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Abstract 

Resumo

This article presents a study of the plasticity model applicability to concrete in a theoretical framework that generalizes the formulation of constitutive 
models for physically nonlinear analysis of structures. In this sense, the theoretical framework for the computational implementation of the plasticity 
mathematical theory is described, detailing the models formulations capable to describe the inelastic behavior of concrete. The loading surfaces asso-
ciated to Drucker Prager and Ottosen criterion are highlighted. Furthermore, the Cutting Plane return mapping algorithm, necessary to the integration 
of constitutive relations that govern the behavior of the material in the context of computational plasticity, is described. Finally, numerical simulations 
are presented, such as the direct tension loading and three-point bending tests. The results of these simulations are compared with those from the 
literature to verify the model stability and accuracy.
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Este artigo aborda modelos de plasticidade aplicados ao concreto em um framework teórico que visa generalizar a formulação de modelos cons-
titutivos para a análise fisicamente não lineare de estruturas. Nesse sentido, é descrito o arcabouço teórico para a implementação computacional 
da teoria matemática da plasticidade, detalhando as formulações de modelos capazes de descrever o comportamento inelástico do concreto. As 
superfícies de carga associadas aos critérios Drucker Prager e Ottosen são destacadas. Além disso, é descrito o algoritmo de mapeamento de 
retorno “Cutting Plane”, necessário à integração de relações constitutivas que governam o comportamento do material no contexto da plasticida-
de computacional. Finalmente, são apresentadas simulações numéricas, como os testes de compressão diametral, tração direta e flexão de três 
pontos. Os resultados dessas simulações são comparados com os da literatura para verificar a estabilidade e a precisão do modelo.
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1.	 Introduction

A realistic solution for a structural problem involving concrete de-
pends in large part on the choice of an appropriate constitutive 
model. The mechanical response of the concrete is complex and 
it seems unlikely that any phenomenological approach would be 
able to understand all the possible variations in the characteristics 
of the material. Even if a perfect model for the concrete could be 
built, it would be too complex to serve as a basis for the stress 
analysis of practical problems (CHEN; HAN [1]).
However, intensive studies over the past decades have led to a bet-
ter understanding of the constitutive behavior of quasi-brittle media. 
Research focused on modeling the mechanical behavior of concrete 
has led to formulations such as mathematical theory of plasticity, 
a necessary extension of the theory of elasticity which provides a 
more realistic approach about the behavior of the material.
The theory of plasticity seeks to mathematically describe immediate 
and non-reversible deformations that occur in a solid body, i.e. the de-
formations that do not disappear completely when the causal forces 
are removed (CHEN; HAN [1]; LUBLINER [2]; SOUZA NETO et al. [3]). 
The description of the elastoplastic behavior of the concrete on the 
macroscopic point of view (designated as phenomenological behav-
ior) for multiaxial stress states is based on the following assumptions:
(1)	 The existence of an elastic field, that means, a region in which 

the material behaves as it is purely elastic without the appear-
ance of permanent strains. The elastic domain is delimited by 
a flow function written in terms of yield stress.

(2)	 The occurrence of inelastic deformation, that is, the deforma-
tions associated to stresses above the yield stress whose evo-
lution can be described by a yielding rule.

(3) 	The occurrence of the phenomenon of strain hardening of 
the material, in other words, the possibility of increasing flow 
stress, following the evolution of inelastic deformations.

Rupture criteria for concrete are classified according to the num-

ber of parameters that appear in the defining expressions. Simple 
models should be used, representing only those properties that are 
essential for the problem to be considered (CHEN; HAN [1]). To this 
purpose, this work aims to present a theoretical and computational 
framework necessary for the implementation of elastoplastic consti-
tutive models, especially the models of Drucker Prager and Ottosen 
on INSANE computing system (Interactive Structural Analysis Envi-
ronment), showing also the Cutting Plane return mapping algorithm, 
necessary for the integration of the constitutive relations governing 
the behavior of the material in the context of computational plasticity.

