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Abstract:  

Aiming at the problems that huge amount of computation in ambiguity resolution with multiple 

epochs and high-order matrix inversion occurred in the GPS kinematic relative positioning, a 

modified algorithm for fast integer ambiguity resolution is proposed. Firstly, Singular Value 

Decomposition (SVD) is applied to construct the left null space matrix in order to eliminate the 

baselines components, which is able to separate ambiguity parameters from the position parameters 

efficiently. Kalman filter is applied only to estimate the ambiguity parameters so that the real-time 

ambiguity float solution is obtained. Then, sorting and multi-time (inverse) paired Cholesky 

decomposition are adopted for decorrelation of ambiguity. After diagonal elements preprocessing 

and diagonal elements sorting according to the results of Cholesky decomposition, the efficiency of 

decomposition and decorrelation is improved. Lastly, the integer search algorithm implemented in 

LAMBDA method is used for searching the integer ambiguity. To verify the validity and efficacy of 

the proposed algorithm, static and kinematic tests are carried out. Experimental results show that this 

algorithm has good performance of decorrelation and precision of float solution, with computation 

speed also increased effectively. The final positioning accuracy result with static baseline error less 

than 1 cm and kinematic error less than 2 cm, which indicates that it can be used for fast kinematic 

positioning of high precision carrier. 
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Resumo:  

Com o objetivo de solucionar os problemas envolvendo enorme quantidade de cálculos na resolução 

de ambiguidade com multiplas épocas e inversão de matriz de alta ordem como ocorre no 

posicionamento relativo cinemático GPS, um algoritmo modificado para resolução rápida da 

ambiguidade  é proposto. Em primeiro lugar, Decomposição de Valor Singluar (SVD) é aplicada 

para construir a matriz de espaço nulo de modo a eliminar os parâmetros das componentes da linha 

de base, o qual é capaz de separar os parâmetros de ambiguidade dos parâmetros de posição de forma 

eficiente. O Filtro de Kalman é aplicado somente para estimar os parâmetros de ambiguidade de tal 

forma que a solução float em tempo real é obtida. Então, é adotada a decomposição de Cholesky 

ordenada e multi-temporal (inversa) pareado (multi-time paired Cholesky decorrelation) para a 

descorrelação das ambiguidades. Após o pré-processamento dos elementos diagonais e da ordenação 

destes elementos de acordo com os resultados da decomposição de Cholesky, a eficiência da 

decomposição e decorrelação é melhorada. Posteriormente, o algoritmo de busca inteiro 

implementado no método LAMBDA, é usado para estimar a ambiguidade inteira. Para verificar a 

validade e eficácia do algoritmo proposto, experimentos no modo estático e cinemático foram 

realizados. Os resultados experimentais mostram que este algoritmo tem o bom desempenho de 

descorrelação e precisão da solução float, com aumento eficaz na velocidade de cálculo. A acurácia 

do posicionamento em linha de base estática apresentou menor que 1 cm e no caso cinemático foi 

inferior a 2 cm, o que indica que o método pode ser usado para o posicionamento cinemático rápido 

com alta precisão da fase. 

Palavras-chave: GPS; Ambiguidade; decomposição de SVD; decomposição de múltipla (reverso) 

dupla Cholesky 

 

1. Introduction 

 

 

Fast ambiguity resolution is critical to GPS carrier phase measurements for high precision kimematic 

positioning (Hofmann-wellenhoff et al., 2001; Leick, 2004), which has been studied by many 

researchers during the last two decades. Examples of proposed methods were dual-frequency P code 

pseudo range algorithm (Blewitt, 1989), least squares (LS) searching algorithm (Hatch, 1990), 

ambiguity function algorithm (Remondi, 1991), fast ambiguity resolution approach (FARA)( Frei 

and Beulter, 1990), Cholesky decomposition (Euler and Landau, 1992), OMEGA (Kim and Langley, 

