm. Then,
the region of water resonance (d4.37-6.88) was excluded to
eliminate the baseline effects of an imperfect water signal.
The remaining bins were integrated and normalized for use
in further analysis. The normalized data were imported into
the SIMCA-P software package, version 11.0 (Umetrics AB,
Umea, Sweden).

Unsupervised principal components analysis (PCA),
supervised projection to partial least squares-discriminant
analysis (PLS-DA), and orthogonal partial least squares-
discriminant analysis (OPLS-DA) were performed for class
discrimination and biomarker identification. First, PCA,
based on a mean center-scaling model, was performed to
examine the intrinsic variation in the dataset. The data were
visualized with the score plots of the first two principal
components (PC1 and PC2) to provide the most efficient
two-dimensional representation of the information (21). As
an extension of PLS-DA and featuring integrated orthogonal
signal correction (OSC), OPLS-DA can remove variability
not relevant to class separation. OPLS-DA was used to
maximize the covariance between the measured data (X
variable, peak intensities in NMR spectra) and the response
variable (Y variable, predictive classifications) (21) and to

simultaneously remove uncorrelated variations between the
X and Y variables or X variables that were orthogonal to Y
variables (26). A scores plot combining the reliability and
correlation from the OPLS-DA model helped to identify
differential metabolites among the groups (27). The relevant
metabolites for each separation model and their differences
among the groups are shown as coefficient of variation
plots. With a significance level of 0.05, a correlation
coefficient (Corr(t,X)) of ¡0.497 was adopted as a cutoff
value to select the variables that were most correlated with
the OPLS-DA discriminant scores. The correlation coeffi-
cients were calculated using Pearson linear correlation
coefficients incorporated into MATLAB R2007a software
(MathWorks, Inc., Natick, MA, USA).

Both the PLS-DA and OPLS-DA models were based on a
unit variance scaling strategy. A 10-fold cross-validation
was employed to obtain Q2 and R2 values. R2 is defined as
the proportion of variance in the data explained by the
models and indicates goodness of fit, while Q2 is defined as
the proportion of variance in the data predictable by the
model and indicates predictability (24). To further validate
the quality of the PLS-DA model and to investigate the
predictability of the OPLS-DA model, permutation tests,
consisting of random permutation class membership and
the performance of 200 iterations, were conducted (28).
These tests compared the goodness of fit of the original
model with the goodness of fit of several models based on
data in which the order of the Y observations were
randomly permuted while the X matrix was kept intact
(29). p-values were generated by an unpaired t-test, and a p-
value of ,0.05 was considered statistically significant.

RESULTS

Clinical chemistry analysis and histopathology
The percentages of IgAN patients with microscopic

hematuria, hypertension, hyperlipidemia, and chronic renal
failure were 97.01, 27.74, 13.26, and 20.32%, respectively. A
total of 80.44% of long-term hypertension patients (blood
pressure .140/90 mmHg) were required to undergo anti-
hypertensive therapy to maintain normotension before under-
going renal biopsy. The demographic features and body fluid
parameters determined by biochemical analyses of all of the
patients and healthy volunteers are shown in Table 1. No
significant differences in age, sex distribution, BMI, or systolic
and diastolic blood pressures were found among the three
groups. The serum levels of total protein, albumin and
globulin were lower in the IgAN patients than in the healthy
controls, whereas the urea nitrogen, creatinine, and uric acid
levels were higher in IgAN patients than in the healthy
controls. Furthermore, proteinuria was significantly higher in
the IgAN-B patients compared with the IgAN-A patients.

