
Acta Scientiarum 

 

 
http://www.periodicos.uem.br/ojs/ 

ISSN on-line: 1807-8621  

Doi: 10.4025/actasciagron.v45i1.61550 

 
PLANT BREEDING 

 

Acta Scientiarum. Agronomy, v. 45, e61550, 2023 

Comparative study between phenotypic and genomic analyses 

aimed at choosing parents for hybridization purposes 

Francyse Edite de Oliveira Chagas de Moraes1* , Michele Jorge Silva Siqueira1, Antônio Carlos da 

Silva Júnior1, Renato Domiciano Silva Rosado2 and Cosme Damião Cruz1 

1Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Campus Universitário, Viçosa, Minas Gerais, 

Brazil. 2BASF – Pesquisador Digital e Inovação, Trindade, Goiás, Brazil. *Author for correspondence. E-mail: francysechagas70428@gmail.com 

ABSTRACT. The development of superior cultivars involves parents with superiority for the traits of 

interest and wide genetic variability. Efficient plant breeding and selection strategies that allow for the 

identification of superior genotypes are essential in breeding programs. This work aims to carry out a 

comparative study between several strategies for choosing parents, for hybridization purposes, based on 

phenotypic analysis and molecular information. To obtain the phenotypic and genotypic information of the 

parents, data simulation was used. For genotyping, 2000 single nucleotide polymorphism markers were 

used, and from all possible gametes to be formed (22000), 5000 were randomly sampled to form each of the 

100 individuals of the population of recombinant inbred strains. To obtain the phenotypic information, five 

characteristics with different levels of complexity were simulated. The comparative study was carried out 

using data referring to simulated genotypic values of hybrids and parents. Then, aiming to choose the 

parents destined for hybridization, different traditional selection strategies based on phenotypic analysis 

and the genome-wide selection methodology were approached. The genomic information resulted in the 

choice of the best lines and in obtaining superior hybrids when compared with traditional methodologies. 

The inclusion of the genomic genetic values of the parents in determining the crosses to be carried out 

increases the probability of generating phenotypically superior hybrids. Thus, the traditional methods of 

choosing parents for hybridization purposes are effective, but when incorporating the information from 

genome-wide selection, the choice of parents provides superior and promising results. 
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Introduction 

Plant breeding has been used in agriculture since ancient times through domestication and selection; 

however, with advances in genetic engineering and biotechnology, breeding practices have improved 

significantly (Ahmar et al., 2020; Hill, 2012; Lenaerts, Collard, & Demont, 2018). Breeders have begun to 

interfere directly and intentionally in the DNA of plants and then define which desired characteristics should 

be passed on to their offspring, managing to select plants with greater potential based on more sophisticated 

data, such as genome information (Lyzenga, Pozniak, & Kagale, 2021). As the access to and quantity of 

genomic data increases, there are new opportunities for collaboration between classical improvement, which 

has been carried out for years, and biotechnology, bringing more precise improvements (Ahmar et al., 2020; 

Bohar et al., 2020; Garrido-Cardenas, Mesa-Valle, & Manzano-Agugliaro, 2017; Gupta, Kumar, Mir, & Kumar, 

2010; Nadeem et al., 2018; Rasmussen, 2020). 

In plant breeding programs, the presence of genetic variability is a basic and necessary condition to obtain 

genetic gains with selection (Khaki, Khalilzadeh, & Wang, 2020; Phuke et al., 2017). To develop a superior 

cultivar, it is necessary to carry out the crossing between parents properly. If selection involves parents with 

superiority for the traits of interest and wide genetic variability, there will be more superior segregating 

genotypes (Falconer, 1981). Therefore, the probability of success of a breeding program is closely linked to a 

careful selection of parents (Pimentel et al., 2013). Associated with this, efficient breeding and plant selection 

strategies that allow for the identification of superior genotypes are essential. Normally, crosses are carried 

out between parents with favorable phenotypes for complementary traits, to generate segregating 

populations with enough variability to carry out selections of superior lines for the characters of interest. 

https://orcid.org/0000-0002-3660-0150


Page 2 of 11 Moraes et al. 

