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ABSTRACT

A dual-way seeds indexing (DWSI) method based otreR-and the Open
Geospatial Consortium (OGC) simple feature mode$ \weoposed to solve the
polygon intersection-spreading problem. The pargtlelygon union algorithm

based on the improved DWSI and the OpenMP parptiejramming model was
developed to validate the usability of the dataifian method. The experimental
results reveal that the improved DWSI method caplément a robust parallel task
partition by overcoming the polygon intersectiomeguing problem. The parallel
union algorithm applied DWSI not only scaled up theta processing but also

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 201np.159-182, jan-mar, 2014.



160 DWSI: An.approach to solving the polygon interseati

speeded up the computation compared with the spragosal, and it showed a
higher computational efficiency with higher speetd@mchmarks in the treatment of
larger-scale dataset. Therefore, the improved D¥é&BI be a potential approach to
parallelizing the vector data overlay algorithmssdzh on the OGC simple data
model at the feature layer level.

Keywords. Dual-way Seeds Indexing Method; Polygon Intersgeeading;
Parallel Union; Task Partition.

RESUMO
Um método de indexac@o de semeamento bidirecc{dnal-way seeds indexing -
DWSI), baseado em &rvore-R e no modelo simplesadecteristica de Consdrcio
Geoespacial Aberto (Open Geospatial Consortium -CGoi proposto para
solucionar o problema de alastramento de intersededoligonos. O algoritmo de
unido paralela de poligono baseado no método DW&harado e o modelo
paralela de programacdo OpenMP foi desenvolvida pafidar a usabilidade do
método de particdo de dados. Os resultados exp#dameevelaram que o método
DWSI melhorado pode implementar uma particdo plrale tarefas robustas,
superando o problema de alastramento de interselecfoligonos. O algoritmo de
unido paralela aplicado ao DWSI ndo apenas leyonocessamento de dados a uma
escala maior, como também acelerou a computacameiparacao com a proposta
serial, demonstrando uma maior eficiéncia compaotedi com referéncias de
aceleracdo mais altas no tratamento de conjuntosladi®s em larga-escala.
Portanto, o método DWSI melhorado pode ser umadalgem potencial para a
paralelizacdo e otimizacdo dos algoritmos de sasieho de dados de vetor
baseados no modelo de dados simples OGC no niwalndada de caracteristica.
Palavras-chave: Método de Indexacdo de Semeamento Bidirecciddastramento
de Interseccao de Poligonos; Unido Paralela; Barte Tarefas.

1. INTRODUCTION

Advances in multi-core processors can greatly impithe user experiences of
computer systems by handling more work in pard{B#ER, 2005). However, the
efficiency of traditional serial algorithms canrm accelerated directly by the use
of multicore processors because these algorithe®unly one core rather than all of
the cores on the board for each computation, which substantial waste. Spatial
analysis algorithms in Geographical Information t8gss (GIS) also face the same
problems. Parallel computing is an effective appho® speeding up existing serial
algorithms, improving the utilization rate of muttbre systems, and achieving high
performance geo-computing in GIS (TURTON et al.98,9 CLARKE, 2003;
SUTTER, 2005).

Polygon overlay is a key category of spatial arialgperations in GIS, and
polygon clipping is one of the basic problem whadtvays can be computationally
intensive (GOODCHILD, 1977; WANG, 1993; SHI, 2012GARWAL et al.,
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2012). The Weiler-Atherton algorithm (WEILER and AERTON, 1977), the Vatti
algorithm (VATTI, 1992), and the Greiner-Horman aiighm (GREINER and
HORMANN, 1998) are three acknowledged polygon dhigpalgorithms that can
generate results in a limited amount of time. Alib optimizations proposed by
scientists (KIM et al., 2006; LIU et al., 2007; MAREZ et al., 2009) can lead to
improvements to the extensively validated polygdipping algorithms, the
acceleration effects are limited (ZHAO and ZHOU12)) especially when handling
large datasets. Higher computational efficiency banobtained directly and the
handling or maintaining of a large spatial dataset become more efficient by the
parallelization of serial algorithms. Data partiliog and function partitioning are
effective parallel programming techniques for mapplications; the former best
suits applications for which loops must perform siaene operations on large sets of
data (WANG, 1993), the later best suits the devatppf parallel spatial work flow.
We chose data parallelism with the expectation that codes could be reused
conveniently by other polygon overlap algorithms;tsas the merge algorithm and
the symmetrical difference algorithm.