In the renal biopsy, both the IgAN-A and IgAN-B groups
were similar with regard to mesangial proliferation, cellular
crescents, global and segmental glomerulosclerosis, inter-
stitial fibrosis and tubular atrophy, with some IgAN-B
patients displaying a predominance of active/proliferative
lesions and chronic/sclerosing lesions. As shown in Table 2,
the most common IgAN pathological category in 35 cases
was the mesangial proliferative type (35 cases; 57.14%), and
the second most common was focal segmental glomerulo-
sclerosis (FSGS) (12 cases; 34.29%). Membranous glomer-
ulonephritis (MGN) (2 cases; 5.71%) and sclerosis
glomerulonephritis (SGN) (1 case; 2.86%) were the next

CLINICS 2012;67(4):363-373 Metabonomics profiling in immunoglobulin A nephropathy
Sui W et al.

365



most common disease types. The classes of the IgAN
pathological grades were predominantly II, III, and IV,
while grades I and V were rare. This result may have
occurred because grade I corresponded to the earliest stage
of kidney disease and was hidden in the clinic due to
untimely treatment or insufficient medical attention, and
grade V was the most severe stage of renal disease that
always progressed to renal failure, often requiring dialysis
treatment in the clinic. Therefore, these patients rarely
underwent biopsy.

Qualitative proton nuclear magnetic resonance
analysis of serum samples

Figure 1 depicts the typical 1H CPMG spectra of serum
samples obtained from healthy individuals and from IgAN-
A and IgAN-B patients. The 1H-NMR signals of all common
metabolites, including amino acids, organic acids, and
carbohydrates, were assigned according to previous pub-
lications (30). The spectral profiles were generally similar,
making accurate visual comparison difficult, but some
relative intensity differences could be observed among the
three groups. As shown in Figure 1, predominantly

endogenous compounds were identified from the spectra
comprising numerous lipoprotein fractions, some of which
were derived from the glycerol of lipids, glycerolpho-
sphocholine, low-density lipoprotein (L), and very low-
density lipoprotein (VLDL). The sharp peaks arose from
sugar signals, including n-acetyl glycoprotein, a-glucose,
and b-glucose. There were also a large number of amino
acid signals, such as methylhistidine, alanine, glutamine,
glutamate, glycine, isoleucine, leucine, lysine, phenylala-
nine, tyrosine, and valine, as well as signals from acetate,
citrate, creatine, lactate, phosphocholine, pyruvate, acetone,
creatinine, myo-Inositol, and methylamine.

Metabonomic analysis of human serum in controls
and IgAN patients

Unsupervised PCA was applied to examine the intrinsic
variation in the serum data sets. Figure 2 shows the two-
dimensional PCA scores plots based on the 1H CPMG NMR
spectra of the serum obtained from different groups. More
samples were present in the 95% confidence interval of the
modeled variation. We found that the control samples were
very homogeneous and that their distributions of PCA score
plots were relatively close. The IgAN patients and healthy
controls, although scattered, were located in different
clusters, demonstrating a relatively clear distinction, while
the score plots showed slight separations between the
IgAN-A and IgAN-B groups and the serum (R2X = 79.5%;
Q2Y = 0.760) models.

PLS-DA, which is more focused on detecting variation
than the PCA approach, was further performed to investi-
gate subtle metabolic differences among the groups. The
parameters used to assess modeling quality, including R2X,
R2Y, and Q2Y, are displayed under each picture in Figure 3.
The model parameters for the explained variation, R2, and
the predictive capability, Q2, were significantly higher
(R2, Q2.0.5) in the serum, indicating excellent models.

Table 1 - Demographic and clinical patient characteristics.

