ABSTRACT.
To evaluate the bromatological composition and ruminal degradability of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Xaraés palisade grass (Urochloa brizantha ‘Xaraes’ syn Brachiaria brizantha) under grazing in integrated crop, livestock (ICL), and forest (ICLF) systems, we conducted an in situ degradability trial in randomized blocks with three non-lactating 3/4 Gyr × 1/4 Holstein cows, provided with ruminal cannula. The management of Xaraés palisade grass was similar in both systems, differing only regarding shading in the ICLF system provided by eucalyptus trees (average 65% crown cover). Grass samples were incubated for 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 hours. Considering the passage rate 2% h-1, the Xaraés palisade grass of ICL system had greater NDF effective degradability in relation to ICLF (46.38 vs 44.98%). However, the palisade grass CP potential degradability was greater in the ICLF than in the ICL system (68.92% vs. 65.40%). The presence of trees in the pasture has effect on nutritional traits of the Xaraés palisade grass, increasing its protein content and degradability and reducing its fiber degradability.
Keywords:
agricultural integration; in situ degradation; dairy cattle
Introduction
The increasing interest in agricultural integration systems has resulted in demands for studies about the different possible arrangements and the interrelationship among the components. The integrated crop, livestock (ICL) and forest (ICLF) systems, which differ only regarding the presence of the tree component, represent a sustainable production alternative, with the potential to reduce the negative impact of traditional production systems on environment equilibrium and to maximize production of field crops (Balbino, Kichel, Bungenstab, & Almeida, 2014Balbino, L. C., Kichel, A. N., Bungenstab, D. J., & Almeida, R. G. (2014). Sistemas de integração: o que são, suas vantagens e limitações. In D. J. Bungenstab (Ed.), Sistemas de integração lavoura-pecuária-floresta: a produção sustentável (p. 12-18). Campo Grande, MS: Embrapa Gado de Corte. ; Gléria, Silva, Santos, Santos, & Paim, 2017Gléria, A. A., Silva, R. M., Santos, A. P. P., Santos, K. J. G., & Paim, T. P. (2017). Produção de bovinos de corte em sistemas de integração lavoura pecuária. Archivos de Zootecnia, 66(253), 141-150. DOI: https://doi.org/10.21071/az.v66i253.2138
https://doi.org/10.21071/az.v66i253.2138...
).
The knowledge about forage characteristics which are influenced by animal grazing in different production systems is essential, since the environmental conditions to which grasses are exposed affect their morphophysiological traits and nutritional responses (Oliveira, Santos, André, Santos, & Oliveira, 2017Oliveira, L. B. T., Santos, A. C., André, T. B., Santos, J. G. D., & Oliveira, H. M. R. de. (2017). Influence of a silvopastoral system on anatomical aspects and dry matter quality of Mombasa and Marandu grasses. Journal of Agriculture and Ecology Research International, 13(3), 1-11. DOI: https://doi.org/10.9734/JAERI/2017/31624
https://doi.org/10.9734/JAERI/2017/31624...
; Guimarães, Ribeiro, Viana, Pereira, & Santos, 2018Guimarães, C. G., Ribeiro, K. G., Viana, M. C. M., Pereira, R. C., & Santos, J. B. (2018). Capim-braquiária no sistema agrossilvipastoril sob diferentes arranjos de eucalipto. Revista Brasileira de Ciências Agrárias, 13(1), 1-8. DOI: https://doi.org/10.5039/agraria.v13i1a5512
https://doi.org/10.5039/agraria.v13i1a55...
; Faria, Morenz, Paciullo, Lopes, & Gomide, 2018Faria, B. M., Morenz, M. J. F., Paciullo, D. S. C., Lopes, F. C. F., & Gomide, C. A. M. (2018). Growth and bromatological characteristics of Brachiaria decumbens and Brachiaria ruziziensis under shading and nitrogen. Revista Ciência Agronômica, 49(3), 529-536. DOI: http://dx.doi.org/10.5935/1806-6690.20180060
https://doi.org/10.5935/1806-6690.201800...
), which are directly related to animal performance in grazing systems.
Systems with trees and crops in integration, such as ICLF, sunlight availability for grasses is reduced compared with pastures without trees. This lower radiation interception may decrease production, but simultaneously it may increase forage nutrients (Lopes et al., 2017Lopes, C. M., Paciullo, D. S. C., Araújo, S. A. C., Gomide, C. A. C., Morenz, M. J. F., & Villela, S. D. J. (2017) Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 225-233. DOI: http://dx.doi.org/10.1590/1678-4162-9201
https://doi.org/10.1590/1678-4162-9201...
).
One must consider that the forage nutritional value depends not only on its chemical composition, but also on the way the nutrients is used by animals - in ruminants the nutrient metabolism results from the symbiosis between the animal and its rumen microbial flora. Kinetics of nutrient degradation in the rumen is an important component of feed evaluation systems for ruminants.
