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ABSTRACT. Assuming that selection in closed herds can promote reduction in additive genetic variance, 
multiple regression models were used to estimate this change in additive genetic (co)variance component, 
over the years when the selection was done. Weights at 550 days (W550) were studied using simulated data of 
herds submitted to 20 years of selection. (Co)variance components were estimated assuming that the weight 
at 550 days was a new trait every five years, by multiple-trait analyses involving four traits in the animal model. 
Three multiple regression equations were fitted—RMI, RMM, RMF—estimating thus the additive genetic 
(co)variance components for the 20 years of selection and eight years prior to the selection process. The initial 
years of each generation of selection were used as a covariate in the RMI. In the RMM, intermediate years 
were used, and the final years were considered in the RMF. The equations showed high coefficients of 
determination. However, there was no difference in the adjustment between the models. It was observed that 
the multiple regression models can be used in the estimation of genetic (co)variance components, when 
heteroscedasticity is assumed over time due to the selection process. 

Keywords: (co)variance components, heteroscedasticity, Bayesian inference, multiple regression. 

(Co)variâncias genéticas heterogêneas em rebanhos simulados fechados sob seleção 

RESUMO. Assumindo que a seleção em rebanhos fechados pode promover a redução da variância 
genética aditiva, foi estudada a possibilidade do uso de um modelo de regressão múltipla para estimar os 
componentes de (co)variância genética aditiva, ao longo dos anos em que a seleção foi praticada. Foram 
utilizados dados simulados de peso aos 550 dias em dez rebanhos de bovinos de corte submetidos à seleção 
por 20 anos. Assumindo que a cada cinco anos o peso aos 550 dias era uma nova característica, por meio de 
análises multicaráter envolvendo quatro características, em um modelo animal, foram estimados 
componentes de (co)variância. Foram ajustadas três equações de regressão múltipla, RMI, RMM, RMF, 
estimando componentes de (co)variância genética aditiva para 20 anos de seleção e para oito anos anteriores 
à seleção. Na RMI, foram utilizados os anos iniciais de cada geração de seleção, para a RMM os anos 
intermediários e na RMF os anos finais como covariável. As equações apresentaram altos coeficientes de 
determinação, no entanto, não houve diferença de ajuste entre os três modelos. Observou-se que os 
modelos de regressão múltipla podem ser usados na estimação dos componentes de (co)variância genética 
quando se admite heterocedasticidade ao longo do tempo, causada pela seleção. 
Palavras-chave: componentes de (co)variância, heterocedasticidade, inferência Bayesiana, regressão múltipla.  

Introduction 

In animal improvement programs, particularly in 
genetic evaluations, it is frequently assumed that the 
variances remain constant over generations of 
selection, however in closed herds, it is expected that 
selection changes not only the mean of traits but also 
their additive genetic variance. 

Considering that the mean and variance describe 
statistically the basic characteristics of a population, 
it is expected  changes in these  parameters when the 

population structure is modified. The difficulty to 
assume heteroscedasticity over the generations lies 
in obtaining precise estimates of the (co)variance 
components, since the number of observations at 
each heteroscedasticity class is reduced with 
increasing the number of classes. With a very large 
number, the computational effort to estimate the 
(co)variance components becomes very high, and if 
the classes are less numerous the genetic 
connections are weaker, leading to inaccurate 
estimates of the components. 
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According to Carneiro Júnior et al. (2007), if the 
different types of heteroscedasticity are not taken 
into account, the accuracy can be reduced when 
estimating the variance components, leading to 
errors in the evaluation of the animals, resulting in 
lower genetic progress. In this way, this research 
aimed at studying the possibility of using the 
regression analysis to estimate the components of 
additive genetic (co)variance for the weight at 550 
days, considering the heteroscedasticiy over the year 
of selection in simulated and closed herds with 
overlapping of generations.  