2.	 Plasticity for concrete

The classical theory of plasticity was originally developed for the 
study of metals and some of its proposed fundamentals are not 
safe for other engineering materials such as concrete. However, 
they still have some similarities, particularly in pre-failure regime. 
For example, the concrete exhibits a nonlinear stress-strain behav-
ior during loading and has a substantial irreversible deformation 
under unloading regimen. Especially under compressive loads with 
confining pressure, the concrete may show some ductile behavior. 
Thus, concrete irreversible strains are induced by microcracks and 
can be treated by the theory of plasticity (CHEN; HAN [1]).
A variety of constitutive models were then proposed in order to 
mathematically reproduce the material stress-strain relationships 
for different load conditions. The majority adopts a phenomenologi-
cal approach, i.e., models that describe the material from the mac-
roscopic point of view, neglecting the microscopic mechanisms, 
and considering the material media as continuous and homoge-
neous. The approach of plasticity falls into this category.
A constitutive model suitable for concrete structures requires a 
complete description of the material behavior, as that one showed 
in Figure [1], wherein the pre-failure (hardening) and post-failure 
(softening) behaviours are displayed.

Figure 1
Uniaxial behavior of concrete (CHEN; HAN [4])



173IBRACON Structures and Materials Journal • 2020 • vol. 13 • nº 1

 	 D. B. OLIVEIRA  |  S. S. PENNA  |  R. L. S. PITANGUEIRA

From a macroscopic point of view, the classical plasticity can 
simulate the behavior of the concrete particularly in the pre-peak 
regime, such as nonlinearity of the stress-strain curve and the ir-
reversible strains after loading. Many papers have been presented 
by researchers seeking to adapt the classical theory of plasticity in 
order to get a better representation for concrete (PARK; KIM [5]; 
GRASSL; JIRASEK [6]).
In the concrete plasticity modeling, it is important to observe some 
characteristics such as sensitivity to hydrostatic pressure, not as-
sociative flow rule, compatible inelastic law, and tensile strength 
limit. Some of these models are mathematically highly complex, 
making them undesirable for many engineering applications, espe-
cially the analysis of simple structural elements.
The failure surface definition according to phenomenological mod-
els is performed by using a yielding parameter. The rupture surface 
of the concrete can be generally expressed by:

(1)

where, I1 is the first invariant of the stress tensor and J2 and J3 are 
respectively the second and the third principal invariant of the de-
viatoric stress tensor. These invariants are generally represented 
by the following expressions:

(2)

(3)

(4)

wherein, σ1, σ2 and σ3 are the values of the principal stresses and 
e sij are the components of the deviatoric stress tensor given by:

(5)
	

The explicit form of the failure function for concrete is defined by 
experimental data, since concrete resistance tests are well doc-
umented in the literature (CHEN; HAN [1]). Such functions shall 
have the following characteristics: 
(1)	 Represent a smooth convex surface, with the exception of its apex;
(2)	 The meridians of its surface are parabolic, and open towards 

the negative hydrostatic axis;
(3)	 Failure curve is roughly triangular to tensile stresses and low 

compressive stresses, becoming more circular as the com-
pressive stress increases. 

2.1	 The Drucker-Prager Model

The criteria proposed by D. C. Drucker and W. Prager in 1952 re-
quires that the plastic flow occurs when the second invariant of the 
deviatoric stress tensor, J2, and the hydrostatic pressure reaches a 
critical combination. The function that models the criteria of Drucker-
Prager is given by:
	 (6)

where η is a constant related to the material and the function k. In 
case the material undergoes an isotropic hardening, the function 
k relates to the uniaxial stress-strain curve (CHEN; HAN [1]) and 
can be defined by:

(7)

where σ is a function of the hardening internal variable α.
The yielding surface in the principal stress space is represented 
by a circular cone whose axis is the axis of symmetry of the hy-
drostatic pressure. The Drucker-Prager yield surface is shown in 
Figure [2].