1999), LAMBDA （Teunissen, 1994, 1995; Teunissen and Verhagen, 2008）, etc. Recently, the fast 

integer least-squares estimation for high-dimensional ambiguity resolution using lattice theory was 

proposed (Jazaeri et al., 2012, 2014). Among them, some were based on dual frequency 

measurements. When applied for single frequency kinematic positioning, those methods require 

more epochs, resulting in large amount of calculation caused by higher-order matrix inversion 

operation and a long time to fix the ambiguity. Thus, those methods could not meet the requirement 

of real time kinematic applications.  
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To solve this problem, a new algorithm is proposed to implement fast integer ambiguity resolution of 

kinematic application. Firstly, SVD decomposition and transformation are applied to construct a left 

null space matrix to remove baseline coordinate parameters and separate ambiguity parameters from 

position parameters. Kalman filter is used to estimate only the ambiguity parameters that can be used 

to acquire real-time float solution of integer ambiguity. Then, diagonal entries of covariance matrix 

are sorted, and multi-time (inverse) paired Cholesky decomposition is applied for the decorrelation 

of ambiguity. After diagonal elements preprocessing and diagonal elements sorting according to the 

results of Cholesky decomposition, the efficiency of decomposition and decorrelation is improved. 

Finally, integer ambiguity is estimated by the integer search algorithm of LAMBDA method. Static 

and kinematic experiments prove the correctness and feasibility of the new algorithm. 

 

 

2. Fast Calculation of Ambiguity Float Solution Based on SVD 

Decomposition 

 

 

Suppose that base station and mobile station observe n satellites synchronously, and each epoch can 

construct n-1 double difference carrier phase measurement equations. For the ith epoch, GPS double 

difference carrier phase linear observation equations are generally expressed as follows 

 

where 1n

i

L R denotes the observation vector of double difference (DD) carrier phase at the ith epoch, 

which is the difference between observed value and the calculated one. ( 1) 3n

i

 A R is coefficient 

matrix at the ith epoch. i X  is the unknown parameter vector of 3D baseline. 1nN Z is the 

unknown DD ambiguity parameters vector with n-1 dimensions, which is independent of the epoch. 

1 1 1
( , , )L L Ldiag    LB  is the coefficient matrix with n-1 dimensions, where

1L is the L1 carrier 

wavelength. iε is the measurement noise vector. 

In fast positioning, it is preferable that fewer epochs or even single epoch can implement positioning. 

According to Equations 1, it has 3 rank deficiencies when calculating in single epoch, thus the LS 

method is unavailable. What is adopted in common is to increase the number of observation epochs, 

i.e., to increase equations. For m epochs, corresponding equations are 

 

 

Rewritten in matrix form 
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High-order matrix inversion is a problem (Liu et al., 2005; Liu et al., 2013) of huge computation in 

directly solving Equations 3. In order to obtain high precision ambiguity float solution, at least 200 to 

400 epochs is needed, which results in very high-order matrix with about 600 to 1200 dimensions. 

Thus, it can not meet the requirement of real-time kinematic positioning. In fact, only the ambiguity 

float solution and its covariance are concerned. Therefore this paper applies SVD decomposition to 

coefficient matrix (Timothy, 2010). Baseline component correction vector is eliminated by 

constructing left null space matrix AL according to U matrix features. In this way, ambiguity 

parameters can be successfully separated from position parameters, with reduced matrix dimension. 

Based on SVD decomposition, transformation steps are as follows 

(1) Solve the left null space matrix of coefficient matrix iA . SVD decomposition is carried out to iA , 

and T

i

 
  

 

0
A U V

0 0


, where U is ( 1) ( 1)n n    unitary matrix, V  is 3 3  unitary matrix, 

1 2( , , , )rdiag    L ， ( )ir rank A  and i  denotes all non-zero singular values of matrix iA . 

(2) Divide the matrix U as 1 2
( 1) ( 1) ( 1 )n r n n r     

 
  
 

U U UM . What can be easily proved is the following formula: 

2i

T

A L U , namely 0
iA i L A  

Proof: the formula above is rewritten as   1

1 2 1 1

2

T

T

i T

  
   

   
M

0 V
A U U U V

0 0 V


 , then multiplied by 

2

T
U  on 

both sides, therefore 
2 2 1 1( )T T T

i  U A U U V 0 （
2 1

H U U 0 ）. 