The polygon union algorithm at the feature layatelehas a wide utilization
(WONG, 1997), such as calculating the coveragesapéawo intermixed types of
vegetation or determining the annual change integoay of land use. Because all
the geometry parts of the polygon clipping reswuliisbe collected during the union
operation, it's difficult to parallelize it for thancertainty of intersecting between
polygons of different layers. The polygon intergmeispreading problem is the
main factor predisposing the uncertainty and resgpltin the many-to-many
mapping relationships between polygons of the appihg layers. Some data
decomposition approaches, such as the regular gndsfeature sequences based
data division methods are cannot address the polygtersection-spreading
problem which lead to the parallelization barr@the polygon union algorithm.

To solve these problems, a new data partition nibttadled dual-way seeds
indexing method (DWSI) was designed to eliminateeptial intersections between
groups of data decomposition results and to impigrttee parallel polygon union
algorithm. In the next two sections, the relatedkwand spatial index knowledge
base will be introduced, and then, a detailed ewilan about the polygon
intersection-spreading problem and presentaticgh@DWSI method is provided.

2. RELATED WORK

Classic overlay analysis in GIS is mainly used ¢oivie new and/or implied
spatial and attribute information required by usarsl such operations are usually
based on pre-established topological relations.ek¢inproposed a parallel vector
data overlay architecture, and a series of parallgbrithms were deployed on a
software framework called Topology-Stitching-Outg@iSO) (MINETER et al.,
1999 and 2003). In Mineter's parallel architectuseme pre-processing steps,
including polygon cutting and strip division, arecessary before parallel tasks
start; the last and complex step is topology relingl for parallel overlay results.
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162 DWSI: An.approach to solving the polygon interseati

However, polygon cutting and topological buildinge atime-consuming, and
topological building for a large dataset may flbreover, topological relationships
are not a concern of the final user in some oveatadysis tasks.

There are a variety of data decomposition strasedig parallelizing the
polygon overlay operation without topological réaships, such as data
partitioning by regular grids (WAUGH and HOPKINS,992) and strips
(MINETER et al., 1999), feature sequences (AGARWA&lal., 2012), and expected
balanced workloads (ZHAO and ZHOU, 2013). Shi (20has pointed out that
different polygon overlay operations involve diffat relationships between
polygons from the base layer and overlap layer. palygon intersection and
difference operations, each polygon establishes ar A-to-many relationship to
those polygon features that are within the ovetlaer. However, for polygon
union and symmetrical difference operations, theme a series of many-to-many
relationships that caused by the polygon intersaespreading problem must be
determined. This problem will lead to a phenometiat disjoint polygons in the
subject layer could be assigned to the same gaupotential intersections with the
same polygon in the overlap layer. The regulargghdsed data partition method
needs complex and time-consuming polygon cuttind) r@sult stitching processes;
the feature sequences based method and expectatééiwvorkloads based method
cannot solve the polygon intersection-spreadindlera.

The union-find algorithm can provide disjoint sutssevhich is always used in
the determination of network connectivity and imageocessing. Elements
partitioned into a subset are connected (overlagpegolygons) with each other
but disjointed with elements belonging to othersaib. The union-find algorithm
using the tree data structure elegantly which léadan extremely low time
complexity (TARJAN, 1975 and 1984; CORMEN et alQ02). Considering the
polygon intersection-spreading problem in the potyginion algorithm, it can be
parallelized by dividing all of the polygons intdsghint subsets and perform the
same union process on multiple CPU cores. In #esarch, a data division method
called a DWSI is designed to generate disjoint stgbsf polygons and the polygon
intersection-spreading problem can be solved asultr

3.MEMORY LIMIT AND R-TREE

One important principle for parallelizing vectortaaverlay algorithms was
that the efficiency bonus derived from parallel pating should exceed the time
and complexity costs caused by the task partitpramd the results stitching
(MINETER, 2003). However, the memory of commerciamputers is limited and,
in some spatial analysis operations, it is impdesib load all of the features into
memory at one time when handling massive vectoasdas. Frequent read/write
commands on data entities will become bottlenecksd consequently, the
algorithms and programs running on such systemsataobtain the maximum
concurrency performance (DEL ROSARIO, 1993). Thameef efficient data
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partitioning methods and economic spatial indexiata structures are necessary for
the data parallelism to overcome the memory limits.