Material and methods 

The data set consisted of simulated herds of beef 
cattle, using Fortran language in F90 compiler, 
subjected to 20 years of selection. The breeding herd 
was formed by 1,500 dams and 38 bulls, keeping a 
bull-dam ratio 1:40. From the second year, was 
simulated the use of artificial insemination in 50% of 
the cows, with ten bulls used for artificial 
insemination and 19 bulls for natural breeding. 
Birth rate established was 90% and survival was 95% 
by the start of reproduction. The culling rate was 
variable and determined by the number of empty 
cows at the end of breeding season. Only the 
primiparous cows could remain in the breeding herd 
if they were empty. The young animals could be 
included into this herd, from 22 months-old. 

It was simulated the weaning weight (WW) and 
the weight at 550 days (W550), as well as the 
breeding values for the direct effect of weaning 
weight and weight at 550 days, and the maternal 
effect of weaning weight. Nevertheless, only the 
trait weight at 550 days was the focus of the present 
study.  

The following simulated identifiable 
environmental effects were considered: sex (male or 
female), birth season (early, middle or end of birth 
season), year of birth and age of dam at calving 
(aod), in months. To assign the levels of the 
identifiable effects of environment, was used the 
uniform distribution for the effects of sex (2 levels) 
and birth season (3 levels). The levels of the effects 
of year of birth and age of dam at calving were 
selected by sorting from a uniform distribution only 
for the animals belonging to the base population. 
The magnitude of the effects of age of dam at 
calving (aod) was determined by the regression 
equations WW = 0.1(aod)-0.0004(aod)2 and W550= 
0.06(aod)-0.00024(aod)2. 

The breeding values were simulated from a 
multivariate normal distribution with dimension 
equal to 3. The residuals were generated through a 

multivariate normal distribution of dimension 2, 
whereas the maternal permanent environmental 
effects were simulated from a normal distribution. 
In order to generate the initial breeding values, it 
was used the structure of genetic (co)variance 
described below,  
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where: 

σ 2

ai
 is the additive genetic variance for the trait i, 

i=WW(D) and W550(S); 
σ 2

m  is the maternal additive genetic variance of 
the trait WW;  

σ aDS  is the genetic covariance between the 
direct effects of WW and W550; 

σ mai  is the genetic covariance between the direct 

effects of traits i with the maternal effects of WW, 
with i=WW(D), W550(S). 

The residual variances adopted were 365 and  
450 kg² for WW and W550, respectively, and the 
value of residual covariance was 150 kg². 

Each year the genetic evaluation was undertaken to 
guide the selection, using the mixed model equations 
(HENDERSON, 1984) for prediction of breeding 
values using a multi-trait analysis in the MTDFREML 
software (Multiple Trait Derivative Free Restricted 
Maximum Likelihood) (BOLDMAN et al., 1995). 

For the classification of the candidates to 
selection, it was used an empirical selection index 
with weights of 0.3, 0.3, and 0.4, respectively, for the 
direct and maternal breeding values for WW and 
direct for W550. The mating of animals selected was 
randomly performed, with restriction to control the 
increased levels of inbreeding, by preventing mating 
between parents and offspring and between full and 
half-siblings. 

After establishing the conditions of simulation 
and selection, ten replications were performed, 
totaling ten herds with average of 31,198 animals. In 
order to obtain the genetic (co)variances between 
the years of birth, for the weight at 550 days, first it 
was performed the estimation of variance 
components of W550 of each generation of selection 
(5 years) and covariance of W550 between 
generations, using the software MTGSAM 
(Multiple Trait Gibbs Sampling in Animal Model), 
(VAN TASSEL; VAN VLECK, 1995), in a multi-
trait analysis, where the weight at 550 days was 
treated as four distinct traits according to the 
generation in which the animal was born, with  
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W55-g1 being the weight at 550 days for the animals 
born from the year 1 to year 5; W550-g2 for those 
born between years 6 and 10; W550-g3, between 11 
and 15; and W550-g4, between 16 and 20. It was 
considered that one animal only had an observation 
for the trait referring to the class it belonged, with 
missing data in the traits corresponding to the other 
classes. Sex, birth season, and year of birth were 
considered identifiable environmental effects, and 
aod was considered as covariate. 