IgAN-A IgAN-B Controls

Number of samples 23 12 23

Age (years)a 31.46¡9.31 36.00¡7.34 35.61¡11.35

Age range (years) 21-47 22-47 21-51

Sex (F/M) 1 10/13 6/6 12/11

BMI (kg/m2) a 22.35¡2.22 24.60¡2.41 23.40¡3.26

DBP (mmHg) a 76.76¡9.05 79.42¡9.32 74.4¡4.81

SBP (mmHg) a 125.82¡12.94 126.88¡16.28 125.30¡11.31

Proteinuria (g/day) b 0.95¡0.39 2.13¡1.44 0.04¡0.04

Alanine aminotransferase (U/L) a 21.28¡19.32 22.71¡21.59 17.48¡11.96

Aspartate aminotransferase (U/L) a 23.63¡12.44 23.84¡11.39 18.13¡11.30

Total protein (g/L) c 61.36¡12.26 59.63¡8.84 70.83¡7.82

Albumin (g/L) b 37.06¡8.00 32.94¡11.65 44.43¡6.34

Globulin (g/L) c 24.29¡7.29 23.28¡8.53 25.73¡4.19

Fasting glucose (mmol/L) a 4.82¡0.70 5.04¡0.51 4.92¡0.38

Urea nitrogen (mmol/L) b 6.04¡5.36 7.29¡6.30 4.56¡1.13

Creatinine (mmol/L) b 109.71¡49.27 123.73¡47.09 87.42¡13.46

Uric acid (mmol/L) b 369.56¡80.76 427.84¡90.39 230.16¡113.76

Total cholesterol (mmol/L) a 5.61¡2.07 4.62¡1.26 4.53¡0.84

Triglycerides (mmol/L) a 1.65¡0.83 1.45¡0.77 1.14¡0.31

HDL cholesterol (mmol/L) c 1.68¡0.61 1.75¡0.42 1.43¡0.53

LDL cholesterol (mmol/L)c 2.62¡2.02 2.61¡1.95 2.26¡0.56

Data are presented as the means ¡ SDs.
1Categorical variables are expressed in percentages.
aThere was no significant difference in demographic data among the IgAN-A, IgAN-B and control groups (p.0.05).
bSignificantly higher between the IgAN and control groups, as well as between the IgAN-A and IgAN-B groups (p,0.001).
cSignificantly lower between the IgAN and control groups, as well as between the IgAN-A and IgAN-B groups (p,0.05).

Table 2 - Brief summary of histologic changes in 35 cases
of IgAN according to Lee9s classification system.

Pathology category I II III IV V

Mesangial proliferative Slight 3 6 1 0 0

Moderate 0 4 2 2 0

Severe 0 0 1 1 0

FSGS 0 0 6 4 2

MGN 0 0 0 2 0

SGN 0 0 0 0 1

Total 3 10 10 9 3

The comparisons between all pathological types resulted in significance

levels of p,0.01.

Metabonomics profiling in immunoglobulin A nephropathy
Sui W et al.

CLINICS 2012;67(4):363-373

366



The PLS-DA scores plot (Figure 3a) showed that the cluster
of IgAN patients was located further away from the cluster
of healthy controls (R2X = 28.5%, R2Y = 0.836, Q2Y = 0.724),
indicating that the metabolic profile of the IgAN patients
was quite different from that of the healthy controls.
Furthermore, Figure 3(b) shows a clear distinction between
the IgAN-A patients and healthy controls (R2X = 32.1%,
R2Y = 0.866, Q2Y = 0.741). Similarly, Figure 3(c) reveals the
scores plot of the IgAN-B patients and healthy controls,
which were also located in different clusters, demonstrating
well-pronounced discrimination (R2X = 28.0%, R2Y = 0.906,
Q2Y = 0.671). In Figure 3(d), some samples from IgAN-A
patients are relatively mixed into the cluster of IgAN-B
samples, which indicates that the metabolic profiles of those
groups were quite similar (R2X = 25.4%, R2Y = 0.573, Q2Y =
-0.160). The goodness of fit (R2 and Q2) of the original PLS-
DA models and of the cluster of 200 Y-permutated models
can be visualized in validation plots (Figure 3, left panel).
The validation plots clearly show that the original PLS-DA
models were valid, as the Q2 regression line had a negative
intercept, and all of the permuted R2 values on the left were
lower than the original points on the right.