Acta Scientiarum. Agronomy, v. 45, e61550, 2023 

Among the existing methodologies for choosing parents, competition assays stand out, whether or not 

they are added to the predictive study of genetic diversity, or quantitative study of this diversity through 

experiments for diallel analysis purposes. Diallels consist of crossing all possible combinations of n parents 

(Hayman, 1954). In this crossing scheme, it is possible to identify the hybrids that manifest high heterosis, 

which are those with the greatest genetic diversity among the parents (Falconer, 1981). Therefore, segregating 

populations derived from these hybrids have greater potential to present superior individuals and should 

receive greater attention. Although this methodology allows selecting parents efficiently and still provides 

genetic information (Coelho et al., 2020; Kulka et al., 2018), there are some limitations—for example, in a 

situation with a high number of candidate parents, in which it is necessary to carry out several artificial 

crosses (Werle et al., 2014). 

Another way to determine the best crosses is to aggregate information obtained by predictive procedures, 

which seek to estimate the genetic variance of the segregating population from estimates of the genetic 

distance between parents (Almeida et al., 2020; Bhandari et al., 2017; Müller et al., 2015; Swarup et al., 2020). 

Genetic diversity among parents is measured without the need for hybrid combinations, being established 

based on phenotypic (agronomic, morphological, and physiological differences) or genotypic (molecular 

markers) information of the parents themselves. Therefore, it can be predicted that the best hybrids will result 

from crossing parents with great diversity and desirable characteristics (Swarup et al., 2020) However, 

determining genetic diversity based on phenotypic characters is greatly influenced by the environment, 

especially for traits of agronomic interest (Bhandari et al., 2017). 

With the improvement in molecular biology techniques and platforms for next-generation sequencing 

(NGS), a new approach has been proposed called genome-wide selection (GWS). This methodology associates 

phenotypic data with genotypic data and was originally applied to predict gains resulting from the selection 

(Meuwissen, Hayes, & Goddard, 2001). There is potential to use values predicted by the GWS approach in 

problems related to establishing a base population, which will be dealt with in this article. This technique has 

been explored through simulation studies and application in traditional breeding programs for several crops 

(Alkimim et al., 2020; Barbosa et al., 2021; Crossa et al., 2017; Sousa et al., 2021). GWS is not interested in 

identifying the function of each gene, but in establishing associations between markers throughout the entire 

genome with phenotypic characteristics of interest (Sousa et al., 2021). Although GWS is efficient, some 

challenges are still routinely faced by professionals in the field of biometrics, which include genetic issues 

inherent to the use of molecular markers, statistical questions about the use of different data analysis 

paradigms, and, especially, computational issues arising from the requirement analysis of large data sets 

(Cruz, Carneiro, & Bhering, 2021). 

Given the above information, this work aims to carry out a comparative study between several strategies 

for choosing parents, to form a base population from which hybrids will be formed, based on traditional 

analysis and phenotypic information, and data analysis with aggregated molecular information. 

Material and methods 

Obtaining phenotypic and genotypic information from parents 

This dataset served as the basis for the use of different approaches to parental choice to form a base 

population from which hybrids will be formed. For the experimental simulation of phenotypic and genotypic 

data, a diploid species was used (2n = 2x = 20). For genotyping, 2000 single nucleotide polymorphism (SNP) 

markers were used, and from all possible gametes to be formed (22000), 5000 were randomly sampled to form 

each of the 100 individuals of the population of recombinant inbred lines (RILs). The available gametes were 

originated from several generations of successive self-fertilization of 𝐹1 individuals obtained by crossing 

contrasting homozygous parents. The controller genes were simulated and randomly distributed into 10 

linkage groups, and the correlation between traits was given by genes present in the same linkage group. As 

discussed by Moura et al. (2018), this is one of the causes of genetic correlation, which may have positive, 

negative, or null values. 