2.2	 The Ottosen Model

The rupture surface of four parameters (α, β, and c1 and c2) for 
concrete, proposed by OTTOSEN [7] involves the strain invariants 
I1, J2 , and the loading angle, θ. Its smoothness, convexity and its 
curved meridians that have a gradual transition from an almost 
triangular shape to an almost circular in the deviatoric plan, as the 
hydrostatic pressure increases, make this criterion suitable for fail-
ure simulation of concrete structures (Figure [3]).
The mathematical representation of the criteria is given by:
  

(8)

Where σc is a function of the hardening internal variable, α and β 
are material parameters. The parameter λ depends on two other 
parameters (c1 and c2) and is given by:

(9)

Still in the equation (9), the angle involved in this criteria is given by:

(10)

There are several propositions for the determination of the four 

Figure 2
The Drucker–Prager yield surface in principal stress 
space. (SOUZA NETO et al. [3])
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There are several propositions for the determination of the four pa-
rameters (α, β, c1 e c2) of the Ottosen model. The INSANE system 
has implemented the calibration proposals of OTTOSEN [9], CEB-
FIP Model Code [10] and DAHL [11].
According to OTTOSEN [9], the four parameters can be deter-
mined based on the following tests:
(1)	 fc – uniaxial compressive strength (θ = 60°);
(2)	 ft – uniaxial tensile strength (θ = 0°);
(3)	 fbc ≅ 1,16 fc – biaxial compressive strength (θ = 0°);

(4)	  – the triaxial stress state on the compressive  
 
meridian (θ=60°).

The values obtained for the parameters from these tests depend on 
the average tensile and compression ratio k = ftm / fcm. Table [1] shows 
some of the most commonly used values from this calibration.
The parameters for intermediate values of k can be obtained  
by interpolation.
Another way to obtain the model parameters is through the expres-
sions recommended by the CEB-FIP Model Code [10], which also 
make use of the relation k = ftm / fcm. 

(11a)

(11b)

(11c)

(11d)

This calibration allows obtaining the parameters to any values of 
k automatically, provided that the compressive strength values do 
not exceed prescribed values.
DAHL’s [11] proposal is based on the observation that the CEB's 
recommendations are in agreement with the experimental results 
only for low strength concrete, thus suggesting a way to obtain the 

coefficients using only the mean resistance to compression of the 
concrete (fcm).

(12a)

(12b)

(12c)

(12d)

(12e)

2.3	 Hardening laws

NETO [12] describes the hardening as a process that is physically 
connected to increased dislocation density (geometric defect in 
atomic arrangement). For many real materials, the yielding stress 
limit of the material is dependent on a measure of accumulated 
plastic strain. In uniaxial model, after reaching the yielding, the 
stress-strain curve continues to grow (in hardening) or decreas-
ing (in the case of softening) causing a variation in yielding stress 
during plastic flow. In models of two and three dimensions, the 
hardening is characterized by changes in the set of internal vari-
ables α during plastic yielding. These changes can generally affect 
the size, shape and orientation of the yielding surface, defined by 
Φ (σ, α) = 0.
Depending on the type of material, the stress-strain curves can have 
different forms, being convenient to idealize some of these behav-
iors. Figure [4] illustrates three models commonly used to describe 
materials that have an elastoplastic behavior (MALAVOLTA [13]). 
Case (a) corresponds to the perfect plasticity model with a mate-
rial having an elastic portion with modulus of elasticity E, and after 
yielding, the material remains with a constant level of stress as the 
strain increases. Model (b) is called bilinear elastoplastic, where 
the first slope corresponds to the elastic portion and, after reach-
ing the yielding, begins a new line with an inclination H associated 
with the material hardening, corresponding to the plastic domain. 
Case (c) is the nonlinear elastoplastic model, which once reached 
the yielding, the hardening shall be described by a nonlinear law.
In this paper has been used a linear and potential hardening laws. 
The linear hardening law is a generally used law, and it is defined by:

(13)

The potential law, proposed by BOUCHARD et al [14] and VAZ JR; 
ROJAS [15], is characterized by:

(14)
	

Figure 3
Representation of the Ottosen yield criterion in the 
deviatory planes using the Haigh-Westergaard 
stress space, for (a) low and (b) high hydrostatic 
stress. (PEREIRA et al.[8])

(A) (B)

Table 1
Parameters of the OTTOSEN [9]

k α β c1 c2

0.08 1.8076 4.0962 14.4863 0.9914
0.10 1.2759 3.1962 11.7365 0.9801
0.12 0.9218 2.5969 9.9110 0.9647
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where a e b are material parameters and k is the internal variable 
related to the hardening or softening.

2.4	 Cutting plane return mapping algorithm

The elastoplastic analysis requires the integration of the constitu-
tive law, so that the elastic and plastic portions of the total strain 
increment are obtained, which is an iterative process, due to the fact 
that the elastoplastic module is a function of plastic deformation. For 
the incremental nature of the numerical models of plasticity, a return 
mapping algorithm, able to obtain the update of the stresses needed 
to balance internal forces in the nonlinear analysis, must be used.
The development of efficient schemes for the integration of con-
stitutive relations in a numeric context is still subject of recent 
research in the world, mainly because of its importance in engi-
neering problems involving plastic deformation. There are a va-
riety of methods of integration with different levels of complexity 
(TAQIEDDIN [16]).
Conceptually, the idea of the algorithm is quite simple and consists 
of an explicit process that includes the first elastic equations from 
the stress in the previous step, to obtain the trial stress on the cur-
rent step.
One of the great advantages of Cutting Plane is the fact that there 
is no need to compute gradients of yielding function and harden-
ing law, as this task can be extremely cumbersome for complex 
plasticity models. The general case of this scheme involves the 
following steps:
(1)	 Assume the existence of a plastic load, i.e., , such  

that λ > 0. Define the residual plastic flow Rn+1 and the yield 
condition.

(15)

(2)	 Get increments of consistent parameters.

(16)

(3)	 Update the state variables and the consistent parameters

(17a)

(17b)

(17c)

The algorithm convergence to the final value of the state variables 
is obtained in a quadratic rate. These quadratic convergence rates 
are achieved here in spite of the simplicity provided by the method, 
which end up making the cutting plane algorithm very attractive for 
large-scale calculations in more elaborate models, mainly in the 
explicit codes that do not require the solution of a global system of 
equilibrium equations.

3.	 Formulation of constitutive models

Constitutive models typically have a proper notation and, although 
in many cases they keep similarities, the lack of unity of formula-
tions prevents a generic and objective computational implemen-
tation. The constitutive models framework proposed by PENNA 
[17] and GORI et al. [18] presents an expansion of the theoretical 
framework proposed by CAROL et al. [19], being able to contem-
plate various constitutive models - elastoplastic or elastic degrada-
tion; isotropic, orthotropic, or anisotropic - formulated with one or 
more loading functions.
Next, is presented the design for the elastoplastic constitutive mod-
els following the theoretical proposed framework. The plots neces-
sary to the description of each model are explained indicating the 
correlation between the original form and this work objectives.

3.1	 Drucker-Prager Model

The mathematical representation of the Drucker-Prager criterion is 
given by the function:

(18)

For the case of isotropic hardening, the function σ (α), used for the 

Figure 4
a) Elastic-perfectly plastic; b) Elastic-linear work-hardening model; c) Nonlinear model (MALAVOLTA [13])
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determination of parameter k (given by [7] equation) is given by:

(19)
	

in which σy is the initial yield stress, α is the accumulated plastic 
flow, and H is the strain hardening modulus.
The Drucker-Prager model is non-associative (F ≠ Q). The Drucker-
Prager non-associative law is obtained by adopting for the plastic 
potential function, a similar function to the yielding function, where-
in the angle of friction, ϕ, is replaced by dilatancy angle, ψ. 