An OPLS-DA model was constructed in which one PLS
component and one orthogonal component were calculated
using the spectral data scaled to that used by Pareto (31).
OSC filters were developed to remove the strong structured
variation in X that was not correlated with Y. That is, OSC
filters removed the structured Y-orthogonal variation from
X in such a way that the filters could be applied to further
data (32). The OPLS-DA models used to compare the
spectral data between the groups were built using the NMR
data as the X matrix and group information (i.e., control or
IgAN patient groups) as the Y matrix (31). In the OPLS-DA
model score plots, a clear differentiation between healthy
individuals and IgAN patients (Figure 4a, left panel) can be
seen. Additionally, a significant biochemical distinction
between the IgAN-B group and control group (Figure 4b,
left panel) is evident, as well as between the IgAN-A group
and control group (Figure 4c, left panel). Some degree of

separation between the IgAN-A patients and IgAN-B
patients can also be observed (Figure 4d, left panel).

The OPLS-DA loading plots (Figure 4, middle and right
panels) were generated to identify the metabolites responsible
for the differentiation in the score plots. The color map shows
the significance of metabolite variations between the two
classes. Peaks in the positive direction indicate metabolites that
are more abundant in the groups in the positive direction of
the first principal component (t[1]P). Consequently, metabo-
lites that are more abundant in the groups in the negative
direction of the first primary component are presented as
peaks in the negative direction. In addition, the signals in the
spectrum are associated with the significance of metabolites in
characterizing the NMR data for a given group and the color-
scaling map on the right-hand side of each loading plot. This
was a function of variable importance in OPLS-DA loading
plots (Figure 4) providing information about the magnitude of
the importance of the metabolites in explaining the scores. For
instance, red indicates a more significant contribution to the
separation between the groups than blue. Based on the results
of the OPLS-DA loading plot, in which the targeted profile can
be observed, the serum of IgAN patients was characterized by
higher levels of lactate, myo-Inositol, phenylalanine, and L6
( = CH-CH2-CH = ), L5 (-CH2-C = O) and L3 (-CH2-CH2-C = O)
lipids, as well as by lower levels of b-glucose, a-glucose, valine,
tyrosine, phosphocholine, lysine, isoleucine, glycerolphospho-
choline, glycine, glutamine, glutamate, alanine, acetate, 3-
hydroxybutyrate, and 1-methylhistidine, compared with
healthy individuals (Figure 4a, middle and right panels).
Compared with the control group, the IgAN-A and IgAN-B
groups had very similar levels of metabolic changes. Increased
levels of pyruvate, phenylalanine, lactate, L5 lipids (CH2-
C = O), creatinine, and creatine and decreased levels of glycine
were marked in the IgAN-A patients, while obvious differ-
ences were not observed in the IgAN-B group (Figure 4b, c,
middle and right panels). Overall, the high-risk patients had
relatively higher or lower statistically significant differences in
24 variable metabolites than the low-risk patients. Intriguingly,
it was difficult to differentiate the low-risk group from the

Figure 1 - 600-MHz 1H NMR spectra (d0.4-4.7 and d5.2-9.0) of serum obtained from the (A) control, (B) IgAN-A and (C) IgAN-B groups.
The region of d5.2-9.0 (in the dashed box) was magnified 8 times compared with the corresponding region of d0.4-4.7 for the purpose
of clarity. Key: 1-MH: 1-Methylhistidine; Ace: Acetate; Acet: Acetone; Ala: Alanine; Ci: Citrate; Cr: Creatine; Cn: Creatinine; GL: Glycerol
of lipids; Gln: Glutamine; Glu: Glutamate; Gly: Glycine; GPC: Glycerolphosphocholine; Ileu: Isoleucine; L1: LDL&VLDL, CH3-(CH2)n-; L2:
LDL&VLDL, CH3-(CH2)n-; L3: -CH2-CH2-C = O; L4: -CH2-CH = CH-; L5: -CH2-C = O; L6: = CH-CH2-CH = ; L7: -CH = CH-; Lac: Lactate; Leu:
Leucine; Lys: Lysine; MA: Methylamine; m-I: myo-Inositol; NAG: N-acetyl glycoprotein signals; PC: Phosphocholine: Phe: Phenylalanine;
Py: Pyruvate; Tyr: Tyrosine; Val: Valine; a-Glc: a-Glucose; b-Glc: b-Glucose.
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high-risk group using OPLS-DA score plots (Figure 4d, middle
and right panels).