(3) Multiply Equations (3) by left null space matrix
iAL on both sides; and the transformed equation is 

 

Considering the characteristics that integer ambiguity of each epoch is equal when there is no cycle 

slip, Kalman filtering state equation and measurement equation (Tomoji and Akio, 2010) are 

respectively written as 
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Where
kk A kZ L L ,

kk AH L B . kV is the measurement white noise with mean zero and variance 

cov( , )k k k R V V  2 2T T

k k A AE      V V L L I . 

Since the state vector of integer ambiguity N is constant, time update process (prediction process) 

during Kalman filtering can be simplified as follows 

 

Kalman filter Measurement update process (calibration process) is given as 

 

Among Equations 8, kK  is filtering gain; I  is unit matrix. According to the initial value of state 

vector 0N̂ and the estimation error covariance ˆ 0N
Q , the optimal estimation of ambiguity state vector 

and estimation error covariance at any time can be obtained. As indicated from the Filtering 

equations above, state parameters, such as position parameters and velocity parameters, are 

eliminated during the process of calculation. Therefore, the computation load is greatly reduced by 

avoiding of high-order matrix inversion, which contributes to ambiguity estimation in real-time 

kinematic applications. 

 

 

3. Sorting and Multi-Time (Inverse) Paired Cholesky Decomposition 

for Decorrelation 

 

Real-time float solution of ambiguity can be obtained based on SVD decomposition and Kalman 

filtering. Nevertheless, during a short period of observing time in actual kinematic positioning 

environment, double difference observation may lead to inferior geometric structure between the 

ground station and satellites, which in turn leads to strong correlation between DD measurements. 

This strong correlation extends multi-dimensional ellipsoid search space and integer ambiguity 

search results are far from expectation. To solve this problem, the covariance matrix of float solution 

needs to be decomposed and diagonalized as much as possible. In this way, the correlation between 

ambiguities of DD phase measurements can be reduced, which makes the search ellipsoid space 

closer to sphere, minimizing length of search interval and improving the efficiency in the search of 

integer ambiguity fixed solution. 

Concerning that Gauss transformation for decorrelation is not stable, and its calculation amount is 

double of Cholesky decomposition, this paper proposes a method of continuously implementing 

modified upper triangular Cholesky decomposition and lower triangular Cholesky decomposition to 



837                                         Fast integer ambiguity... 

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 21, no 4, p.832-847, out-dez, 2015. 

realize continuous decorrelating (Xu, 2001;Zhou, 2011; Zhou and He, 2014). Before Cholesky 

decomposition, sorting the diagonal elements in ambiguity covariance matrix (ascending or 

descending) can reduce condition number of matrix and effectively improve the performance of 

matrix decomposition (Liu et al., 1999; Chen and Wang, 2002; Huang and Chen, 2010). Compared to 

this traditional method, this paper applies a method of diagonal elements preprocessing after 

Cholesky decomposition. New algorithm orders diagonal elements of the matrix according to values 

after decomposition, in contrast to existing method according to values before decomposition. 

Consequently, our new method is closer to the goal of arranging the larger diagonal element to the 

smaller row before decomposition for UDUT, and LDLT decomposition is on the contrary. 

The sorting depends on the relative size of the diagonal candidate values  ,pv i p n  which are 

computed by pre-compute formula, instead of relative size of the diagonal elements of the original 

covariance matrix. Adjusting matrix could only be determined after pre-computing the candidate 

elements vp of diagonal elements di, which ensures that the adjusted covariance matrix after 

Cholesky decomposition acquire the best decorrelation performance.  