To obtain the phenotypic information, five characteristics with different levels of complexity were 

simulated. Complexity was considered directly proportional to the number of controlling genes and inversely 

proportional to heritability. The simulated characteristics had different dimensions, as evidenced by their 

different averages. The parameters adopted for the simulation of the characteristics are detailed in Table 1. 
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The information established is only reference values used to compare the performance of the methodologies 

used, without prejudice to the extrapolation of the results obtained. 

Table 1. Parameters used to simulate the five characteristics with different levels of complexity. 

Trait NG ADD ℎ2 Average 

X1 12 0.4 0.8 5 

X2 21 0.7 0.7 30 

X3 32 1 0.5 80 

X4 73 0.5 0.4 100 

X5 100 0.3 0.2 150 

NG: number of genes; ADD: average dominance of genes; ℎ2: heritability; Average: average value of the characteristic, in its respective unit of measure. 

The total genetic value expressed by a given individual was estimated from the following expression: 

𝐺𝑖 =  𝜇 +  𝑎𝑖 + 𝑑𝑖                 (1) 

where 𝑑𝑖 represents the dominance effects in genotype i, that is, it is the effect given by the presence of two 

different alleles at the same locus in homologous chromosomes; 𝑎𝑖 represents the additive effects present in 

genotype i, given by: 

𝑎𝑖 =  ∑𝑔
𝑗=1 𝑝𝑗𝛼𝑗           (2) 

Where j is the effect of the favorable allele in block j, considered equal to 1, 0, or -1 for the genotypic classes 

AA, Aa, and aa, respectively; and pj is the contribution of locus j to the manifestation of the characters 

established in the work from weights generated by values of a uniform distribution. Thus, in the simulation 

process, it was assumed that all genes have the same effect on the trait. 

The phenotypes of individuals (i) were generated according to the model: 

𝐹𝑖 =  𝐺𝑖 +  𝑀𝑖             (3) 

Where Fi is the genetic effect given by the sum of the genetic effects of each locus and the dominance 

deviation, as shown in equation (1), and Mi is the environmental effect, generated according to a normal 

distribution with a mean of zero and variance compatible with the heritability of the simulated characteristic, 

given by the following expression: 

ℎ2 =  
𝜎𝑔

2

𝜎𝑓
2             (4) 

where 2
g refers to genetic variance associated with the simulated trait, and 2

f corresponds to phenotypic variance. 

Obtaining phenotypic and genotypic information of hybrids 

This information was used to attest to the effectiveness of the techniques for choosing parents to obtain 

superior hybrid populations. From the set of genotypic information of the parents, represented by RIL 

lineages, a new data set represented by the hybrid combinations was generated, with a total of 4950 (𝐶100,2) 

hybrids formed. Based on the established gene control, it was also possible to establish the expected 

phenotypic values of these hybrid combinations for the five phenotypic traits studied. 

Strategies for selecting parents for hybridization purposes 

From the original set of parents, the objective was to identify the 10 with the best attributes to be used in 

the formation of hybrids; for this endeavor, five different strategies were used. 

Performance per se 

For this approach, 10 of 100 available parents (RIL strains) were selected, having as the only reference 

the phenotypic value in relation to variable X5. The choice for this methodology can be compared to the 

direct analysis of the phenotype in a given experimental evaluation. 

Performance per se accompanied by predictive analysis of genetic diversity 

In the first step, 20 parents were pre-selected, based exclusively on the phenotypic value in relation to 

variable X5. In the second step, the 10 parents with the best potential for X5 and genetic diversity revealed by 
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multivariate statistics were identified. Thus, for the analysis of genetic diversity, the Euclidean distances 

between each genotype pair were calculated, after data standardization, as follows:  

 𝑑𝑖𝑖′ =  √∑𝑗 (𝑌𝑖𝑗 − 𝑌𝑖′𝑗)2           (5) 

Where dii is the Euclidean distance between parents i and i’ and Yij is the value of the ith parent in relation to 

the jth variable. 

From the distance matrix, the Tocher grouping method was used, which consists of identifying the most 

similar pair of individuals to form the initial group (Cruz, Ferreira, & Pessoni, 2011). Subsequently, the 

possibility of including new individuals was evaluated, using as a criterion that the mean intragroup distance 

should be smaller than the mean intergroup distance. 