External validation was performed to test the reliability of
the PLS-DA model. For our applications, the sensitivity,
specificity and classification rate of the established models
in correctly assigning diagnostic groups are shown in
Table 3.

To further investigate the significance of these metabo-
lites, a combination of statistical approaches was necessary
(33). Thus, according to the cutoff value of the correlation
coefficient, a total of 24 variables proposed as candidate
biomarkers, contributing to the determination of the
metabolic profiles for each model, are summarized in
Table 4, along with the relative concentrations of the
metabolites in the various groups.

DISCUSSION

IgAN is a complex trait and a significant cause of renal
insufficiency in different cohort populations. Many
researchers have elucidated the causal mechanisms under-
lying IgAN in various fields. Nakamaki et al. (33) suggested
that endothelin-1 is a major disease-promoting factor in
renal disease. It has been documented that the deposition of
polymeric IgA triggers glomerular immuno-inflammatory
injury and that subsequent proteinuria may further induce
tubulointerstitial lesions, thereby contributing to the pro-
gression of IgA nephropathy (34). Suzuki et al. (35)
described the characteristics of IgG autoantibodies in the
abnormally glycosylated IgA1 secreted by immortalized B
cells derived from patients with sporadic forms of IgA
nephropathy, which may offer new insights into disease
pathogenesis and may lead to new methods of diagnosis,
monitoring, and therapy for patients with IgA nephropathy.
Many IgAN studies have been published, but most have
suffered from small sample sizes and methodological
problems, and none of the results have been convincingly
validated. Therefore, the molecular basis of IgA nephro-
pathy is still not fully understood.

In our study, NMR-based metabolomic analysis technol-
ogy was used for the first time to identify the characteristics
of metabolite profiles from the serum samples of IgAN
patients and from age- and sex-matched healthy controls.
Using a comprehensive NMR screening process, we aimed
to assess the potential of the technique as a diagnostic tool
for the disease and to identify the characteristics of
metabolites. The discovery of distinctive patterns in the
metabolite profiles associated with different renal condi-
tions could be of great diagnostic significance. The PCA
score plots achieved good separation between the IgAN
patients and healthy controls, and the IgAN-A and IgA-B
samples manifested similar global differences in metabolic
profiles. The results support the hypothesis that the
metabolic fingerprinting of serum could be useful in
distinguishing IgAN patients from healthy individuals.
Upon testing of these results, the OPLS-DA models showed
considerable R2 and Q2 values. Importantly, the results
showed high sensitivity and specificity for diagnosing
patients with IgAN. However, this technique was not
sensitive enough to differentiate between high and low
disease risk. This finding suggests that the diseases may
share, to some extent, the same metabolic pathway in their
pathogenesis. Nevertheless, potential biomarkers, including
b-glucose, a-glucose, valine, tyrosine, pyruvate, phenylala-
nine, phosphocholine, myo-Inositol, lysine, lactate, L6 lipids
( = CH-CH2-CH = ), L5 lipids (-CH2-C = O), L3 lipids (-CH2-
CH2-C = O), isoleucine, glycerolphosphocholine, glycine,
glutamine, glutamate, creatinine, creatine alanine, acetate,
3-hydroxybutyrate and 1-methylhistidine, as detected in
this study, might explain the pathogenesis of IgAN and
warrant further investigation in a systemic review.