The spatial division results of the grid index ahd Quad-tree (FINKEL and
BENTLEY, 1974) index do not have relevance to tisridhution of the features.
Correspondingly, the spatial divisions of BSP-t(E&/CHS et al., 1980), KD-tree
(BENTLY, 1975), R-tree (GUTTMAN, 1984), and theiranants have strong
relevance to the distributions of the featureshéligh the data structure of the grid
index is simple, for sparsely distributed featuresyill bring redundant data. Once
the structure is established by the grid indexher Quad-tree, it is difficult to be
extended dynamically. However, the abilities of diyric expansion, efficient spatial
searching, a simple data structure, and polygomegéy supporting are necessary
to a possible candidate of spatial indexing datacgires for the parallel polygon
union algorithm. R-tree implemented in memory canelstended dynamically in a
convenient way and can support the spatial indeafrey multi-dimensional dataset.
The search efficiency of R-tree is higher than thfathe grid index and the Quad-
tree, and the complexity is lower than its variastgeh as R*-tree (BECKMANN et
al., 1990), HILBERT R-tree (KAMEL et al., 1994),&a€R-tree (KIM et al., 2001).

R-tree accepts an MBR as a spatial query filter prmodiuces an identifier of
qualified data objects by comparing the overlapatibn of spatial extension
between the input MBRs and the filter (GUTTMAN, #98Each MBR is stored in
memory by four 8-bit double precision floating-poirumbers and more th&x10’
MBRs can be saved in 1 GB of memory. However, thie tand memory cost of
loading the same number of features into memorydafiitely much higher. The
time cost of one overlap comparison operation ofRdBn memory is very low; as
a result, the system maintains a reasonable rargaecosts for building an R-tree
indexing structure and executing spatial query afp@ns for millions of vector
features. It is therefore a feasible approach f@ement an immediate spatial query
and parallel task decomposition for whole databated on R-tree. However, any
spatial indexing data structure with characterkigh spatial query efficiency, ease
of maintenance and extension, and lower memoryirements can replace it.

4. PARALLEL STRATEGIESIN THE UNION ALGORITHM

Vector data overlay algorithms with the essenceBaoblean operations
between spatial features are one of the core cdésgof functions of spatial
analysis in GIS. In the parallel environment of @&, overlap operations should
be treated differently and should be considerety fatcording to their specific
logical characters and the distinct traits betwseatial vector data and generic data.
The logical flow of the serial polygon union algbr is presented in Figure 1.

Function division and computing data decompositioe two commonly used
methods for parallelizing serial vector data analgdgorithms (GEIST et al., 1994;
BRESHEARS, 2009). For the algebra operation pragmeaf vector data overlay
algorithms, their parallelization based on funcsibdecomposition must be tightly
coupled with detailed data structures. Parallebrtlgms developed in this way
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could address their defects on generality and pilitta We therefore choose the
data decomposition approach to parallelize theovatdta overlay algorithms.

Figure 1 - Logical flow of the serial union algduit.
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The union algorithm is characterized by the dynamidding of the R-tree
index, continual geometrical splitting and attrujoining. These intensive
operations are executed and finished whale loop in the serial union algorithm,
but because of the unpredictable iteration timethefwhile loop, it is difficult to
parallelize it. In a parallel computing paradigime tminimization of the correlations
between computing data items could provide maximeoncurrent computing
efficiency (LIN and SNYDER, 2008). The principle &oplied in this study to
implement a parallel union algorithm by starting aimew thread for each feature
group. The features calculated by a new thread hatling to do with features in
other groups in the parallel stages, like the disjsets in the Union-Find algorithm,
and thewhile loop in the serial union algorithm is executedesch new thread.
Figure 2 shows the logical flow of the paralleleamialgorithm.

The key to the success of this approach is to devealn efficient data
decomposition method to solve the intersectionafiry problem. The
intersection-spreading problem refers to a phenoméiat disjoint polygons in the
subject layer could be divided into one subsettierpotential intersecting with the
same polygon in the overlapping layer at the same.tTake polygon layers listed
in Figure 3 as an example to illustrate the phemame

As shown in figure 3A1 and A2 are two disjoint polygons from the same
layer, but they should be grouped into the samseduiiecause their MBRs intersect
with the same polygoB1 in another layer, anB1 will be sent to the same group as
well. The meaning of intersection is not only reféo the intersection between
polygon entities but also their MBRs. The uncertaitersection-spreading effect
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revealed in the parallel union algorithm is the mdifficulty and makes it different
from other parallel overlay algorithms, such asygoh intersect and difference.

Figure 2 - Logical flow of the parallel union algtbm.
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Figure 3 - Intersect-spreading effect when two layge overlapped.