Principal component analysis was used as a complementary analysis; it consists of a multivariate statistical 

technique that transforms a set of original variables into another set of variables of the same dimension, to 

redistribute the variation observed in the original axes to obtain a set of uncorrelated orthogonal axes. Thus, 

from a total of 20 parents considered to have good performance about the X5 trait, the 10 most distant parents 

genetically regarding the 5 characteristics were chosen. 

Performance per se accompanied by diallel analysis 

This strategy also involved two steps. Initially, 20 parents were pre-selected taking into account the 

performance regarding the main characteristic X5. In the second step, diallel design was used to select the 

final 10 parents based on the general combining ability (GCA) and the specific combining ability.  

Performance per se accompanied by genetic and diallel diversity analysis 

This approach involved three steps to identify good parents of high additive genetic value and with genetic 

complementarity: pre-selection, by competition assay, predictive study of genetic diversity, and, finally, 

quantitative study of genetic superiority and complementarity by diallel analysis. In this case, pre-selection 

(step 1) was carried out to identify the 40 best parents in relation to characteristic 𝑋5. Subsequently, genetic 

diversity analysis (step 2) was performed using the Euclidean distance, the Tocher method, and principal 

component analysis. The 20 parents with good performance and divergence were selected. In step 3, diallel 

analysis was performed, and finally, 10 parents with good performance, divergent, and with greater additive 

genetic value were selected. 

Selection of parents based on molecular information 

Using the principles of the GWS methodology, the criterion for choosing the parents was based on the 

predicted genomic genetic value (VGG). This approach uses markers that have been analyzed previously for 

segregation. 

The genomic selection methodology faces the problem that the number of markers is greater than the 

number of individuals in the population and the markers are highly correlated (Crossa et al., 2017). There are 

several models available to solve this problem. To model the effect of the markers, the ridge regression best 

linear unbiased prediction (RR-BLUP) was used, also called random regression. The RR-BLUP assumes that 

the effects of markers are random and have a normal distribution with constant variance, according to the 

following model:  

𝑦 = 𝑋𝑔 + 𝑒            (6) 

Where y is the phenotype; X is an incidence matrix of dimensions N (number of individuals) × n (number 

of markers); g is the vector of regression coefficients, normally distributed (0, σ2
g); and e is the random error 

with normal distribution (0, σ2
e). 

The effects of markers were estimated by the following equation: 

g = (X'X + Iλ)-1 X’y           (7) 

where λ = k = σ2
e/ σ2

g is constant for all bookmarks. The variance of the markers is constant, and in general, k 

must be considered as a function of the additive genetic variance. 

Having the predicted effect of each marker, it is possible to obtain the predicted VGG of the individuals 

that represented the population of possible parents: 
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𝑉𝐺𝐺̂ = ∑𝑛
𝑖 𝑋𝑖 𝑔̂𝑖           (8) 

where n is the number of markers arranged in the genome; Xi is the line of the incidence matrix that allocates 

the genotype of the ith marker for each individual; and 𝑔̂𝑖 is the estimated effect of the ith marker. 

In the prediction, the training and validation population were all strains genotyped for the markers and 

phenotyped for the traits of interest. The genomic genetic value of the lines was ordered in decreasing order 

and the 10 best lines were chosen. Pearson’s simple correlation between the actual genetic value of individuals 

and the genomic genetic value obtained by GWS was used to measure the model’s accuracy, as follows: 

 𝜌𝑥,𝑦 =  
∑𝑛

𝑖=1 (𝑥𝑖− 𝑥)(𝑦𝑖− 𝑦)

(𝑛−1)𝜎𝑋𝜎𝑌
                       (9) 

where ρx,y denotes the Pearson coefficient; n is the number of terms; xi and yi are the values of the X and Y 

variables for the individual i, respectively; x  and y are the means of the X and Y variables, respectively; and 

σX and σY are the standard deviations of the X and Y variables, respectively. 