Medeiros and Marino (2015Medeiros, S. R., & Marino, C. T. (2015). Proteínas na nutrição de bovinos de corte. In S. R. Medeiros, R. C. Gomes, & D. J. Bungenstab (Org.). Nutrição de bovinos de corte: fundamentos e aplicações (p. 27-44). Brasília, DF: Embrapa. ) warn of the need to know not only the concentration but also the ruminal degradation of protein, as even with a high concentration in the diet, this nutrient may be unavailable for use by ruminal bacteria. This situation can occur if the sources show low protein degradability, resulting in inadequate nitrogen availability for ruminal bacteria.
The aim of this study was to evaluate the bromatological composition and ruminal degradation parameters of Xaraés palisade grass (Urochloa brizantha ‘Xaraes’ syn Brachiaria brizantha) under grazing in integrated crop, livestock (ICL) and forest (ICLF) systems.
Material and methods
We conducted the study in the experimental field of Embrapa Rondônia, located in the municipality of Porto Velho, Rondônia, Brazil (8°47′38"S and 63°50′46"W). According to Köppen and Geiger classification system, the climate is of Am type, characterized by two well-defined seasons: rainy (November to April) and dry (May to September). The temperature and average annual rainfall are 26°C and 2,095 mm, respectively.
All procedures with the animals were analyzed and approved by the Ethics and Animal Use Committee - CEUA of Embrapa Rondônia (protocol 02-2018).
The Xaraés palisade grass was compared in pasture cultivated under two systems: integrated crop, livestock (ICL) and forest (ICLF). Each system had an area of five hectares divided into four 1.25 ha paddocks. The forestry component of the ICLF was eucalyptus planted in March 2013. At the experimental period, the average tree crown cover was 65%. The agricultural management of both areas followed the Santa Fe system (Kluthcouski & Aidar, 2003Kluthcouski, J. & Aidar, H. (2003) Implantação, condução e resultados obtidos com o Sistema Santa Fé. In J. Kluthcouski, L. F. Stone, & H. Aidar (Ed.), Integração lavoura-pecuária (p. 407-441). Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão. ): in the establishment year (year 0), eucalyptus was planted in rows, and soybean was planted in the plots between the tree stands; in the following year (year 1), plots were sown with a maize/palisade grass intercrop. The fertilization was performed with 500 kg ha-1 of 04-20-16 (equivalent in percentage of N-P2O5-K2O), applied at sowing (corn + grass), plus 300 kg ha-1 of urea 45% applied in coverage. After corn harvesting in June 2015, the Xaraés palisade grass was forming the pasture, which was managed with intermittent stocking with ten days of occupation and 30 days of rest, with a stocking rate of 2.5 AU ha-1 and forage allowance of 41.9 and 32.3 kg DM 100 kg-1 LW in the ICL and ICLF systems, respectively.
From September to November 2015, during four consecutive days (from the third to the sixth day of paddock occupation period), palisade grass samples of both systems were obtained by hand-plucking method (Prohmann et al., 2012Prohmann, P. E. F., Branco, A. F., Paris, W., Barreto, J. C., Magalhães, V. J. A., Goes, R. H. T. B., & Oliveira, M. V. M. (2012). Método de amostragem e caracterização química da forragem consumida por bovinos em pasto consorciado de aveia e azevém. Arquivo Brasileiro de Medicina Veterinária e Zootenia, 64(4), 953-958. DOI: http://dx.doi.org/10.1590/S0102-09352012000400023
https://doi.org/10.1590/S0102-0935201200...
). The samples were oven-dried at 55°C for 72 hours and milled at 5 mm. Five grams of these samples were placed in non-woven (100 g m-2) bags heat sealed on size 7 x 16 cm. For performing the in situ degradability trial in randomized block design with three replications, three non-lactating 3/4 Gyr × 1/4 Holstein cows provided with ruminal cannula were used. Their average live weight (LW) was 613.7 ± 114 kg and they were grazing Xaraés palisade grass pasture with free access to water and mineral salt. Ruminal incubation times were 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 hours. At 0 time, the soluble fraction (a) was estimated by immersing the bags in 39°C water for 30 minutes. Bags were removed simultaneously from the rumen and immediately were dipped in cold water to stop microbial fermentation. Then, they were manually washed in tap water. Subsequently, they were dried in air-forced oven at 55°C for 72 hours, put in a dissecator and then weighed.
Dried 1-mm samples of grass and incubation residue were analyzed for dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and lignin (LIG) following the methodologies of the National Institute of Science and Technology of Animal Science (INCT-CA) reported by Detmann et al. (2012Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., ... Azevedo, J. A. G. (2012) Métodos para análise de alimentos. Visconde do Rio Branco, MG: Suprema.). The hemicellulose and cellulose were found by the difference between NDF and ADF; and ADF and lignin, respectively (Detmann et al., 2012).
From the soluble fraction (a) and non-degradable residue (C) was estimated the potential degradable insoluble fraction (. The degradation rate (c) was obtained by regression of the incubation times on the weight of incubation residues transformed by natural logarithm (In), to adjust on the model of potential degradability (PD) proposed by Mehrez and Ørskov (1977Mehrez, A. Z., & Ørskov, E. R. A. (1977) Study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. Journal of Agricultural Science, 88(4), 645-65. DOI: https://doi.org/10.1017/S0021859600037321
https://doi.org/10.1017/S002185960003732...