For the identifiable environmental effects, it was 
assumed non-informative priors, with uniform 
initial distribution, i.e., all the values have the same 
probability of occurrence. The distribution of 
genetic effects and residuals was considered normal 
multivariate. In the case of breeding values, it was 
considered the known covariance structure given by 
the relationship matrix. The definitions for the 
elements of the animal model and of the joint 
distribution of Y (observations), a (genetic values) 
and e (residuals) were, respectively:  
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where: 

4321 ,,, yyyy  are the vectors of observations, 

for the weight at 550 days, referring to generations 1, 
2, 3 and 4, respectively; 

4321 ,,, XXXX  are the incidence matrices of the 

identifiable environmental effects, for the weight at 
550 days, referring to generations 1, 2, 3 and 4, 
respectively; 

4321 ,,, ββββ  are the vectors of identifiable 

environmental effects, for the weight at 550 days, 
referring to generations 1, 2, 3 and 4, respectively; 

4321 ,,, ZZZZ  are the incidence matrices of the 

random effects, for the weight at 550 days, referring 
to generations 1, 2, 3 and 4, respectively; 

4321 ,,, aaaa  are the vectors of direct genetic 
effects, for the weight at 550 days, referring to 
generations 1, 2, 3 and 4, respectively; 

4321 ,,, eeee  are the vectors of random effects, for 
the weight at 550 days, referring to generations 1, 2, 
3 and 4, respectively;  
with joint distribution:  
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where: 
AGG ⊗= 0  

⊗  is the Kronecker product; 

0G  is the matrix of genetic (co)variance of i 
generations, for the weight at 550 days old, given as 
follows:  
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where: 

2
ia

σ  is the additive genetic variance of the 

generation i; i = 1, 2, 3 and 4; 

jiaa
σ  is the genetic covariance between the 

generations i and j; i = 1, 2, 3 and 4, and j = 1, 2, 3 
and 4. 

 
IRR o ⊗=  

 
where: 

I  is the identity matrix of order equal to the 
number of animals;  

0R  is the residual variance matrix of the i 
generations, for the weight at 550 days old, given as 
follows:  
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where: 

2
ie

σ  is the residual variance of the generation i; 

i = 1, 2, 3 and 4. 
For the genetic (co)variance components it was 

assumed that G has inverted Wishart distribution 
(IW). 

For each of the replications (herds) it was 
generated a Gibbs chain of 1,000,000 cycles with 
samples being stored every 100 cycles, after the 
elimination of 50,000 initial cycles, generating 
chains of 9,500 samples of the (co)variance 
components. The convergence of Gibbs sampling 
chains was verified using the method from 
Heidelberger and Welch (1983), which, in the first 
instance, compares the Gibbs chain with a 
hypothetical chain of stationary distribution, then 
verifies whether the means of the samplings are 
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within a threshold of the credibility interval 
established. The test is available in CODA library 
(Convergence Diagnosis and Output Analysis, 
version 0.4), developed by Cowles et al. (1995), and 
implemented in the R software (R 
DEVELOPMENT CORE TEAM, 2009). 

In order to obtain the genetic (co)variances for 
W550 for the years when the selection was performed, 
it was employed a multiple regression model in which:  

 
Y=b0+b1x1+b2x2+b3x1

2+b4x2
2+b5x1x2, 

 
where: 

Y is the (co)variance component to be estimated;  
b0 is the general constant;  
b1, b2, b3, b4 and b5 are the regression coefficients;  
x1 and x2 are the years of birth of the animals.  
Through programs developed in Fortran 

language, F90 compiler, and using the sampling of 
genetic (co)variance components for generation of 
selection provided by the software MTGSAM, it 
was possible to estimate the multiple regression 
coefficients under three conditions: RMI (Initial 
Multiple Regression) in which the years 
representing the generations were the initial ones; 
RMM (Intermediate Multiple Regression) in which 
the intermediate years was used; and the RMF 
(Final Multiple Regression) in which the final years 
were the representative in the X matrix.  