Similar to how genes and proteins are normally asso-
ciated with specific pathways and processes, so are
metabolites. Changes in the relative concentrations of
certain ‘‘universal’’ metabolites, such as glucose, lactate,
and citrate, reflect changes in cell viability (apoptosis), levels
of oxygenation (anoxia, ischemia, and oxidative stress), local
pH, and general homeostasis (36). Among these metabolites,

Figure 2 - PCA scores plotted based on 1H CPMG NMR spectra of serum obtained from the different groups. Left panel: C: control
group, black box (&); IgAN group, red dot (N). Right panel: C: control group, black box (&); A: IgAN-A group, red dot (N); B: IgAN-B
group, blue diamond (X).
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we observed significantly elevated levels of lactate and
pyruvate in the serum of IgAN-A patients, while neither
could be detected in IgAN-B patients. Graham et al. (37)
suggested that lactate arises from a shift toward anaerobic

glycolysis in potentially viable cells that continue to
metabolize glucose under local hypoxic conditions.
Alternatively, high levels of lactate may arise from
inflammatory and phagocytic cell infiltration in tissue.
Additionally, these are types of energy metabolism pro-
cesses, especially anaerobic glycolysis. Because an increase
in anaerobic cell respiration occurs under renal damage,
there is an increased concentration of lactate and pyruvate
in IgAN-A serum due to anaerobic glycolysis of serum
glucose. In combination with a lower level of glucose, this
result indicates up-regulated glycolysis. Furthermore, pos-
sibly due to the reduced utilization of pyruvate in the Krebs
cycle, citrate levels also decrease. Glucose and pyruvate can
obviously be quite informative with regard to cell function
or cell stress and, therefore, organ function.

IgAN causes perturbations in the Krebs cycle, as well as
increased protein degradation from cell necrosis, leading to
altered concentrations of free amino acids in serum. In this
study, the significantly decreased amounts of valine,
tyrosine, lysine, isoleucine glycine, glutamate, and alanine
may be associated with reduced translation from citrate, a-
ketoglutarate, succinyl-CoA and fumarate, which are inter-
mediates of the Krebs cycle. Such results may indicate that
protein is degraded into amino acids to regulate biological
functions, such as gene transcription, cell cycle progression,
and inflammatory and autoimmunity responses. The results
are also indicative of alterations in energy metabolism as
well as impairment in mitochondrial function (38). This
finding is consistent with our report (Table 1) of decreased
levels of total protein, albumin, and globulin in serum
clinical chemistry assays. The lower level of glutamine may
result from the inadequacy of a-ketoglutarate, which fluxes
out of the mitochondria and is converted into glutamate in
the cytosol.

Other types of metabolites are specifically associated with
tissue remodeling, muscle atrophy and myofibrillar break-
down (e.g., methylhistidine, creatine, creatinine, and gly-
cine). Changes in the levels of these metabolites can provide
important information regarding the extent of tissue repair
or tissue damage (39,40). Thus, an elevation in creatine/
creatinine levels is indicative of damage to the renal
parenchyma or of kidney necrosis, which is also in
accordance with clinical chemistry assays. Moreover, the
lower concentrations of 1-methylhistidine, which is meta-
bolized into histidine, might be closely related to protein
energy wasting, inflammation and oxidative stress (41).

Phosphorylcholine is a precursor of glycerolphosphor-
ylcholine, which is an essential component of membrane
structures. The decreased serum levels of phosphorylcho-
line in both the IgAN-A and IgAN-B patients might be
related to the augmented utilization of glycerolphosphor-
ylcholine in impaired cells and organelle membranes. More
recent evidence has demonstrated that the proportion of
PC/GPC can be used as a measurement of enhanced cell
proliferation in cancerous tissues (42).