After sorting based on the result of Cholesky decomposition, bigger diagonal entries of UDUT result 

is adjusted to a smaller I positions in diagonal line, and LDLT vice versa. The value of each diagonal 

element after adjustment is much closer to one another, and the validity of matrix decomposition is 

improved, so is the decorrelation. Then, the efficiency and quality of ambiguity discrete search is 

improved. The steps of sorting and multiple (inverse) paired Cholesky decomposition are as follows 

I) Modified integer UDUT decomposition 

1) Let ˆ0 , 1,2, ,ijN n n
q i n


     LJ Q . Perform the following steps to 0J  row by row: 

a) Pre-compute candidate elements 

 

In Equations 9, pjc denotes the candidate entry in unit upper triangular matrix U and pv denotes the 

candidate in diagonal matrix D. 

b) Select the element iv  to meet  maxi p
i p n

v v
 

 , and its index number iM p . Let ( )ij Mju c i j  , 

ii Md v , iju , id denotes the elements in modified Cholesky decomposition U and D respectively. 

c) Adjust variance-covariance matrix according to the index number constructed from the 

last step: 1( , ) ( , )T

i i i i i ii M i MJ S J S . Where ( , )i ii MS is adjusting matrix, obtained by exchange of 

ith row and iM th  row in unit matrix n nI  . In particular, ( , )i i n ni M S I  when ii M . 

2) Modified UDUT decomposition is obtained by the previous step, where [ ]ij n nu U , 

1 2( , , , )ndiag d d d LD , then one can get that T

n J UDU , ˆ
ˆ ˆT

n N
J SQ S , where 
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1 1 1 1
ˆ ( , ) ( 1, ) (1, )n n n nn M n M M   LS S S S . 

3) Let entries in upper triangular be integers and calculate the transformation matrix  
1

1


U by 

matrix inversion, then the covariance matrix after modified UDUT transformation is 

 

II) Modified integer LDLT decomposition 

1) Let ˆ0 u ij n n
q



     J Q , 1,2, ,i n L , Perform the following steps to 0
J  row by row. 

a) Pre-compute candidate elements 

 

In Equations 11, pjf is the candidate element in unit lower triangular matrix L and pv denotes the 

candidate element in diagonal matrix D. 

b) Select element iv  to meet  mini p
i p n

v v
 

 , and its index number iM p . Let ( )ij Mjl f i j  , 

ii Md v , and ijl , id denotes the elements in modified Cholesky decomposition L and D 

respectively. 

c) Adjust variance-covariance matrix according to the index number from the last step: 

1( , ) ( , )T

i i i i i ii M i M
 J G J G , where ( , )i ii MG is adjusting matrix, obtained by exchange of ith row 

and iM th  row in unit matrix n nI  . In particular, ( , )i i n ni M G I  when ii M . 

2) Modified LDLT decomposition is obtained by the previous step, which is [ ]ij n nl L ，

1 2( , , , )ndiag d d d LD ， then one can get that n
  T

J LDL ， ˆ
ˆ ˆ T

n u
 J GQ G ， where 

1 1 1 1
ˆ ( , ) ( 1, ) (1, )n n n nn M n M M   LG G G G 。 

3) Let entries in lower triangular be integers, calculate the transformation matrix  
1

1


L by matrix 

inversion, then the covariance matrix after modified LDLT transformation is 

 

III) Check whether  
1

1


L  is an unit matrix. If so, then calculation completes; otherwise, it 
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indicates that the correlation between the undetermined ambiguity is quite strong, and the process is 

back to step I) and go on until  
1

1


L becomes unit matrix, where the decomposition stops (Details of 

the proof of the correctness of this decorrelation method are discussed in Appendix). 

Conduct the modified integer UDUT decomposition and LDLT decomposition repeatedly. Assuming 

that iteration is executed for m times, and  
1

1


L is transformed to be a unit matrix, the final 

transformation matrix is going to be 

 
Correspondingly, the covariance matrix of ambiguity after the transformation is 

 

Integer ambiguity float solution is 

 

Finally, integer ambiguity is estimated by the integer search algorithm of LAMBDA method. z  is 

searched using Equations 16 to minimize the object function as the estimated ẑ  

 

Then perform inverse transformation 

 
The original space of ambiguity is therefore obtained. 