Al, A2, B1, B2 will be divided
into the same group
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5. THE DWSI METHOD

Without loss of generality, we assume that theeerar intersections between
polygons in each input feature layer (actually,ygohs have the possibility to
intersect with each other in the same layer basedom-topological data models).
However, for the intersection-spreading effect eetavthe layers, the intersections
of the polygons from different layers are unpreatie, leading to a complicated
data decomposition process.

Figure 4 - Execution process and result of DWSI.

The Figure 4 shows four polygoAd-A4in layer A and three polygorixl-B3
in layer B. The two layers maintain the same cawtdi system and have no internal
intersectionsAl, A2 and A3 do not intersect in layer A, but they intersecthwi
polygonB3in layer B at the same time when the two layersriap. MoreoverB3
andB2 should be grouped into the same group in ord&etprocessed together in
the parallel stage, becau#e intersects with them simultaneously. The DWSI
method can achieve these goals and implement thes-tayer grouping of
intersected features. The searching process of Dvé8Veen overlapped polygon
layers, as shown in figure 4-(d), is presentediguré 4-(a-e). This method is
implemented by introducing two polygon searchingups, two R-tree indexing
structures, and a collection container of searsblte

The method is composed of six steps:

1) Build two R-tree index structureRT, and RTg, for all polygons of the

two input layers, and allocate memory for two skayeeues;
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2)

3)

4)

5)

6)

Insert the identifier and MBR of the first polygd¥l in layer A into
queueQ,, and make it the search seed, as shown in figi{eg. £xecute

a spatial search iRTz with the MBR of A1 as a spatial filter, and
polygonsB1 andB3 will be found in layer B;

Add the identifiers and MBRs &1 andB3 into Qg as seeds and makd

be a non-seed state . Transfer toQg if all of the seeds iQ, are
iterated,;

For each seed i, execute a spatial searchRf, iteratively, and then,
make it be a non-seed state after searching aridgatte identifiers and
MBRs of newly found features 1@, as new seeds. For example, after
searching byB1 andB3, A2 andA3 can be found and should be added to
Qa (figure 4-b and c) and then transferred bac®to

For each new seed ®,, execute a spatial search iterativel\Rifi; then,
make it be a non-seed state after searching andgtiee identifiers and
MBRs of newly found features 1@z as new seeds. Ignore the features
that already exist in the two queues when addingvely found feature to
them. Repeat steps 4) and 5JdnandQg until there are no newly found
features and no new seeds are found. The loop ggaaé be terminated,
and the merged results @, and Qg are the final results of one
independent group as described in section 3.

Select the next feature in layer A, which is natugred yet, and repeat
steps 1) to 5) and a new group will be found. Fin&WSI will be ended
when all of the features in the two layers are geal Groups contain
only one feature will be distinguished and excluftedn the next step of
the calculation.

The pseudo code of the DWSI algorithm, implemerdedording to the six
steps, is presented in table 1 (do not considerdgattions in the same layer).

Table 1 - Pseudo code of the DWSI algorithm.

RTSpatialldx *siRTreeA = new RTSpatialldx(),*siRfBe= new
RTSpatialldx();

std::vector<std::vector<int> > fid_vec;

std::queue<int> QA, QB;

std::vector<int> tmp_fid_vec;

for (each FID in the two layers){

if (FID is processed) continue;
else QA.push(FID);

while(QA or QB is not empty ¥

while(QA is not empty){
siRTreeB->spatialSearch(First MBR in QA, a_sdalist);
for (each FID in a_search_list)
QB.push(FID);
QA.pop();
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}
while(QB is not empty){
siRTreeA->spatialSearch(First MBR in QB, b_séallst);
for (each FID in b_search_list)
QA.push(FID);
QB.pop();
1
fid_vec.push_back(tmp_fid_vec);

Take the features in the two layers as shown iréigl-(d), as an example; the
execution graph and the changeQjandQg of DWSI are described in table 2.

Table 2 - Execution flow and change details in eqodue of DWSI.