Myo-Inositol, L6 lipids ( = CH-CH2-CH = ), L5 lipids
(-CH2-C = O), and L3 lipids (-CH2-CH2-C = O) are involved
in lipid metabolism. In our study, clinical chemistry assays
indicated slightly higher levels of free fatty acids and no
significant differences in levels of triglycerides or total
cholesterol between the IgAN and control groups, as well as
between the IgAN-A and IgAN-B groups. NMR spectra
showed enhanced serum levels of VLDL/LDL and unsatu-
rated lipids in the IgAN patients. The enhanced lipid levels

Figure 3 - Cross-validation of partial least squares-discriminant
analysis (PLS-DA) models obtained from 200 permutation tests.
PLS-DA score plots showing the separation between (a) controls
and IgAN patients, (b) controls and IgAN-A patients, (c) controls
and IgAN-B patients, and (d) IgAN-A and IgAN-B patients.
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Figure 4 - OPLS-DA score plots (left panel) derived from 1H NMR spectra of serum and corresponding coefficient loading plots (middle
and right panels) obtained from different groups. Keys for the assignments are shown in Figure 1.
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can most likely be attributed to the lower activity of the
lipoprotein lipase. Additionally, the increase in lipid
metabolism is enhanced in response to kidney injury when
IgAN occurs (21). The increase in acetate, which is the end
product of lipid metabolism, further supports the above-
mentioned hypothesis. Furthermore, our work demon-
strated that the concentrations of serum 3-hydroxybutyrate
in the renal tissue of IgAN patients were significantly lower
than those in the renal tissue of controls, which may confirm
the shift in energy metabolism toward the formation and
utilization of ketone bodies.

In summary, the systemic changes in endogenous
metabolites from IgAN patients mainly influenced energy,
amino acid, lipid, and nucleotide metabolism. As shown in
Figure 5, the number of metabolic pathways involved in
IgAN highlights the complexity of the metabolic response to
IgAN. Metabolite profiling, obtained from 1H-NMR-based
metabonomic analysis of IgAN serum samples, clearly
distinguished IgAN patients from healthy controls, which
may be a minimally invasive method for detecting IgAN
before symptoms develop, suggesting that the utilization of

metabonomics in serum may assist in early diagnosis, more
appropriate therapy and better clinical management.

Although we identified disease-specific metabolite pro-
files, the future use of metabolite biomarkers in the clinical
environment requires optimization to improve their accu-
racy. The limitations of this study must also be recognized
(43,44). First, metabolic investigations can be helpful for the
differentiation of healthy controls from IgAN patients,
but they are not sensitive enough to be used to draw
conclusions about the dynamic processes of high and
low risk for this disease. Moreover, different histological
classifications subjectively present selection bias to a certain
degree when screening patients. Histological classification
must be validated in different cohorts. Furthermore, this
study was not specifically designed to answer the question of
whether medical treatment consisting of diuretics, angioten-
sin-converting enzyme inhibitors and/or angiotensin II
receptor blockers, n-3 polyunsaturated fatty acids, and
hypolipidemic agents should be administered to IgAN
patients. We did not evaluate the associations between
therapeutic interventions and metabolite changes in this

Table 3 - Sensitivity, specificity and classification rate calculated for the cross-validated OPLS-DA model applied to the
spectra of serum samples from healthy controls and patients with IgAN.

IgAN vs. control IgAN-A vs. control IgAN-B vs. control IgAN-A vs. IgAN-B

Sensitivity (%) 88.6 92.3 95.4 -

Specificity (%) 97.1 100 100 -

Classification rate (%) 93.1 97.0 98.2 -

Table 4 - Summary of the 1H NMR-detected statistically significant changes in the relative levels of serum metabolites for
IgAN patients compared with the healthy controls.