The estimation was carried out by the method of 
generalized least squares (GLS), as:  

 
β= (X’V-1X)-1 X’V-1y, 

 
where: 

β is the vector of the regression coefficients;  
X is the incidence matrix of the fixed effects of 

the year representing each generation of selection. 
For the RMI, the values were 1, 6, 10, and 16; for 
the RMM were 3, 8, 13, and 18; for the RMF the 
years considered were 5, 10, 15, and 20. 

V is the matrix of (co)variance between the genetic 
(co)variance components between the four 
generations, estimated by the software MTGSAM; 

y is the vector of posterior means, estimated by the 
software MTGSAM; 

The multiple regression models produce a response 
surface that allow, from the existing points, to make 
inferences about any point within the studied range.  

For each herd, three equations were fitted, which 
enabled obtaining genetic (co)variance matrices of 
W550 between the years of birth of the animals, 
under the situations RMI, RMM, RMF, considering 
that the (co)variance components of W550 for the 
animals born in the eight years prior to the first year 

of selection, and from the first to the fifth year of 
selection, have received values of variance and 
covariance of the first year of selection. For the year 
of animal’s birth, it was considered total amplitude 
of 28 years. 

In order to observe the dispersion of the 
(co)variance components and to know whether the 
values estimated by the regression were consistent 
with the reality and whether they were within the 
interval set at 90% of the total probability, it was 
calculated the credibility interval at 90% using the 
software R (R DEVELOPMENT CORE TEAM, 
2009). A comparison was performed between the 
credibility intervals of genetic variances between 
generations to check if in fact the variances could be 
considered heterogeneous.  

The inference power on the genetic variance 
components for the years of birth and genetic 
(co)variance between the years of animal’s birth, 
obtained through multiple regression, was tested by 
the coefficient of determination, represented by the 
ratio between the sum of the squares of the 
(co)variance values estimated by the regression for 
the four generations, and the sum of the squares of 
the (co)variance values provided by the MTGSAM, 
for the same four generations.  

The difference between the inference power of 
the equations RMI, RMM and RMF was tested via 
Bayesian methodology and implemented in the 
software WinBugs (SPIEGELHALTER et al., 2003). 

Results and discussion 

Additive genetic variance components estimated 
per generation for W550, using the software 
MTGSAM, are listed in Table 1. From the 
generation 1 to 4, the mean genetic variances were 
159.04, 127.13, 81.25, and 67.49, respectively. It was 
observed a reduction in genetic variances for W550 
with the advancing generations of selection, and 
reduction of genetic covariance between the 
generations, proportional to the distance between 
them. 

For Gomez-Raya and Burnside (1990), the 
higher the accuracy of selection, the greater is the 
reduction of variances, considering the accuracy of 
selection defined as the genetic correlation between 
the true breeding value and the predicted one. 
According to Quinton and Smith (1995), the sharp 
decrease in genetic variances is related with the use 
of information from relatives to predict breeding 
values, by the use of the relationship matrix that can 
generate co-selection, increasing the probability of 
selecting related animals, so that the losses in genetic 
variability are associated to high levels of inbreeding 
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in populations under selection. In the present 
case, the losses were less sharp because the 
inbreeding was kept at low levels by preventing 
the mating between parents and offspring and 
between siblings. 

Table 1. Additive genetic variance components estimated per 
generation for W550, using the software MTGSAM. 