 

 

4. Experimental Analysis 

 

 

In order to verify the accuracy, correctness and effectiveness of proposed algorithm, static and 

kinematic experiments are carried out respectively. Actual collected receiver data is processed to 

calculate the navigation result. Then, the collected data is compared with the standard value to prove 

the reliability of this algorithm. 
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4.1 Static Positioning and Result Analysis 

 

In order to validate the correctness and feasibility, static test was carried out. The data was acquired 

at ten thirty-one on May 16, 2013, on the top Air Force Engineering University Taoyuan campus 

laboratory building. Two NovAtel receivers were deployed with type OEM628 as one base station 

and another mobile station. All stations are installed GPS-702-GG GPS dual-frequency antenna. The 

recording sampling rate is 1 s. In this case, the baseline length is 7.812 m. GPS data were collected in 

half an hour tracking 7 satellites with 10° elevation mask: PRN6, PRN8, PRN11, PRN15, PRN17, 

PRN24, and PRN28. In order to reduce the errors' effect, PRN24 with maximal elevation was chosen 

as the reference satellite. Actual data was processed by proposed algorithm in simulation. After 120 

epochs, integer ambiguity was estimated. Then, integer ambiguity was substituted back to the 

algorithm to compute the fixed solution, which is used to make a comparison with the real value.  

 

Figure 1: Baseline Length and its error. 

Figure 1 shows the length of baseline and its error. As can be seen from the figure baseline length 

error of proposed new algorithm is less than 1 cm, which indicates some good performance of 

accuracy. 

 

 

4.2 Kinematic Positioning and result analysis 

 

 

To further validate the applicability of the algorithm in a kinematic environment and a relative longer 

baseline situation, a vehicle test was carried out. 
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4.2.1 Verification scheme 

 

Test conditions being the same with that of static test, dual mobile station are applied, due to the fact 

that dynamic changes of baseline with a much longer distance and accuracy of the algorithm can not 

be validated directly, as shown in Figure 2. Base station is placed in open area under the Lab building 

and two mobile stations are placed on the top of the vehicle. One is at the head and another one is at 

the rear, 2.115 m apart. After a short static period, the vehicle began to go around in circles, 200 

meters away from the building. Original measurements data and epoch data (L1 frequency) were 

collected separately and processed by the proposed fast new algorithm one epoch to another. 

 

Figure 2: Sketch of algorithm validation embodiment. 

As is shown in Figure 2, the baseline between antenna 2 and antenna1 is computed and named as 

1d vector, so was the baseline between antenna 3 and antenna 1, named as 2d vector. The baseline 

between antenna 2 and antenna 3 is fixed and named as d . It is easy to know that 2 1 d d d . so 

1 2 d d d . Then it is compared with fixed length of baseline d to verify the accuracy of relative 

position. 

 

 

4.2.2 Experiments and Results Analysis 

 

Using the proposed algorithm, the integer ambiguity between mobile station 2 and the base station 1 

is resolved, so is the integer ambiguity between mobile station 3 and the base station 1. Two 

receivers work simultaneously with 7 visible satellites (satellite cut-off angle sets to 10°). In order to 

reduce the errors' effect, the satellite with maximal elevation is chosen as the reference satellite. 

Finally, it can be combined to obtain six double differential ambiguities [N21, N31, N41, N51, N61, N71]. 

The real double difference ambiguity (i.e., N=[3, 8, -1, 6 ,4, -6]) between station 2 and station 1 is 

used as the reference value. Then the effect of ambiguity float solution solved by this new algorithm 

using Kalman filter is analyzed. All the float solution of double difference ambiguities are shown in 

Figure 3. 
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Figure 3: All the float solution of double difference ambiguities. 

As can be seen from Figure 3, all the float ambiguities present a trend that approximately equal to the 

true value at the time of epoch 168, and the filter starts to become stabilize state. At the same time, 

different epochs of data are resolved by using the proposed approach and the conventional Kalman 

filter respectively. The results comparison of two methods in which parts of continuous epochs 

around epoch 168 (i.e., epoch 168 as the critical point) are selected is shown in Table 1. 

Table 1: Results comparison of two methods 

 

Table 1 shows that precision of ambiguity float solution calculated by the proposed method is better 

than conventional method. In addition, the average calculation time of both methods for Table 1 are 

respectively counted. Average calculation time of this new method is 1067 ms, while the 

conventional Kalman filtering method is 1703 ms. The reason is that the conventional Kalman filter 

needs to simultaneously estimate all the parameters such as position parameters, velocity parameters 

and ambiguity parameters, while in the new algorithm, SVD decomposition transform of the 

coordinate coefficient matrix is applied to construct the left null space matrix in order to eliminate 

the baseline coordinate vector parameters, thereby the Kalman filter equations can be established to 

estimate only the ambiguity parameters. This will not only improve the computing speed, but also 

improve the accuracy of float solution, which contributes to the fast resolution of ambiguity. 