Pearson’s correlation between the genomic breeding value and the true breeding value was tested by the 

t-test at 1% probability, indicating the accuracy of the prediction model. 

The simulations of phenotypic and genotypic data were performed using the GENES software (Cruz, 

Salgado, & Bhering, 2013). All analyzes were performed with the GENES software integrated in the R platform 

(Cruz, 2013; 2016; R Core Team, 2019). 

Continuous and discrete real values of hybrids 

For comparative purposes, data referring to the simulated genotypic values of the hybrids were used to 

organize the lines and hybrids into groups.  

The GCA methodology was used to organize the information of the lineages into discrete groups, obtained 

through the type II Griffing diallel, in which reciprocal 𝐹1 individuals are excluded. The genotypic values of 

the hybrids in relation to trait X5, which has the highest number of controlling genes and the lowest 

heritability, were used to determine the GCA of each strain. The statistical model used in this diallel is 

represented in the following equation: 

𝑌𝑖𝑗 = 𝑚 +  𝑔𝑖 + 𝑔𝑗 + 𝑆𝑖𝑗 + 𝑒𝑖𝑗                      (10) 

where Yij is the average value of the hybrid combination (i ≠ j) or the parent (i = j); m is the overall average; gi 

and gj the effects of the GCA of the ith and the jth parent, respectively; Sij is the effect of specific combining 

ability for crosses between i and j order parents, respectively; and eij is the average experimental error. 

The overall combining ability for each of the 100 parents was given by: 

𝑔̂𝑖 =
1

(𝑝+2)
 [𝑌𝑖𝑖 + 𝑌𝑖. − 

2

𝑝
 𝑌..]                       (11) 

where 𝑔̂𝑖 is the parent’s GCA i; p is the number of parents analyzed; Yii is the total cross between parent i and 

parent i; Yi. is the total of the analyzed characteristic for the genotype i; and Y.. is the total for the trait 

analyzed for all genotypes. 

Based on the GCA result of each lineage, they were evenly organized into five groups: optimal, good, medium, 

bad, and very bad. The optimal group was further divided equally into two subgroups: suboptimal and superoptimal. 

Subsequently, the transformation of data from hybrids with a continuous distribution into discrete values 

was performed, also within the seven groups mentioned. 

Results and discussion 

Performance per se 

Based on performance per se, lines 2, 4, 5, 19, 22, 48, 49, 54, 55, and 76 were selected; among these, 10% 

belong to the group classified as superoptimal. After crossing these lines, out of a total of 45 (𝐶10,2) hybrids 

formed, it 24.4% also belong to the superoptimal group. This parent selection strategy depends only on 

information from competition trials and, compared with other strategies, it has a lower cost. The concept of 

adopting as a selection criterion only the individual performance of potential genotypes can be questioned 

for not considering the diversity that is essential in establishing the variability to be explored in future 

segregating generations. 
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Performance per se accompanied by predictive analysis of genetic diversity 

In a new scenario, the strategy of pre-selecting 20 parents, among the 100 originally available, was 

adopted, based on performance per se. Afterward, genetic diversity analysis was carried out in the 20 selected 

parents, in which, after obtaining the similarity matrix, the grouping was carried out using the inverted 

Tocher method. Table 2 lists the selected parents, divided into nine groups. 

Table 2. Grouping of parents selected according to performance per se accompanied by genetic diversity analysis. 

Group* Lines Group Lines  

I  2+,4+,5+,12+,26+,37+,49+,54+,55, 74+ and 76+  VI 47 

II 59 and 79 VII 22 

III 19 VIII 69 

IV 48 IX 62 

V 33 - - 

*Each group aggregates parents with high dissimilarity; + parents selected only for good performance. 

Friske, Schuster, Marcolin, and Silva (2018) also used the Tocher method for similarity pattern recognition 

in genetic diversity analysis, They evaluated the maturity characteristics and yield components in maize lines. 