):
for t > L.
where:
L - colonization time (h);
a - soluble fraction (%);
b - potentially degradable insoluble fraction (%);
c - constant degradation rate of b fraction (% h-1);
t - incubation time (h).
Effective degradability (ED) was estimated according to Ørskov and McDonald (1979Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science , 92(2), 499-502. DOI: https://doi.org/10.1017/S0021859600063048
https://doi.org/10.1017/S002185960006304...
) model:
where:
a - soluble fraction (%);
b - potentially degradable insoluble fraction (%);
c - constant degradation rate of b fraction (% h-1);
k - passage rate (2, 5 or 8% h-1, corresponding to low, medium and high intake levels, respectively).
Statistical analyses were performed using GLM (general linear models) procedure of SAS (Statistical Analysis System Institute Inc., Cary, NC). Means of the variables observed in each system were compared by Tukey test at 5% significance.
Results and discussion
There were numerical differences between the ICL and ICLF systems in terms of DM, MM, and CP concentrations of Xaraés palisade grass (Table 1). The numerical reduction in the DM of the ICLF grass can be attributed to the lower evapotranspiration resulting from the mild microclimate under the tree canopy, which is related to higher water concentration in tissues of shaded plants (Abraham et al., 2014Abraham, E. M., Kyriazopoulos, A. P., Parissi, Z. M., Kostopoulou, P., Karstassio, M., Anjalanidou, K., & Katsouta, C. (2014). Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agroforestry Systems, 88, 287-299. DOI: https://doi.org/10.1007/s10457-014-9682-9
https://doi.org/10.1007/s10457-014-9682-...
).
Bromatological composition of Xaraés palisade grass (Urochloa brizantha ‘Xaraés’), under grazing in Crop-Livestock Integration (ICL) and Crop-Livestock-Forest (ICLF) systems.
The Xaraés palisade grass MM content of ICLF system was 27.50% higher than that of the ICL. Lana, Lana, Reis, and Lemes (2016Lana, R. M. Q., Lana, A. M. Q., Reis, G. L., & Lemes, E. M. (2016). Productivity and nutritive value of brachiaria forage intercropping with eucalyptus in a silvopastoral system in the Brazilian Cerrado biome. Australian Journal of Crop Science, 10(5), 654. DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7346
https://doi.org/10.21475/ajcs.2016.10.05...
) also observed a higher MM level in Urochloa brizantha integrated with eucalyptus trees when compared to monoculture. These differences can be attributed to the active mineralization in soil of shaded environments that can contribute to a greater availability of minerals for the plant (Rodrigues et al., 2015Rodrigues, R. C., Araújo, R. A., Costa, C. S., Lima, A. J. T., Oliveira, M. E., Cutrim Junior, J. A. A., … Araújo, A. S. F. (2015). Soil microbial biomass in an agroforestry system of Northeast Brazil. Tropical Grasslands-Forrajes Tropicales, 3(1), 41-48. DOI: https://doi.org/10.17138/TGFT(3)41-48
https://doi.org/10.17138/TGFT(3)41-48...
).
We observed an increase of 33.89% in the CP content in the grass of the ICLF system compared with that of the ICL. In both systems, however, the CP content was above from that considered critical (7.0%) for proper functioning of the rumen (Van Soest, 1994Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2. ed.). Ithaca, US: Cornell University Press.) and for the efficient use of forage fibrous carbohydrates (Lazzarini et al., 2009Lazzarini, I., Detmann, E., Sampaio, C. B. I, Paulino, M. F., Valadares Filho, S. C., Souza, M. A., & Oliveira, F. A. (2009). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, 38(10), 2021-2030. DOI: http://dx.doi.org/10.1590/S1516-35982009001000024
https://doi.org/10.1590/S1516-3598200900...
). Increasing protein content in response to shading agrees with other studies with tropical grasses (Lopes et al., 2017Lopes, C. M., Paciullo, D. S. C., Araújo, S. A. C., Gomide, C. A. C., Morenz, M. J. F., & Villela, S. D. J. (2017) Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 225-233. DOI: http://dx.doi.org/10.1590/1678-4162-9201
https://doi.org/10.1590/1678-4162-9201...
; Lima et al., 2018Lima, M. A., Paciullo, D. S. C., Morenz, M. J. F., Gomide, C. A. M., Rodrigues, R. A. R., & Chizzotti, F. H. M. (2018). Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long‐term silvopastoral system. Grass and Forage Science , 74, 160-170. DOI: https://doi.org/10.1111/gfs.12395
https://doi.org/10.1111/gfs.12395...
). This increase may be related to the intense organic matter (OM) degradation and nitrogen recycling in the shaded soil, which is influenced by the higher nitrogen availability and its absorption by plants (Xavier et al., 2014Xavier, D. F., Lédo, F. J. S., Paciullo, D. S. C., Urquiaga, S., Alves, B. J. R., & Boddey, R. M. (2014). Nitrogen cycling in a Brachiaria based silvopastoral system in the Atlantic forest region of Minas Gerais, Brazil. Nutrient Cycling in Agroecosystems, 99, 45-62. DOI: https://doi.org/10.1007/s10705-014-9617-x
https://doi.org/10.1007/s10705-014-9617-...