Qa Qs
Operations Status Operations Status
Insert seed\1 into Qn Al? NULL
Q, search starts Al NULL
Spatial search iRTz by
Al; GetB1, B3 Al NULL
Insert seed®1 into Qg Al B1
Insert see®3 into Qg Al B1, B3
Qa searctrg) %nd; Transfey Al Q; search starts B1, B3
B
Spatial search iRT, by
AL BL; GetAL A2 B3 B1 B3
Al already exists Insert seeda\1, A2 into
IgnoreAl AL A2 QaandB3into Qg B1,B3
AL A2 B3 already exists B1 B3
IgnoreB3
Spatial search iRT, by
ALAZ | B3 GetALA2,A3,BL | BLB3
Insert seedé\1, A2, A3
AL A2 into Q, and B1linto Qg B1 B3
Al, A2 already exist Al, A2, B1lalready exists B1 B3
IgnoreAl, A2 A3 IgnoreB1 '
Al A2, Qg search ends
Qa search starts A3 Transfer tO, B1, B3
Spatial search iRTg by
A2; GetB1, B2, B3 AL A2 A3 B1,B3
Insert seedB1, B2, B3 B1, B3 already exist
into Qg AL A2 A3 IgnoreB1 andB3 B1,B3 B2
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Spatial search iRTg by

A3: GetB3 Al, A2, A3 B1, B3, B2
Insert see®3intoQz | Al A2 A3 B3 ?Qllrne;(;)égmsts B1, B3, B2

Qa search ends
Transfer tQ Al, A2, A3 Qg search starts B1, B3, B2

Spatial search iRT, by
Al A2 A3 B2: GetA2 B1, B3, B2
A2 already exists Al A2, A3 | Insert seed2into Qa B1, B3, B2
IgnoreA2

Al, A2, A3 Qg search ends B1, B3, B2

Qa andQg both search end. Mer@g, andQgto one group which will contain:
Al, A2 A3, B1 B3 B2
Start searching for a new group, ReinitializeandQg
Find the next unprocessed feature in layeAA:

Insert seed\4 into Qu A4 NULL

Qa search starts A4 NULL

Spatial search |F_|2TB by A4 A4 NULL
Get nothing

Finally A4 will be ignored for it is not intersected with etis in layer B.

END
# Bold characters represent seed features in theemiom

Table 2 shows that all of the features in Layer M be iterated as R-tree
searching seeds, because DWSI must guarantedItbéttee possible intersections
between two overlapped layers should be detectedntimber of R-tree searches
could be less than the count of features in thelayers because there is no need to
traverse the remaining features in Layer B afteiofithe features in Layer A are
iterated. The time cost of DWSI is in positive podjon to the number of features
in the two overlapped layers and is highly relatgth the intersection situations
between them. However, the time cost of DWSI istéohby the inherent defects of
R-tree, whose search efficiency is in a linear dvafh the growing number of
features when the MBRs of the features are ovegldpgeriously in the R-tree
indexing structure (BECKMANN, 1990). Hence, DWSIlllwéncounter a similar
problem in addressing such problems.

Overlapping operations based on a non-topologicaiia dmodel cannot
guarantee that there are no intersections betweepdlygons that are in the same
layer. If intersections between polygons in the sdayer should be detected, then
only one R-tree rather than two trees should bestcocted to maintain all of the
MBRs of the polygons in the two layers, and a seamplodification of DWSI can
meet the requirements.
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6. EXPERIMENTSAND ANALYSIS

Keeping the computing resources unchanged, two faators that affect the
computational efficiency of the parallel union aitjom were discussed in this
study, including the quantity of polygons and t¢ak amount of points of two
polygons involved in an atom operation. To begirthwispecial tests were
conducted to analyze the data division efficienayiation of DWSI with different
numbers of polygons. Then, a series of experimmmdsstatistics were performed to
analyze the relationships between parallel comjouat efficiency variation and
the quantity of features, while the number of p®im each polygon was kept
constant. Finally, the variation in the time coEbae single intersection operation
implemented by Vatti's algorithm (a sub-operatidrttee union algorithm) with the
guantity of points was analyzed to determine tHect$ exerted to the polygon
union algorithm. We use a DELL Optiplex 990 comp{té-2600 quad-core CPU)
to perform the experiments. The experimental pahggare regular distributed
rectangles and each one with a hole. The detailedapping situation and groups
divided by the DWSI method are presented in fidure

Figure 5 - Regular distributed polygons used inekgeriments.
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Four time costs indicators, including 1/O, buildiagd initializing of R-trees,
data decomposition of DWSI, and the total time €@k statistically analyzed in
each experiment, and the results are listed i tafind figure 6.
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Table 3 - Fitting results of the four time coststrics.

Metrics Regression Functions R?
10 y = 0.0569x - 0.0345 0.9836
Build R-Trees y = 0.0884x - 0.2467 0.9996
Our Algorithm y = 0.9316x - 0.4865 1.0000
All Time y =1.0792x - 0.7678 0.9999

2y: the time costs (second; the amount of polygons divided hg'".