(20)

where ψ < ϕ and    is an additional constant of material.
Therefore, F and Q gradients represented by tensors m and n are 
given by:

(21)

(22)

The inelastic modulus, obtained from a law associated with hard-
ening or softening phenomenon, is given by:

(23)

The application of Drucker-Prager model should take into account 
the existing singularity on the yielding surface, its apex. Therefore, it 
must be used an alternative solution strategy for the implementation 
of the constitutive relations integration algorithm. Various methods 
have been proposed in the context of yielding surfaces with singu-
larities like corners and vertices, such as SIMO; HUGHES [20] and 
SOUZA NETO et al. [3]. When the return occurs at the vertex, the 
yielding function (equation [18]) and plastic flow potential (equation 
[20]) should be changed to (SZABÓ; KOSSA [21]):

(24)

(25)

3.2	 Ottosen model

The Ottosen criteria is given by the following yielding function

(26)

where in σc = (σy + Hα).
The derivative of F for an isotropic material may be obtained by 
chain rule to:

(27)

in which the invariant stress derivatives are: 

(28a)

(28b)

(28c)

where, δij  is the Krönecher delta, sij  are the tensor components 
of deviatoric stress and tij is the quadratic tensor of the deviatoric 
stress. The derivatives from the yielding function in relation to in-
variants are:

(29a)

(29b)

(29c)

Figure 5
Geometry and finite element mesh for the diametral compression test
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where

(30)

(31)

(32)

(33)

the model adopted is associative (nij = mij).
The inelastic module associated with hardening or softening phe-
nomenon, is given by:

(34)

4.	 Numerical examples

4.1	 Diametral compression test

The diametral compression test is commonly used to determine 

the tensile strength of concrete and consists of applying diametri-
cally opposed loads on a cylindrical specimen in order to produce 
an indirect traction in its central region. In this sense, a plasticity 
criteria can be used to determine the failure stress. Therefore, the 
Drucker-Prager’s model with the internal approach of the Mohr-
Coulomb surface was adopted. The model geometry and loading 
conditions are specified in Figure [5]. 
The material parameters are shown in Table [2] and were based on 
the study made by CECÍLIO [22].
The finite elements model (Figure [5-b]) consists of 404 quadrilat-
eral four-nodes elements in plane strain state, with a thickness of 
300 mm and 2x2 points for integration. For the nonlinear analysis, 
direct displacement control method was adopted with increment 
of 0,00002179 mm, controlling the horizontal displacement of the 
highlighted node in Figure [5] with tolerance for convergence of  
5 × 10-3 and reference load of P = 60 kN. 
The result of stresses in the specimen’s center, while the material is in 
the elastic region may be obtained analytically depending on the ap-
plied load, P, on the diameter D and on the length L, by the equation:

(35)

The simulation was not able to describe the inelastic behavior of 
the specimen. However, the simulation could represent the mate-
rial behavior in the elastic range. Figure [6] shows the instant when 
the plastic strain appears in the specimen (step 111 of 250 steps), 
represented by the accumulated plastic flow variable, illustrating 
the elastic limit of the material.
The stress distribution is shown in Figure [7], where the condition 
of the indirect tensile test is clearly observed.
The tension stress limit in the elastic range, according to equation 
[35] on the presented conditions, is:

(36)

Table 2
Material parameters

Young’s 
Modulus (E)

Poisson 
ratio 
(ν)

Cohesion 
(c)

Inelastic 
modulus 

(H)

Frictional 
angle 

(ϕ)
20,000.0 MPa 0.20 0.9218 1,000 MPa 20°

Figure 6
Start of plastic strain

Figure 7
Distribution of stress σx
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The maximum value obtained for the tension shown in Figure [7] 
is 0.894 MPa, showing excellent agreement with the analytical 
solution. Figures [8] and [9] show the distributions of normalized 
stresses along the vertical axis of the model. The graphics of the 
Figures [8] and [9] emphasize the tension dominant state in the 
center of the specimen.