). Dalchiavon, Montanari, and Andreotti (2017Dalchiavon, F. C., Montanari, R., & Andreotti, M. (2017). Production and quality of Urochloa decumbens (stapf) rd webster forage co-related to the physical and chemical properties of the soil. Revista Ceres, 64(3), 315-326. DOI: http://dx.doi.org/10.1590/0034-737x201764030013
https://doi.org/10.1590/0034-737x2017640...
) reported positive correlation between forage CP content and soil OM and moisture contents when evaluating Urochloa decumbens DM yield regarding the physicochemical attributes of the soil, emphasizing the relevance of agricultural practices aiming to raise soil OM content, since the benefits for increasing the CP content in the forage become evident.
The grass fiber concentrations were similar between the evaluated systems, with averages of 60.07% of NDF and 28.21% of ADF. The NDF concentration higher than 60% is negatively related with animal voluntary intake (Van Soest, 1994Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2. ed.). Ithaca, US: Cornell University Press.). Generally, in tropical forages the NDF content is higher than 60% (Dalchiavon et al., 2017Dalchiavon, F. C., Montanari, R., & Andreotti, M. (2017). Production and quality of Urochloa decumbens (stapf) rd webster forage co-related to the physical and chemical properties of the soil. Revista Ceres, 64(3), 315-326. DOI: http://dx.doi.org/10.1590/0034-737x201764030013
https://doi.org/10.1590/0034-737x2017640...
; Lagunes, Pell, Blake, Lagunes, & Rodríguez, 2018Lagunes, F. I. J., Pell, A. N., Blake, R. W., Lagunes, M. M., & Rodríguez, J. M. P. (2018). Degradación ruminal in vitro de la proteína insoluble en fibra detergente neutro de pastos tropicales fertilizados con nitrógeno. Revista Mexicana de Ciências Pecuarias, 9(3), 588-600. DOI: https://doi.org/10.22319/rmcp.v9i3.4490
https://doi.org/10.22319/rmcp.v9i3.4490...
). As such, the results found in this study can be considered satisfactory. When assessing the nutritional value of Urochloa brizantha ‘Marandu’ at different locations within the pasture in silvopastoral system, Tosta et al. (2015Tosta, X. M., Rodrigues, R. C., Sanchês, S. S. C., Araújo, J. S., Lima Júnior, A. S., Costa, C. S., ... Mendes, S. S. (2015). Nutritive value and in situ rumen degradability of Marandu palisade grass at different locations within the pasture in a silvopastoral system with different babassu palm densities. Tropical Grasslands-Forrajes Tropicales , 3(3), 187-193. DOI: https://doi.org/10.17138/tgft(3)187-193
https://doi.org/10.17138/tgft(3)187-193...
) also found no differences in fiber concentrations (mean 73.3% NDF). Oliveira et al. (2017Oliveira, L. B. T., Santos, A. C., André, T. B., Santos, J. G. D., & Oliveira, H. M. R. de. (2017). Influence of a silvopastoral system on anatomical aspects and dry matter quality of Mombasa and Marandu grasses. Journal of Agriculture and Ecology Research International, 13(3), 1-11. DOI: https://doi.org/10.9734/JAERI/2017/31624
https://doi.org/10.9734/JAERI/2017/31624...
) found similar results in Urochloa brizantha ‘Marandu” and Panicum maximum ‘Mombaça’ within systems with 0.25 and 50% of natural shading (averages of 62.7 and 63.9% of NDF for Marandu and Mombaça grasses, respectively).
Comparing the degradability parameters of Xaraés palisade grass in the ICL and ICLF systems (Table 2), differences (p < 0.05) in the soluble fraction (a) of DM and CP were observed. The greater disappearance at 0 time can be attributed to the greater presence of soluble compounds in the plant, since the soluble fraction (a) corresponds to the soluble part of the food, as well as the particles that are eliminated through the mesh of the bags during their immersion in 39°C water for 30 minutes.
Parameters of ruminal degradability in situ (a, b and c), Potential Degradability (PD) and Effective Degradability (ED) at pass rates (% h-1) 2 (DE2), 5 (DE5), and 8 (DE8) of the nutrients of Xaraés palisade grass (Urochloa brizantha ‘Xaraés’) managed under grazing in Crop-Livestock Integration (ICL) and Crop-Livestock-Forest (ICLF) systems.
Shaded plants tend to present a reduction in soluble carbohydrate content (Kyriazopoulos, Abraham, Parissi, Koukoura, & Nastis, 2012Kyriazopoulos, A. P., Abraham, E. M., Parissi, Z. M., Koukoura, K., & Nastis, A. S. (2012). Forage production and nutritive value of Dactylis glomerata and Trifolium subterraneum mixtures under different shading treatments. Grass and Forage Science, 68(1), 72-82. DOI: https://doi.org/10.1111/j.1365-2494.2012.00870.x
https://doi.org/10.1111/j.1365-2494.2012...
), and an increase in chlorophyll contents (Lopes et al., 2017Lopes, C. M., Paciullo, D. S. C., Araújo, S. A. C., Gomide, C. A. C., Morenz, M. J. F., & Villela, S. D. J. (2017) Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 225-233. DOI: http://dx.doi.org/10.1590/1678-4162-9201
https://doi.org/10.1590/1678-4162-9201...