  Herds 
Components* 1 2 3 4 5 

2

1a
σ  148.70 182.61 139.62 182.28 159.45 

2

2a
σ  132.76 119.56 127.19 116.69 137.02 

2
3a

σ  66.60 117.10 63.08 81.20 59.47 
2
4a

σ  66.01 91.68 56.20 59.73 48.66 

21aa
σ  77.13 78.92 74.77 77.25 77.96 

31aa
σ  28.68 66.50 19.08 48.32 27.03 

41aa
σ  19.63 26.73 13.91 21.47 15.14 

32 aaσ  26.42 50.73 19.03 42.45 24.08 

42 aaσ  24.42 25.16 17.50 19.86 12.30 

43 aaσ  12.02 29.90 17.67 18.37 8.16 

Components* 6 7 8 9 10 
2
1a

σ  144.40 168.93 151.08 144.95 168.40 
2

2a
σ  112.12 128.12 116.14 142.1081 139.61 

2
3a

σ  78.28 88.38 71.95 91.71 94.70 
2
4a

σ  61.87 84.82 55.49 79.80 70.68 

21aa
σ  65.12 91.86 63.88 98.82 97.04 

31aa
σ  36.36 53.09 22.70 42.66 53.18 

41aa
σ  20.21 31.40 18.52 27.08 23.59 

32 aaσ  25.16 49.53 16.54 47.07 50.94 

42 aaσ  26.73 32.61 10.99 24.92 24.91 

43 aaσ  17.56 22.78 10.21 18.52 13.60 

*σ2
ai  is the additive genetic variance for the generation i and σaiaj the additive genetic 

covariance between generations i and j.
 

Ferraz Filho et al. (2002) found value of  
225.06 kg2 for the additive genetic variance for the 
weight at 550 days, in Tabapuã animals. In Nelore 
animals, Van Melis et al. (2003) registered for the 
genetic variance of weight at 550 days, value of 
205.60 kg2. These values are higher than those found 
herein, but the cited authors considered variance 
homogeneity over the years. 

The credibility intervals (IC) for the estimates of 
additive genetic variance for the generation of 
selection can be seen in Table 2.  

It was observed that for the herds 1 and 7, the IC 
were close to the variances of generations 3 and 4; in 
the herd 2, the variances for the generation 2 and 3 
were very close; and in the herd 9 the variances for 
the first and second generations were closer, 
indicating homoscedasticity in these cases. In the 
rest of the herds there is heterogeneity of variances, 
since the IC does not have very close values.  

According to Winkelman and Schaeffer (1988), 
the non-consideration of variance heterogeneity in 
different herds, of different regions, different levels 
of management and production, and with varied 
genetic composition, can lead to a biased process of 
genetic evaluation and selection, which could affect 
the choice of animals that will produce lower genetic 
gain when used in genetic improvement programs. 

Likewise, if the population is under continuous 
process of selection, each generation has changes in 
genetic variances and covariances modifying hence 
the genetic response. The non-consideration of this 
factor can also be a source of bias in genetic 
evaluations. Thus, from the (co)variance 
components for generation of selection, the three 
multiple regression equations were fitted and 
allowed the estimation of the heterogeneous 
components of genetic (co)variance for each herd, 
per year of animal’s birth. 

When tested the degree of fitness and the 
inference power of the multiple regression used to 
estimate the components for each year based on the 
components for generation, it was obtained high 
coefficients of determination (r²), for all the herds, 
with mean of 0.946, 0.958, and 0.958 and standard 
deviation of 0.032, 0.025, and 0.025 for RMI, RMM 
and RMF, respectively. The coefficients of 
determination are listed in Table 3.  

Table 2. Credibility intervals (IC) for genetic variances of generation of selection. 