Figure 6 - Fitting curves of the four time costdigators of the DWSI method.
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The calling ofspatialSearctunction is the key atom operation in the DWSI
algorithm which means that only one time of calliofgspatialSearchfunction is
needed by one feature, so the computational coritylekthe DWSI algorithm is
O(n), n is the feature count in the two layers. As showrfigure 6, the four
indicators all present a linear uptrend with thewgng number of operated
polygons. Linear functions and coefficients of deti@ation in table 3 are the fitting
results of the four time costs indicators, whicle aphering with the complexity
analysis. It can be concluded that R-tree based DW&nonstrates a linear
complexity when searching and performing decomjoosiof either a small or large
number of polygons. The fitting curves remain awiobsly linear uptrend in the
time costs when the number of polygons reachesder of magnitude af(°.

DWSI was applied to the implementation of the gatalnion algorithm, and
experiments were conducted to statistically compgheetime costs between the
parallel and serial polygon union algorithms atfedi#nt magnitude orders of
polygon amounts. The speedup of the parallel uaignrithm was calculated, and
the results are presented in table 4 and figure 7.
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Table 4 - Time costs of serial and parallel unilgpathms and the speedup results.

Polygon Amount | Serial Time/s | Parallel Time/s Speedup
16 200 3.268 2.469 1.324
64 800 34.096 26.044 1.309
259 200 427.774 357.419 1.197
1 036 800 6 537.462 4 545,155 1.438
2934726 60 216.041 34 961.461 1.722
2 962 656 54 150.452 32971.671 1.642
4937 760 174 293.500 94 694.790 1.841
6 485 401 266 818.100 117 830.600 2.264

Figure 7 - Statistical regression results of themmlgorithms.

2.4
3500007 o  Speedup

4 Serial Union (with R-tree) 2.2

300000+ o Parallel Union (with R-tree and DWSI)

250000 4
200000

150000 -

Time (second)

100000 -
]

50000 -

' T E T E T E T g T g T g 1.0
0 100 200 300 400 500 600 700
Polygon Number (x10000)

0

Compared with the serial union algorithm, the gdataVersion achieved
calculation efficiency to a certain degree. As shaw figure 7, the acceleration
effects of the data decomposition mechanism base®WSI will become more
significant with an increasing number of polygom$e algorithm even reached a
speedup benchmark &.264 when the number of polygons was approximately
6.5x1CF, which means that the calculated time costs of#rallel union algorithm
obtained by DWSI is reduced by more tH#% than the serial union algorithm. At
the same time, the time cost variation trends dednathematical model with a
varying number of polygons is not changed. Our Itesshow that the parallel
computational efficiency variation with the numlaémpolygons still coincided with
the power-law regression model, which is the saritk the serial polygon union
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algorithm. However, as shown in table 5, the expoé the power-law function is
1.8379 for the parallel version, which is smalléant that of the serial union
algorithm (1.9156).

Table 5 - Serial and parallel fitting results ohé costs and speedup variations with
the number of polygons.

Metrics Fitting Function R’
Serial Union Time y = 1.0413%x ™ 0.9987
Parallel Union Time y = 0.9313x %" 0.9994

Speed Up s =0.0014x + 1.2623 0.9525

y: the time costs(secondy;the speedupk: the polygon amount divided Hg’.

Obviously, the time costs of the DWSI method areimiower than the time
costs of the serial and parallel union algorithniemhandling the same amount of
polygons. Therefore, DWSI will not cause time coexily increase to the parallel
union algorithm. The parallel union algorithm ispl@mented based on the Vatti
polygon clipping algorithm whose time cost variatisvith the total number of
points in two overlapped polygons is not a lineayxdel and should be analyzed
statistically. We therefore conducted experimentanalyze the variation of time
cost of one single intersection operation (whickamsatom operation of the union

algorithm) with the volume of points holding by theerlap polygons. The results
are listed in table 6 and figure 8.

Figure 8 - Fitting curve of the time cost of théersection operation implemented
by Vatti's polygon clipping algorithm.
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Table 6 - Time costs fitting results of the intets@n operation implemented by
Vatti’s polygon clipping algorithm.

M odels Fitting Function R’
QF y = 0.0030% — 0.0089x + 0.1229| 0.9989
POW y = 0.0105%°"* 0.9869

y: the time costs(second); the quantity of polygons divided y’.
2 quadratic polynomial regression modePower-law regression model.