Similarly, the double difference ambiguity between station 3 and station 1 can be resolved. Therefore, 
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integer ambiguities are fast estimated when epoch number is 168 and 177 respectively, the Kalman 

filter is becoming stable gradually and the integer ambiguity can be computed rapidly. The relative 

position between mobile station 2 and station 3 is computed by the validation scheme described 

above. The length and error of baseline are shown in Figure 4(a) and the elevation and azimuth of 

baseline are shown in Figure 4(b). 

As is shown in Figure 4, the computed position relationship between mobile station and base station 

is consistent with the reality. The errors of elevation and azimuth are stable in a small angle because 

of the circle motion of vehicle on the ground. During the test, with good signal quality, baseline error 

is limited within 2 cm, which indicates that ambiguity is correctly estimated. As the length of 

baseline, elevation and azimuth are all computed based on the relative position between mobile 

stations, so making the length of baseline as criterion is practical and scientific, which further verifies 

the correctness of the algorithm. 

 

Figure 4: Relative position of the mobile station 2 and station 3. 

Additionally, the performance of decorrelation is analyzed with the decorrelation coefficient r and 

spectral condition number e as standard to evaluate the performance of decorrelation (Huang and 

Chen, 2010). Figure 5(a) and Figure 5(b) shows the curves of decorrelation and spectral condition 

number before and after decorrelation respectively. 
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  Figure 5: The r and e of ambiguity covariance matrix before and after decorrelation. 

 

As is indicated in Figure 5(a), decorrelation coefficient rbefore is near 0 before decorrelation, which 

indicates strong correlation between ambiguities. The spectral condition number ebefore is large in 

Figure 5(b), which indicates a flat search space, also reflecting the strong correlation. After 

decorrelation, the decorrelation coefficient rafter becomes larger and approaches 1. At the same time, 

its spectral condition number eafter is greatly reduced and covariance matrix is closer to diagonal one. 

Correlation between different ambiguities is reduced successfully, which indicates the feasibility and 

good performance of decorrelation of the proposed algorithm. 

 

 

 

5. Conclusions 

 

In this paper, the static and kinematic tests and analysis show that the proposed algorithm for 

ambiguity fast resolution is feasible, the static baseline error is less than 1cm and kinematic baseline 

error is less than 2cm. These results verify the correctness and effectiveness of the algorithm. 

SVD decomposition is applied to construct the left null space of matrix to eliminate the baseline 

coordinate parameters which can separate the ambiguity parameters from the position parameters. 

Thus Kalman filter is used to estimate only the ambiguity parameters in the new algorithm, which 

greatly reduces the amount of computation. Computation speed are increased, which means its 

real-time capacity. 

Sorting and multiple (inverse) Cholesky decompositions are performed for ambiguity decorrelation, 

adopting method of diagonal entries pre-processing and adjusting the order of diagonal entries 

according to values by Cholesky decompositions. The effectiveness of matrix decomposition is well 

ensured and much smaller conditional number is obtained, thereby performance of decorrelation is 

improved, which contributes to ambiguity search efficiency and correctness. 

As the new algorithm in this paper can implement fast solution of integer ambiguity, acquiring high 

accurate position quickly, it could be used for ‘BDS-2’ system in the near future. The algorithm may 
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have a broad application prospects for airborne platform fast positioning and attitude determination 

and for precision approach and landing system. The proposed method also needs further 

improvement in some specific engineering implementation. 
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APPENDIX 

In this modified decorrelation method, the front part (i-1 rows and columns) of U and D matrix 

elements that already determined by the previous i-1 substeps of step 1) will not affect the 

calculation of the latter part elements of U and D. The sorting adjustment will not affect the elements 

in U and D already determined in the previous （i-1） substeps. Thus, this paper proves the 

correctness of the algorithm based on theoretical derivation. 
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