 Components* 

Herd 2
1a

σ  2
2a

σ  2
3a

σ  2
4a

σ  

1 121.24 - 178.91 106.48 - 160.29 49.05 - 86.32 47.50 - 87.06 
2 154.52 - 211.47 97.40 - 143.98 92.38 - 143.36 67.71 - 118.71 
3 113.84 - 166.80 102.60 - 153.88 46.44 - 83.33 40.00 - 75.00 
4 152.33 - 214.14 94.53 - 141.36 61.31 - 102.65 42.07 - 80.71 
5 133.45 - 187.71 109.36 - 166.07 42.77 - 78.21 33.09 - 66.41 
6 119.98 - 170.87 88.57 - 137.89 59.11 - 99.33 44.47 - 81.34 
7 142.51 - 196.55 104.73 - 153.70 68.99 - 109.96 63.30 - 109.41 
8 125.14 - 178.32 92.74 - 141.92 52.21 - 95.10 38.47 - 74.39 
9 122.27 - 169.38 119.38 - 166.67 70.68 - 114.83 58.69 - 104.57 
10 140.94 - 196.98 114.93 - 166.39 72.19 - 120.87 51.76 - 92.09 
Mean 132.62 - 187.11 103.07 - 153.22 61.51 - 103.40 48.71 - 88.97 
*σ2

ai is the additive genetic variance for the generation i. 
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Table 3. Values of r² for each herd, mean r² and standard 
deviation for RMI, RMM, RMF. 

r2 Herd 
RMI RMM RMF 

1 0.914 0.935 0.935 
2 0.950 0.942 0.942 
3 0.905 0.935 0.935 
4 0.985 0.981 0.981 
5 0.934 0.957 0.957 
6 0.945 0.957 0.957 
7 0.970 0.973 0.973 
8 0.961 0.978 0.978 
9 0.927 0.949 0.949 
10 0.967 0.977 0.977 
Mean 0.946 0.958 0.958 
Standard deviation 0.032 0.025 0.025 
 

It was possible to estimate 28 variance 
components, from the ten (co)variance components 
for the four generations of selection. It was also 
estimated 378 covariance components, totaling  
406 components for each one of the three models, in 
each herd. The estimation of a great number of 
components by using programs developed for 
genetic evaluation is computationally costly, but it 
can be avoided using multiple regression models to 
access all or just components of interest. Thus, in 
the process of genetic evaluation, using the BLUP 
(best linear unbiased predictor), the relationship 
matrix can be properly weighted according to the 
structure of genetic (co)variance assumed.  

The genetic variances estimated for each year of 
birth, per herd, did not present the same trend of the 
genetic variances per generation of selection, which 
were reduced as the generations have passed, for all 
the herds. From the year 1 to year 8, i.e., in the eight 
years prior to starting the process of selection, the 
variances were considered constant and equal to the 
first year of selection. It was verified a reduction in 
the variances, per year, from the 13th to the 28th year, 
for the herds 1, 3, 5, 9 and, 10. For the herd 2, it 
decreased from the year 13 to 18, increasing from 19 
to 28. In the herd 4, the reduction was from the Year 
13 to 23, increasing from 24 to 28. In the herds 6 
and 8, it was reduced from the 13th to the 25th year 
and increased from the 26th to the 28th. For the herd 
7, the decrease was from 13th to 21st year, increasing 
from the 22nd to the 28th. Nevertheless, when the 
average trend of the variances between all the herds 
was verified, it was observed the same pattern 
obtained for generation of selection, being reduced 
over the years (Table 4). This reduction can be 
explained by the moderate increase of inbreeding 
and reduction in the effective population size, which 
were altered from 0 to 6.4% and from 148.25 to 
24.48, respectively, along the years of selection. 

Table 4. Mean additive genetic variance between the ten herds 
for RMI, RMM, RMF. 

Mean 
Component* 

RMI RMM RMF 
2

9a
σ  201.82 180.04 161.21 

2
10a

σ  190.72 169.78 150.20 
2
11a

σ  180.04 159.95 139.86 
2
12a

σ  169.78 150.55 130.18 
2
13a

σ  159.95 141.57 121.16 
2

14a
σ  150.55 133.02 112.80 

2
15a

σ  141.57 124.89 105.11 
2
16a

σ  133.02 117.19 98.08 
2
17a

σ  124.89 109.92 91.71 
2
18a

σ  117.19 103.07 86.00 
2
19a

σ  109.92 96.64 80.96 
2

20a
σ  103.07 90.65 76.57 

2
21a

σ  96.64 85.07 72.85 
2
22a

σ  90.64 79.92 69.80 
2
23a

σ  85.07 75.20 67.40 
2
24a

σ  79.92 70.91 65.67 
2

25a
σ  75.20 67.03 64.60 

2

26a
σ  70.91 63.59 64.19 

2
27a

σ  67.04 60.57 64.45 
2
28a

σ  63.59 57.98 65.37 

*σ2
ai is the additive genetic variance for the year i, where i=9 is the first year of selection. 