Metabolites ra

C-IgAN C- A C- B A-B

b-Glucose: 3.25 (ddb), 3.41 (t), 3.46 (m), 3.49 (t), 3.90 (dd), 4.65 (d) -0.784 -0.859 -0.797 -

a-Glucose: 3.42 (t), 3.54 (dd), 3.71 (t), 3.73 (m), 3.84 (m), 5.23 (d) -0.812 -0.843 -0.871 -

Valine: 0.99 (d), 1.04 (d) -0.816 -0.799 -0.811 -

Tyrosine: 6.89 (d), 7.19 (d) -0.619 -0.638 -0.652 -

Pyruvate: 2.37 (s) - 0.426 - -

Phenylalanine: 7.32 (d), 7.37 (t), 7.42 (dd) 0.436 0.473 - -

Phosphocholine: 3.21 (s), 3.35 (s) -0.791 -0.747 -0.798 -

myo-Inositol: 3.65 (dd) 0.513 0.671 0.672 -

Lysine: 1.72 (m), 1.90 (m), 3.02 (t), 3.76 (m) -0.577 -0.546 -0.560 -

Lactate: 1.33 (d), 4.11 (q) 0.445 0.611 - -

L6 lipid, = CH-CH2-CH = : 2.78 (br) 0.422 0.555 0.617 -

L5 lipid, -CH2-C = O: 2.24 (br) 0.433 0.514 - -

L3 lipid, -CH2-CH2-C = O: 1.58 (br) 0.527 0.610 0.561 -

Isoleucine: 0.94 (t), 1.01 (d) -0.650 -0.604 -0.644 -

Glycerolphosphocholine: 3.22 (s), 3.36 (s) -0.876 -0.858 -0.878 -

Glycine: 3.56 (s) -0.524 -0.477 - -

Glutamine: 2.14 (m), 2.45 (m), 3.78 (t) -0.762 -0.796 -0.707 -

Glutamate: 2.10 (m), 2.35 (m), 3.78 (t) -0.762 -0.751 -0.697 -

Creatinine: 3.04 (s), 4.06 (s) - 0.506 - -

Creatine: 3.04 (s), 3.93 (s) - 0.417 - -

Alanine: 1.48 (d) -0.451 - - -

Acetate: 1.92 (s) -0.519 -0.454 -0.563 -

3-Hydroxybutyrate: 1.18 (d) -0.834 -0.823 -0.843 -

1-Methylhistidine: 7.05 (s), 7.75 (s) -0.692 -0.674 -0.608 -

OPLS-DA coefficients derived from the NMR data of metabolites in serum obtained from different groups.
aCorrelation coefficients and positive and negative signs indicate positive and negative correlations in the concentrations, respectively. The correlation

coefficient of |r|. 0.404 was used as the cutoff value for statistical significance based on the discrimination significance at the level of p = 0.05 and df

(degree of freedom) = 22 (for C-IgAN and C-A), and it was |r|. 0.553 at the level of p = 0.05 for df = 11 (for C-B and A-B). ‘‘-’’ means that the correlation

coefficient |r| is less than the cutoff value.
bMultiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; m, multiplet.
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cohort of patients. Finally, given our relatively small sample
size, especially the IgAN-B sample size, our observations still
remain to be verified in larger studies. Further studies with
larger numbers of patients and controls, including other
distinctive types of IgAN diseases, will be crucial to
validating this model and to assuring its use in routine
practice. Additionally, to explore the potential of this model,
follow-up work is required, which should include long-term
studies of large numbers of patients with early IgAN
diagnoses. It is also necessary to validate these biomarkers
in another cross-sectional study with a separate population,
and it would be of interest to perform a longitudinal study to
determine the predictive power of this model with regard to
disease progression.

In conclusion, this study showed that one potential use of
metabonomics might be the development of a more
sensitive, reliable and successful method of diagnosis than
the invasive puncture procedure for distinguishing IgAN
patients from healthy controls. Nevertheless, the model of
the high-risk IgAN group versus the low-risk group was not
perfect; that is, the 1H NMR-based metabonomic analysis of
serum samples revealed some characteristic metabolic
features, but not processes, of the pathological changes
associated with IgAN. Further NMR-based metabonomic
studies of various IgAN models could provide insight into
the molecular mechanisms involved in the pathogenesis of
IgAN and could offer invaluable information that could be
used in the development of a novel diagnostic technique
and better IgAN treatments.
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