The time costs variation of Vatti's algorithm withe total number of points in
the overlapped polygons is most consistent withgthedratic polynomial regression
model (figure 8 and table 6). However, Vatti's aitfum also coincides well with
the power-law regression model (the POW model biet®), which is small but
close to the corresponding numbers of regressiodetamf the serial and parallel
polygon union algorithms. In the worst case, fosubject layer withm polygons
and a overlapped layer with polygons, the time complexity of Vatti’s algorithm
can beO((p-2Y), p is the average point amount contained by two apgihg
polygons (GREINER and HORMANN, 1998), and the ticoenplexity of the union
algorithm is O(m xnx(p-2f), meanwhile, the DWSI algorithm (with the R-tree
construction process) 8(m+n). Therefore, the performance of Vatti's algorithen i
the main relevant factor that should be responsitie the computational
efficiencies of the union algorithm, especially the parallel one, rather than the R-
tree construction and the DWSI method. Furthermihve performance decrease of
the union algorithm will be much more significanten thep parameter grows than
M Or n grows.

An extreme situation is that all of the featuresyrba grouped into a single
group, and the DWSI will fail on data partition wheandling such datasets. This
will occur when all or most of the MBRs intersecdtiweach other, which is also
caused by the intersection-spreading problem. iB1dase, the performance of the
parallel polygon union algorithm will be same oee\poorer than the serial version.
We improved the DWSI algorithm to solve the probleompletely by employing
of segmentation polygons between divided groups thedrestriction of expect
group size. The results of experiments and disonsare presented in the next
section.

7. DEFICIENCIESAND IMPROVEMENTSIN THE DWS|

One important deficiency of the DWSI algorithm st the parallel union
algorithm based on it will not work or lose the &ate of task loads in most
instances if all of the features in the two layans assigned to one single group, for
example, all of the polygons in figure 9-(a). Wepnoved the DWSI method to
solve this problem by recording segmentation festurepeatedly. Segmentation
features are special features that intersect withenthan one feature in different
groups, such as polygd®® in figure 9-(b). The key to our improvements iattthe
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expected group size should be specified in advaheoew group will be established
when the number of features reaches the specifiedpgsize, and features in the
two queues will be recorded as segmentation femtrather than be processed as
seeds. The non-intersection parts of the segmentdgiatures will be abandoned
temporarily in the parallel union process; all loétn will be recalculated at the end
of the parallel union algorithm. Figure 9 is thayito flow of the parallel union
algorithm based on the improved DWSI method.

We conducted several experiments with residentigion data of Changchun
city to verify the parallel robustness of the unadgorithm based on the improved
DWSI method. Each of the two input geographicakfaycontains 3959 polygons,
and they are listed in figure 10 and figure 13.

The comparison results between parallel union #lyos based on the
improved and un-improved DWSI methods using polylgyers in figure 10-(a) are
presented in figure 11.

It can be deduced from the results presented urdig.1 that the performance
of the un-improved DWSI based parallel union aldponi is similar to the serial
algorithm. The reason is that most of the featimethe two layers are sent to one
group which resulting the parallel failure. Withetlapplication of our improved
DWSI method, both of the serial and parallel unagorithms are speeded up
definitively. The direct reason for the low effinigy of our union algorithm based
on the un-improved DWSI is that too many non-irgetsd polygons are involved
in the iterative overlay calculating process in tigile loop. Therefore, both the
serial and parallel union algorithm can be benéfiftom the improved DWSI
method. We conducted additional experiments to dindthe best group size for the
two feature layers shown in figure 10; the resaitslisted in figure 12.

Figure 9 - Logic flow of parallel union based oe improved DWSI method.
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Figure 10 - Real geographical data and experinemuilts, 4. part of residential

areas of Changchun city and its shifted datagarallel union results).
sy |

ﬂ

Figure 11 - Efficiency comparison between seriabflel union algorithms based on
un-improved and improved DWSI methods.
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Figure 12 - Efficiency comparison between serialifjel union algorithms based on
improved DWSI with different group sizes.
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—8— Speedup |1.6(2.2(2.1|2.1|2.3|12.3(2.7(2.4|2.8|12.4|2.1|1.7(1.9]1.8|1.9|1.7|L.6[L.4|1.4

The experimental results show that the highestdigeeeached 2.760 when
the expected group size was specified to 90. Whergtoup size was specified to
50, the parallel union algorithm obtained the hgjhefficiency with the speedup of
2.277, and both of the values are higher thaneherds in figure 7. However, the
determination of the optimal group size for two id&pped feature layers may need
many experiments or experiences.