In general, it was found a reduction in the 
genetic covariances between the years within the 
same generation, as the years became distant, which 
can be explained by the decrease in the connection 
between the animals born in years apart. Once it was 
observed a reduction in the variances, the 
covariances reduction is also an indicative that, 
according to Gianola et al. (1992), when there is 
variance heterogeneity, surely there must be 
covariance heterogeneity.  

Comparing the trend of genetic variances over 
the generations with the variances over the years, it 
could be verified that the RMI regression was the 
one that best estimated the variance from the year 1 
to the year 9, being the ninth year in which the 
selection began to be practiced. However, it 
underestimated the variances of the remaining years. 
The RMM and RMF regressions in general 
overestimated the genetic variance for W550 prior to 
the beginning of selection process, and have 
estimated better the variances during the process of 
selection.  

When it was verified whether the credibility 
intervals for genetic variation in generation of 
selection had included the estimates of genetic 
variances for year of animal’s birth, it was observed 
that for the RMI, on average, only 47.5% of the 
estimates were within the respective ICs; for the 
RMM, this number rose to 84.5%; for the RMF, 
100% of the estimates were within the respective 
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ICs. It points out that some estimates obtained for 
genetic variance for year, through RMI and RMM 
may not represent their real values. 

The main goal of a regression model is to predict 
values of y for a given value of x, within the data 
range, even when the values of x do not have 
assigned observed value. In the same way, this 
principle can be applied when the modeling is for 
(co)variances. Therefore, instead of estimating 
variances for all the generations, using a more 
complex modelling when heteroscedasticity is 
assumed, in analyses that require a long processing 
time, it may be possible only the estimation of 
extreme values and the use of multiple regression 
for interpolation, thus reducing the computational 
time used.  

Some authors have sought alternative methods to 
obtain more adequate estimates of variance 
components, since this process becomes inaccurate 
when involving great data sets or a great number of 
components in a same model. In this way, Rekaya  
et al. (2003) presented the methodological 
development of a structural model (SM) to estimate 
the genetic (co)variances for milk production in 
Holstein cattle in five regions of United States. In 
this study, the SM has proven to be advantageous in 
situations where there was a limited number of 
information to estimate the genetic (co)variances 
mainly due to the weak genetic links between the 
regions. Another advantage the authors found for 
this modeling was the possibility of incorporate 
external information to the data, such as climatic 
conditions, management and genetic similarities 
between the regions, in order to explore patterns in 
genetic (co)variances. The estimates of genetic 
(co)variances and heritability obtained by the SM 
were much more precise than those estimated by the 
multi-trait model, since the first model had retained 
lower amount of parameters.  

High values of r², obtained for the RMF and the 
occurrence of 100% of estimates of genetic variance 
of W550 for year within the credibility interval for 
the variance in generation of selection, show that the 
regression has been effectively fitted, indicating that 
the variance components in each year and the 
genetic covariance among the years can be estimated 
accurately using the multiple regression. Thus, from 
the moment when the selection started to be 
practiced, the multiple regression is a tool that can 
be used to estimate the components under situations 
where the (co)variance heterogeneity exists and 
should be considered. For years prior to selection, 
the most indicated in this case is to use the estimates 
obtained through the software MTGSAM. 

Conclusion 

The results indicated that the multiple regression 
model, considering the (co)variance components as a 
function of the generations under selection, using the 
final years of each generation as covariates, here 
represented by RMF, can be implemented successfully 
in Bayesian procedures to estimate (co)variance 
components when the heteroscedasticity due to the 
effect of selection is assumed over time.  
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