They divided the analyzed the strains into eight groups, the first two groups being recommended for crossing 

between strains, as they belong to different heterotic groups and have good genetic complementation. Barros 

et al. (2019) reported the same strategy with open-pollinated maize varieties, noting that, by using the Tocher 

method, they allocated the varieties into five different groups, and that crosses between genetically distant 

varieties would produce hybrids with higher yields. As the inverted Tocher method was used in the work, the 

most divergent individuals were in one group, namely the selected group. 

In addition to Tocher’s method, principal component analysis was performed to recognize similarity 

patterns in scatter plots. In this study, the first three main components represented about 80% of the data 

variability; therefore, they were chosen for the analysis, with the three-dimensional graph being the most 

appropriate for the projection of the scores obtained by the components (Figure 1). The choice of these 

components is due to their involvement with a minimum of 80% of the available variation (Hongyu, 

Sandanielo, & Junior, 2016). 

 
Figure 1. Graphical dispersion of selected parents according to performance per se and groups formed by the Tocher method. 

Then, the 10 superior and divergent lines (2, 4, 5, 12, 26, 37, 49, 54, 74, and 76) were selected. When the 45 

hybrids were formed, 20% of the lines and 37.8% of the hybrids belong to the group classified as superoptimal. 

Performance per se accompanied by diallel analysis 

By studying genetic diversity, it is possible to obtain genetically distant parents that should complement 

each other when they are crossed, but not parents with high additive genetic value, which could be a better 

alternative for breeding programs to obtain hybrids. Thus, one way to recognize the additive genetic potential 
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of parents is through Griffing diallel analysis. Initially, the 20 best lines were selected phenotypically to be 

crossed. From the results of the GCA of each strain, the 10 strains with the highest GCA were chosen. Among 

the chosen lines (2, 5, 12, 33, 48, 54, 62, 74, 76, and 79) and of the formed hybrids, 40 and 42.2%, respectively, 

belong to the superoptimal group, that is, in quantity greater than in the two strategies described above, 

showing that information about the GCA led to a better strategy for choosing parents and hybrids. Moura et 

al. (2018) used diallel analysis, an approach that allowed them to choose the best populations for the 

characteristics of grain yield and plant architecture in the common bean breeding program.  

With diallel analysis, parents with a high concentration of favorable alleles are selected, generating a 

population with better agronomic performance. This performance can be improved by incorporating the 

analysis of genetic diversity, as the parents obtained have different favorable alleles, and there may be 

complementarity in the crosses. 

Performance per se accompanied by genetic and diallel diversity analysis 

For the analyses that addressed performance per se accompanied by genetic and diallel diversity analyses, initially, 

the 40 best parents were selected phenotypically in relation to the 𝑿𝟓 trait. Subsequently, the genetic diversity 

analysis was performed based on the similarity matrix, where 23 groups were formed, which can be seen in Table 3. 

Table 3. Grouping of genotypes according to per se performance accompanied by genetic diversity analysis. 

Groups* Lines Groups Lines 

I 1, 2, 5, 6, 13, 37, 49, 54, 72, 77, 83, 89, and 94 XIII 70 

II 19, 21, and 41 XIV 9 

III 4 and 11 XV 91 

IV 66 and 76 XVI 22 

V 55 and 84 XVII 26 

VI 96 XVIII 47 

VII 78 XIX 30 

VIII 12 XX 48 

IX 79 XXI 62 

X 43 XXII 69 

XI 74 XXIII 59 

XII 33 - - 

*Each group aggregates parents with high dissimilarity. 

Again, a few groups concentrated most of the genotypes and many groups were formed by only one 

genotype due to the global grouping criterion of the Tocher method (Vasconcelos, Cruz, Bhering, & Resende 

Junior, 2007). After applying the inverted Tocher method, the principal components analysis was 

performed, in which components 1, 2, and 3 together accounted more than 70% of the available variation. 

Hence, these were chosen for the analysis, which again provided the three-dimensional graph (Figure 2). 