Although the improved DWSI can lead to higher éfircy than the old one
for both of the serial and parallel union algorityreeveral special cases should be
concerned carefully. First and foremost, interséstegmentation features will lead
to additional features with the same geometries¢hvivill bring topological errors
to the result layer. We use points comparing td fimt the same geometries and to
eliminate such errors from the final results. Besidbecause the non-intersection
parts of the segmentation features will be abandioak of the intersection parts
between a segmentation feature and non-segmentatitures should be calculated
at one time. Last, groups that contain only onemsagation feature should be
skipped.

8. COMPARISON WITH REGULAR GRID BASED DATA DIVISION

Regular grid or strip based data decomposition atkttare classic approaches
to reduce the relationships between data groups tancealize parallelization
(MINETER, 1999 and 2003). We divided the featurgeta in figure 10 into 64
parts with regular grids, as shown in figure 13téees that cross more than one
grid would be cut into multiple pieces by grid lmé\fter cutting, the features in the
different grids will not intersect with each othenymore, and the parallel union
algorithm can be implemented conveniently.
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Figure 13 - Data division by 8*8 regular grids fbe parallel union operation.
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On average, there are approximately 145 polygorsaah of the 64 groups in
figure 13. We therefore specified the expected greize to be 145 and conducted
experiments to compare the efficiencies of the mmigorithms based on the regular
grid data division and our improved DWSI data diis The experimental results
are listed in figure 14.

Figure 14 - Efficiencies comparison between seyéahillel union algorithms based

on the improved DWSI method and regular grid datesion.
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The results reveal that both of the serial andllgmanion algorithms based on
DWSI are faster than the corresponding ones baséldeoregular grid data division.
The parallel speedup of the regular grid-basedrualgorithm is much lower than
1.922, which is the speedup of the DWSI-based lghrahion algorithm. The
parallel efficiency of the DWSI method based unébgorithm is improved by 56%
than the regular girds based parallel union algorjtand the gap between serial
algorithms is about 18%. We believe that the reasothat the uneven spatial
distribution of the features leads to an unbalariask partition for the regular grids,
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which also shows that the DWSI method can give npanallel adaptabilities and
robustness to the GIS algorithms when handlingsgéésathat have different spatial
distributions. Furthermore, the parallel union aidon based on DWSI avoided
destruction of input data and sewing of the resd#tta, which is much easier to
implement than the regular grid-based data decoitmogspproach.

9. CONCLUSIONS

In this study, we proposed a data decompositiorhatetalled a DWSI to
solve the intersection-spreading problem and implanthe parallel polygon union
algorithm at the feature layer level. The experitabresults verified the usability of
DWSI for implementing computing-intensive parabdgorithms in GIS. The results
show that the polygon union algorithm can be peliattd and accelerated based on
DWSI, and the efficiency improvement will be muclona significant with a larger
amount of data. The time complexity of the DWSImsich lower than the Vatti
algorithm. As a result, the DWSI method does natrease the time costs and
complexity of the union algorithms.

We improved the DWSI method to completely solve pheblems of parallel
failure and load imbalance, which are caused bijuatioon that most features are
divided into the same group. The experimental tessiiow that the improvements
that are based on a specification of the expeatedpgsize and the recording of the
segmentation features enhanced the parallel rofsstof the union algorithm. The
improved DWSI method brings a degree of accelemafo both of the serial and
parallel union algorithms. For the element amoumthe disjoint subsets generated
by the improved DWSI method are under control, lbathncing can be achieved
by assigning approximately equal quantity of polygdo each thread. Compared
with the regular grid based data partition methibe, optimized DWSI algorithm
can lead to 56% performance improvement to thellpataion algorithm and about
18% to the serial one.

Therefore, the improved DWSI method can solve thablem of polygon
intersection-spreading and implement data decoriippsndependently in a more
robust way compared with regular grid and featwgusnce based data division
approaches. Based on the DWSI method, some spatidkanalysis algorithms can
be parallelized, such as the polygon merge algoritnd polygon symmetrical
difference algorithm. This data partition algorithms been applied successfully
with MPI to parallel the polygon overlay operatiansa cluster environment. We
assume that the DWSI algorithm can be a potenpiptaach to implementing data
decomposition and thereby to parallelizing the goly union algorithm and some
other similar overlap algorithms in GIS at the teatlayer level.
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