), which are water-insoluble molecules composed by the nitrogen present in chloroplasts (Senge, Wiehe, & Ryppa, 2006Senge, M. O., Wiehe, A., & Ryppa, C. (2006). Synthesis, reactivity and structure of chlorophylls. In B. Grumm, R. J. Porra, W. Rüdger, W. H. Scheer (Eds.). Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications (p. 27-37). Dordrecht, NT: Springer Science. ). Such factors may justify the lower soluble fraction of DM and CP in the grass of ICLF system in relation to that of ICL.
Despite the difference (p < 0.05) in the soluble fraction of grass DM in both systems, no differences were found in the potentially degradable fraction (b) of DM, with consequent similarity between the PD and ED of the grass DM of both systems. The ED values of grass DM for the 2% h-1 passage rate are close to those reported by Sousa et al. (2017Sousa, L. F., Maurício, R. M., Moreira, G. R., Figueiredo, M. P. de, Sousa, J. T. L., & Silva, T. V. S. (2017). Cinética de degradação ruminal in situ de Urochloa brizantha cv. Marandu no sistema silvipastoril. Revista de Ciências Agrárias / Revista Amazônica de Ciências Agrárias e Ambientais, 60(3), 268-277. DOI: http://dx.doi.org/10.4322/rca.2630
https://doi.org/10.4322/rca.2630...
) of 53.30 and 51.47% observed in Urochloa brizantha ‘Marandu’ in silvopastoral and monoculture systems, respectively. These authors also did not observe differences between systems for this parameter.
The values of degradation rate (c) are within the 2.0 to 9.2% h-1 to maintain an adequate DM intake (NRC, 2001National Research Council [NRC]. (2001). Nutrient requirements of dairy cattle (7th ed.). Washington: DC, Academic Press.). However, the results were higher than those reported by Lopes et al. (2017Lopes, C. M., Paciullo, D. S. C., Araújo, S. A. C., Gomide, C. A. C., Morenz, M. J. F., & Villela, S. D. J. (2017) Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 225-233. DOI: http://dx.doi.org/10.1590/1678-4162-9201
https://doi.org/10.1590/1678-4162-9201...
) for Urochloa brizantha in silvopastoral (3.55%) and monoculture (3.49%) systems in the dry-rain transition period. Araújo et al. (2016Araújo, R. A., Rodrigues, R. C., Costa, C. S., Santos, F. N. S., Costa, F. O., Lima, A. J. R., Silva, I. R., & Rodrigues, M. M. (2016). Composição químico-bromatológica e degradabilidade in situ de capim-Marandu em sistemas silvipastoris formados por babaçu e em monocultivo. Revista Brasileira de Saúde e Produção Animal, 17(3), 401-412. DOI: http://dx.doi.org/10.1590/S1519-99402016000300007
https://doi.org/10.1590/S1519-9940201600...
) reported DM degradation rates below 3.15%, when evaluating Urochloa brizantha in monoculture or silvopastoral system formed with different babassu densities.
The lower soluble fraction (a) of grass CP in the ICLF compared with ICL resulted in a higher potentially degradable fraction (b) and, consequently, higher PD of the CP of the shaded grass (Table 2). When evaluating the Urochloa brizantha ‘Marandu’ in silvopastoral and monoculture systems, Sousa et al. (2017Sousa, L. F., Maurício, R. M., Moreira, G. R., Figueiredo, M. P. de, Sousa, J. T. L., & Silva, T. V. S. (2017). Cinética de degradação ruminal in situ de Urochloa brizantha cv. Marandu no sistema silvipastoril. Revista de Ciências Agrárias / Revista Amazônica de Ciências Agrárias e Ambientais, 60(3), 268-277. DOI: http://dx.doi.org/10.4322/rca.2630
https://doi.org/10.4322/rca.2630...
) observed higher kinetics of grass CP degradation in a shaded system during dry-rain transition period, with means of 70.96 and 63.29 of ED at 2% h-1 in silvopastoral and monoculture systems, respectively.
The ICL grass had higher NDF ED at 2% h-1 when compared with that of ICLF (p < 0.05). These values are close to those reported by Lopes et al. (2010Lopes, F. C. F., Paciullo, D. S. C, Mota, E. F., Pereira, J. C., Azambuja, A. A., Motta, A. C. S., Rodrigues, G. S., & Duque, A. C. A. (2010). Composição química e digestibilidade ruminal in situ da forragem de quatro espécies do gênero Brachiaria. Arquivo Brasileiro de Medicina Veterinária e Zootecnia , 62(4), 883-888. DOI: http://dx.doi.org/10.1590/S0102-09352010000400018
https://doi.org/10.1590/S0102-0935201000...
), for U. brizantha, U. decumbens, U. humidicola, and U. ruziziensis, of 44.9, 41.8, 43.6, and 43.8, respectively. For the palisade grass ADF, no differences in the ruminal degradability parameters were found between the systems.