 
Figure 2. Graphical dispersion of selected parents according to performance per se and groups formed by the inverted Tocher method. 
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The 20 most distant parents were chosen, and after diallel analysis, the 10 most distant lines and with the 

highest GCA were chosen (1, 2, 4, 5, 37, 49, 54, 72, 76, and 89) and formed the 45 hybrids with, 10% and 24.4%, 

respectively, belonging to the superoptimal group. Differently from the three previous methodologies, there 

were fewer hybrids classified as superoptimal. This may have occurred because the genetic diversity analysis 

was performed before the diallel analysis. The chosen parents may be very distant, but they do not carry many 

favorable alleles, which could favor the formation of superior hybrids. Ferreira, Oliveira, Santos, and Ramalho 

(1995) reported a different result in maize, noting that performing a preliminary genetic diversity analysis 

resulted in varieties with the good combining ability and complementary. 

Selection of parents based on molecular information 

The criterion for choosing the parents for the formation of populations can be improved by using 

molecular information to predict the genomic genetic value of the parents. Thus, a new predicted phenotypic 

value (genomic genetic value) can be obtained from analyses using the broad genomic selection approach. 

The markers used in the prediction were analyzed in relation to their quality, through the segregation 

behavior of the markers, noting that 0.3% presented skewed segregation in relation to the expected outcome 

(1:1), at 1% significance. This low frequency indicates that the markers are of good quality for genotyping. 

Whang et al. (2019) used genomic data to predict GCA and discarded markers that did not meet certain quality 

filters aimed at removing alleles with low frequency. From a total of 319,668 SNP markers in maize lines, only 

61,468 were used for the subsequent analysis. 

Among the lines obtained through the prediction model (2, 4, 9, 30, 48, 49, 51, 54, 74, and 78) 70% fall into 

the superoptimal group, indicating the capacity of GWS to select good parents. Then, from the cross between 

the lines, 80% of the hybrids formed belong to the superoptimal class. In addition, the Pearson correlation 

between the genomic breeding value and the real breeding value was significant by the t-test at 1% 

probability, with a value of 0.81. As noted previously, this correlation indicates satisfactory accuracy of the 

prediction model.  

In this work, it can be noted that the genomic information resulted in the choice of the best lines and in 

obtaining superior hybrids when compared with traditional methodologies, as summarized in Table 4. 

Table 4. Summary of the outcome and efficiency of the five parent selection strategies. 

Strategy* Selected Parents Percent** 

1 2, 4, 5, 19, 22, 48, 49, 54, 55, and 76 24.4% 

2 2, 4, 5, 12, 26, 37, 49, 54, 74, and 76 37.8% 

3 2, 5, 12, 33, 48, 54, 62, 74, 76, and 79 42.2% 

4 1, 2, 4, 5, 37, 49, 54, 72, 76, and 89 24.4% 

5 2, 4, 9, 30, 48, 49, 51, 54, 74, and 78 80% 

*1 Per se performance; 2 per se performance accompanied by genetic diversity analysis; 3 per se performance accompanied by diallel analysis; 4 per se 

performance accompanied by genetic and diallel diversity analysis; 5 parent selection based on molecular information. **Corresponds to the percentage of 

hybrids present in the highest-ranked group: superoptimal. 

Wang, Li, and Zhang (2020) reported similar findings when measuring the CGC of 266 maize lines by 

simulating hybrids originated from these lines. The predicted CGCs with the real phenotypic values of the 

hybrids obtained by the simulation and with the values predicted by the genomic selection were compared by 

Pearson correlation; considering the trait with 0.3 heritability and 2000 hybrid samples, they found a 

correlation of 0.80. This correlation, according to Fonseca and Martins (1996), can be classified as excellent. 

Thus, GWS is a useful and effective method to select parents and to form the best hybrids. The inclusion of 

the genomic genetic values of the parents in the determination of the crosses to be carried out increases the 

probability of generating phenotypically superior hybrids. It is emphasized that despite all its benefits, the 

GWS does not aim to replace the phenotypic analysis of the data, but rather to complement the process, to 

carry out the choice of parents more efficiently. 

Conclusion 

It was evident in this study that the traditional methods of choosing parents for hybridization purposes 

are effective, but when incorporating the information from GWS, the choice of parents presented superior 

and promising results. 
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