There is a consensus among recent reporting about the higher CP content of shaded grass, but there are no agreement about the effect of shading on the concentration of other plant nutrients or on the DM digestibility (Araújo et al., 2016Araújo, R. A., Rodrigues, R. C., Costa, C. S., Santos, F. N. S., Costa, F. O., Lima, A. J. R., Silva, I. R., & Rodrigues, M. M. (2016). Composição químico-bromatológica e degradabilidade in situ de capim-Marandu em sistemas silvipastoris formados por babaçu e em monocultivo. Revista Brasileira de Saúde e Produção Animal, 17(3), 401-412. DOI: http://dx.doi.org/10.1590/S1519-99402016000300007
https://doi.org/10.1590/S1519-9940201600...
; Oliveira et al., 2017Oliveira, L. B. T., Santos, A. C., André, T. B., Santos, J. G. D., & Oliveira, H. M. R. de. (2017). Influence of a silvopastoral system on anatomical aspects and dry matter quality of Mombasa and Marandu grasses. Journal of Agriculture and Ecology Research International, 13(3), 1-11. DOI: https://doi.org/10.9734/JAERI/2017/31624
https://doi.org/10.9734/JAERI/2017/31624...
; Sousa et al., 2017Sousa, L. F., Maurício, R. M., Moreira, G. R., Figueiredo, M. P. de, Sousa, J. T. L., & Silva, T. V. S. (2017). Cinética de degradação ruminal in situ de Urochloa brizantha cv. Marandu no sistema silvipastoril. Revista de Ciências Agrárias / Revista Amazônica de Ciências Agrárias e Ambientais, 60(3), 268-277. DOI: http://dx.doi.org/10.4322/rca.2630
https://doi.org/10.4322/rca.2630...
).
Comparing disappearance of different fractions of the palisade grass in function of the incubation times (Figure 1), the DM degradation curves were similar between the systems, for both in degradation kinetics and in the degradation rate. It was possible to observe the greatest degradation of DM of the palisade grass after 48 hours of incubation, which represented 90% of total DM apparent degradation (AD) (Figure 1A). The NDF and ADF degradation curves were also similar between the systems; however, ADF degradation was slower than that of the NDF, and it was observed that 86% of AD occurred within 96 hours (Figure 1B and C).
Disappearance of dry matter - DM (A), neutral detergent fiber - NDF (B), acid detergent fiber - ADF (C), and crude protein - CP (D) of Xaraés palisade grass in different incubation times (Urochloa brizantha ‘Xaraés’) in Integrated Crop-Livestock (ICL) and Integrated Crop-Livestock-Forest (ICLF) systems.
Comparing Urochloa brizantha ‘Marandu’ in silvopastoral systems with different babassu densities, Tosta et al. (2015Tosta, X. M., Rodrigues, R. C., Sanchês, S. S. C., Araújo, J. S., Lima Júnior, A. S., Costa, C. S., ... Mendes, S. S. (2015). Nutritive value and in situ rumen degradability of Marandu palisade grass at different locations within the pasture in a silvopastoral system with different babassu palm densities. Tropical Grasslands-Forrajes Tropicales , 3(3), 187-193. DOI: https://doi.org/10.17138/tgft(3)187-193
https://doi.org/10.17138/tgft(3)187-193...
) observed differences in degradation at 6, 24, and 96 hours of rumen incubation according to the location of grass sampling in the pasture (full sun, intermediate shade, and total shade) in systems with low and medium density of palm trees. However, no differences were found in the system with high palm density. It is noteworthy that in the present study, no differences were found in DM degradability at 96 hours of incubation (PD 68.39 and 69.46% in the ICL and ICLF, respectively; Table 2).
In relation to CP degradation kinetics, there was an evident difference between the grass from the two systems in the first 24 hours, probably due to the high CP soluble fraction in grass of full sun pasture in relation to the shaded grass (Figure 1D). The grass of the ICLF system had a higher CP PD (p < 0.05) after 96h of incubation, as it also can be observed in Table 2 (65.40 vs 68.92, ICL and ICLF).
For analyzing the results about soluble fraction of grass CP, the solubility of the protein has to be considered because an ingredient with higher soluble protein content need to be offered concomitantly with sources of soluble energy, which was limited in the diet of the animals used in the present study. Diet exclusive on pasture (without concentrate supplementation) is rich in fibrous fraction, which is insoluble. Thus, it should be occurred an asynchronous release of ammonia and energy in the rumen resulting in an inefficient use of fermentable substrates and reduction of microbial protein synthesis (NRC, 2001) and, therefore, may not improve rumen fermentation.
Conclusion
The presence of trees in the integration system affects the nutritional composition of the Xaraés palisade grass by increasing protein content and degradability and reducing fiber degradability.
Acknowledgements
The authors are grateful to Coordination of Superior Level Staff Improvement (CAPES, Brasília, Brazil), Research Support Foundation of Rondônia State (FAPERO, Porto Velho, Brazil; grant# 0012427578201816.057/2018), and Amazon Found (BNDES, Brasília, Brazil; grant# 15.2.0897.2 - CID 10200.160036.3) for funding this project.
References
- Abraham, E. M., Kyriazopoulos, A. P., Parissi, Z. M., Kostopoulou, P., Karstassio, M., Anjalanidou, K., & Katsouta, C. (2014). Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agroforestry Systems, 88, 287-299. DOI: https://doi.org/10.1007/s10457-014-9682-9
» https://doi.org/10.1007/s10457-014-9682-9 - Araújo, R. A., Rodrigues, R. C., Costa, C. S., Santos, F. N. S., Costa, F. O., Lima, A. J. R., Silva, I. R., & Rodrigues, M. M. (2016). Composição químico-bromatológica e degradabilidade in situ de capim-Marandu em sistemas silvipastoris formados por babaçu e em monocultivo. Revista Brasileira de Saúde e Produção Animal, 17(3), 401-412. DOI: http://dx.doi.org/10.1590/S1519-99402016000300007
» https://doi.org/10.1590/S1519-99402016000300007 - Balbino, L. C., Kichel, A. N., Bungenstab, D. J., & Almeida, R. G. (2014). Sistemas de integração: o que são, suas vantagens e limitações. In D. J. Bungenstab (Ed.), Sistemas de integração lavoura-pecuária-floresta: a produção sustentável (p. 12-18). Campo Grande, MS: Embrapa Gado de Corte.
- Dalchiavon, F. C., Montanari, R., & Andreotti, M. (2017). Production and quality of Urochloa decumbens (stapf) rd webster forage co-related to the physical and chemical properties of the soil. Revista Ceres, 64(3), 315-326. DOI: http://dx.doi.org/10.1590/0034-737x201764030013
» https://doi.org/10.1590/0034-737x201764030013 - Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., ... Azevedo, J. A. G. (2012) Métodos para análise de alimentos Visconde do Rio Branco, MG: Suprema.
- Faria, B. M., Morenz, M. J. F., Paciullo, D. S. C., Lopes, F. C. F., & Gomide, C. A. M. (2018). Growth and bromatological characteristics of Brachiaria decumbens and Brachiaria ruziziensis under shading and nitrogen. Revista Ciência Agronômica, 49(3), 529-536. DOI: http://dx.doi.org/10.5935/1806-6690.20180060
» https://doi.org/10.5935/1806-6690.20180060 - Gléria, A. A., Silva, R. M., Santos, A. P. P., Santos, K. J. G., & Paim, T. P. (2017). Produção de bovinos de corte em sistemas de integração lavoura pecuária. Archivos de Zootecnia, 66(253), 141-150. DOI: https://doi.org/10.21071/az.v66i253.2138
» https://doi.org/10.21071/az.v66i253.2138 - Guimarães, C. G., Ribeiro, K. G., Viana, M. C. M., Pereira, R. C., & Santos, J. B. (2018). Capim-braquiária no sistema agrossilvipastoril sob diferentes arranjos de eucalipto. Revista Brasileira de Ciências Agrárias, 13(1), 1-8. DOI: https://doi.org/10.5039/agraria.v13i1a5512
» https://doi.org/10.5039/agraria.v13i1a5512 - Kluthcouski, J. & Aidar, H. (2003) Implantação, condução e resultados obtidos com o Sistema Santa Fé. In J. Kluthcouski, L. F. Stone, & H. Aidar (Ed.), Integração lavoura-pecuária (p. 407-441). Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão.
- Kyriazopoulos, A. P., Abraham, E. M., Parissi, Z. M., Koukoura, K., & Nastis, A. S. (2012). Forage production and nutritive value of Dactylis glomerata and Trifolium subterraneum mixtures under different shading treatments. Grass and Forage Science, 68(1), 72-82. DOI: https://doi.org/10.1111/j.1365-2494.2012.00870.x
» https://doi.org/10.1111/j.1365-2494.2012.00870.x - Lagunes, F. I. J., Pell, A. N., Blake, R. W., Lagunes, M. M., & Rodríguez, J. M. P. (2018). Degradación ruminal in vitro de la proteína insoluble en fibra detergente neutro de pastos tropicales fertilizados con nitrógeno. Revista Mexicana de Ciências Pecuarias, 9(3), 588-600. DOI: https://doi.org/10.22319/rmcp.v9i3.4490
» https://doi.org/10.22319/rmcp.v9i3.4490 - Lana, R. M. Q., Lana, A. M. Q., Reis, G. L., & Lemes, E. M. (2016). Productivity and nutritive value of brachiaria forage intercropping with eucalyptus in a silvopastoral system in the Brazilian Cerrado biome. Australian Journal of Crop Science, 10(5), 654. DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7346
» https://doi.org/10.21475/ajcs.2016.10.05.p7346 - Lazzarini, I., Detmann, E., Sampaio, C. B. I, Paulino, M. F., Valadares Filho, S. C., Souza, M. A., & Oliveira, F. A. (2009). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, 38(10), 2021-2030. DOI: http://dx.doi.org/10.1590/S1516-35982009001000024
» https://doi.org/10.1590/S1516-35982009001000024 - Lima, M. A., Paciullo, D. S. C., Morenz, M. J. F., Gomide, C. A. M., Rodrigues, R. A. R., & Chizzotti, F. H. M. (2018). Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long‐term silvopastoral system. Grass and Forage Science , 74, 160-170. DOI: https://doi.org/10.1111/gfs.12395
» https://doi.org/10.1111/gfs.12395 - Lopes, C. M., Paciullo, D. S. C., Araújo, S. A. C., Gomide, C. A. C., Morenz, M. J. F., & Villela, S. D. J. (2017) Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 225-233. DOI: http://dx.doi.org/10.1590/1678-4162-9201
» https://doi.org/10.1590/1678-4162-9201 - Lopes, F. C. F., Paciullo, D. S. C, Mota, E. F., Pereira, J. C., Azambuja, A. A., Motta, A. C. S., Rodrigues, G. S., & Duque, A. C. A. (2010). Composição química e digestibilidade ruminal in situ da forragem de quatro espécies do gênero Brachiaria. Arquivo Brasileiro de Medicina Veterinária e Zootecnia , 62(4), 883-888. DOI: http://dx.doi.org/10.1590/S0102-09352010000400018
» https://doi.org/10.1590/S0102-09352010000400018 - Medeiros, S. R., & Marino, C. T. (2015). Proteínas na nutrição de bovinos de corte. In S. R. Medeiros, R. C. Gomes, & D. J. Bungenstab (Org.). Nutrição de bovinos de corte: fundamentos e aplicações (p. 27-44). Brasília, DF: Embrapa.
- Mehrez, A. Z., & Ørskov, E. R. A. (1977) Study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. Journal of Agricultural Science, 88(4), 645-65. DOI: https://doi.org/10.1017/S0021859600037321
» https://doi.org/10.1017/S0021859600037321 - National Research Council [NRC]. (2001). Nutrient requirements of dairy cattle (7th ed.). Washington: DC, Academic Press.
- Oliveira, L. B. T., Santos, A. C., André, T. B., Santos, J. G. D., & Oliveira, H. M. R. de. (2017). Influence of a silvopastoral system on anatomical aspects and dry matter quality of Mombasa and Marandu grasses. Journal of Agriculture and Ecology Research International, 13(3), 1-11. DOI: https://doi.org/10.9734/JAERI/2017/31624
» https://doi.org/10.9734/JAERI/2017/31624 - Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science , 92(2), 499-502. DOI: https://doi.org/10.1017/S0021859600063048
» https://doi.org/10.1017/S0021859600063048 - Prohmann, P. E. F., Branco, A. F., Paris, W., Barreto, J. C., Magalhães, V. J. A., Goes, R. H. T. B., & Oliveira, M. V. M. (2012). Método de amostragem e caracterização química da forragem consumida por bovinos em pasto consorciado de aveia e azevém. Arquivo Brasileiro de Medicina Veterinária e Zootenia, 64(4), 953-958. DOI: http://dx.doi.org/10.1590/S0102-09352012000400023
» https://doi.org/10.1590/S0102-09352012000400023 - Rodrigues, R. C., Araújo, R. A., Costa, C. S., Lima, A. J. T., Oliveira, M. E., Cutrim Junior, J. A. A., … Araújo, A. S. F. (2015). Soil microbial biomass in an agroforestry system of Northeast Brazil. Tropical Grasslands-Forrajes Tropicales, 3(1), 41-48. DOI: https://doi.org/10.17138/TGFT(3)41-48
» https://doi.org/10.17138/TGFT(3)41-48 - Senge, M. O., Wiehe, A., & Ryppa, C. (2006). Synthesis, reactivity and structure of chlorophylls. In B. Grumm, R. J. Porra, W. Rüdger, W. H. Scheer (Eds.). Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications (p. 27-37). Dordrecht, NT: Springer Science.
- Sousa, L. F., Maurício, R. M., Moreira, G. R., Figueiredo, M. P. de, Sousa, J. T. L., & Silva, T. V. S. (2017). Cinética de degradação ruminal in situ de Urochloa brizantha cv. Marandu no sistema silvipastoril. Revista de Ciências Agrárias / Revista Amazônica de Ciências Agrárias e Ambientais, 60(3), 268-277. DOI: http://dx.doi.org/10.4322/rca.2630
» https://doi.org/10.4322/rca.2630 - Tosta, X. M., Rodrigues, R. C., Sanchês, S. S. C., Araújo, J. S., Lima Júnior, A. S., Costa, C. S., ... Mendes, S. S. (2015). Nutritive value and in situ rumen degradability of Marandu palisade grass at different locations within the pasture in a silvopastoral system with different babassu palm densities. Tropical Grasslands-Forrajes Tropicales , 3(3), 187-193. DOI: https://doi.org/10.17138/tgft(3)187-193
» https://doi.org/10.17138/tgft(3)187-193 - Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2. ed.). Ithaca, US: Cornell University Press.
- Xavier, D. F., Lédo, F. J. S., Paciullo, D. S. C., Urquiaga, S., Alves, B. J. R., & Boddey, R. M. (2014). Nitrogen cycling in a Brachiaria based silvopastoral system in the Atlantic forest region of Minas Gerais, Brazil. Nutrient Cycling in Agroecosystems, 99, 45-62. DOI: https://doi.org/10.1007/s10705-014-9617-x
» https://doi.org/10.1007/s10705-014-9617-x
Publication Dates
-
Publication in this collection
19 Nov 2021 -
Date of issue
2021
History
-
Received
06 Apr 2020 -
Accepted
17 May 2020