4.2	 Direct tension of a concrete plate 
	 (Dogbone-shaped panel)

This example shows a finite element model to simulate the 
experimental behavior obtained from a direct tensile test on a 
concrete flat specimen reinforced with fibers. Due to the sym-
metry, only a quarter of the plate was discretized. The bound-
ary conditions and finite element mesh adopted are presented 

in Figure [10]. The plate was discretized with 12 quadrilateral 
eight-nodes elements in plane stress state, with 3 x 3 points 
integration. 
The material is considered a cement matrix composite reinforced 
with fibers with 2% of vinyl polyvinyl acetate (PVA), according to 
PEREIRA et al. [23]. The material parameters of the experiments 
are given in Table [3].
For the numerical simulation, the Ottosen’s model with linear 
hardening law was adopted, using the generalized displacement 
control method, with initial load factor of 1,0 and tolerance for 

Figure 8
Distribution of normalized stress σx along the y axis

Figure 9
Distribution of normalized stress σy along the y axis

Figure 10
Dogbone-shaped panel – Finite element mesh, geometry and image of supports used during the test 
performed by PEREIRA et al [23]. Adapted from PEREIRA et al. [8]
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convergence of 1× 10-4. The Stress x Strain curve is shown in 
Figure [11] in comparison with the experimental results obtained 
by PEREIRA et al. [23].
The numerical model has showed capable to simulate the behavior 
of the material and was able to represent the experimental results 
with good accuracy.
Figure [12-a] shows the deformed mesh and it’s observed that the 
orthogonal lines along the longitudinal axis of the plate remained 
parallel after deformation. The pattern of evolution of displace-
ments, after reaching the yield stress obtained with the Ottosen’s 
model, implemented in this work, can be seen in Figure [12-b]. 
The results are in excellent agreement with the experimental and 
numerical results presented by PEREIRA et al. [8] (Figure [12-c]).
In order to attest the convergence behavior, 4 mesh were adopted, 
with 3, 12, 24 and 128 quadrilateral eight-nodes elements. The 
meshes are schematically represented in Figure [13].
Figure [14] shows the load factor-displacement curves. The results 
present the convergence of the solution and indicates no approx-
imation errors related to the discretization and the mesh refine-
ment. However, more tests should be performed in order to attest 
the mesh sensitivity and the general behavior of the model under 
highly refined meshes.

4.3	 Reinforced concrete beam

In this simulation, the results obtained with the elastoplastic Ot-
tosen’s model are compared to experimental tests for a reinforced 
concrete beam. The experiments were performed by MAZARS and 
PIJAUDIER-CABOT [25] in a reinforced concrete beam subjected 
to a three-point bending, showed in Figure [15].

Table 3
Material parameter of Dogbone-shape panel

Young’s modulus 
(E)

Poisson’s ratio
(ν)

Compressive 
strength 

(σc)

Initial cracking 
tensile strength 

(σt)

Tensile strength 
(σu)

Hardening modulus 
(H)

20,000.0 MPa 0.20 60 MPa 3.5 MPa 4.0 MPa 1,000 MPa

Figure 11
Numerical results obtained with Ottosen Model compared with experimental results obtained 
by PEREIRA et al. [8] 

Figure 12
Dogbone-shaped panel – (a) Deformed mesh, (b) 
displacement field obtained with Ottosen Model 
and (c) numerical results of PEREIRA et. al [8]
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The Ottosen’s criteria with potential hardening law for concrete 
was adopted. The materials parameters are given in Table [4].
For steel, the elastoplastic criterion of von Mises was adopted, as-
suming perfect plasticity and perfect bond between steel and con-
crete. The materials parameters are given in Table [5].

The Figure [16] shows the discrete model, consisting of 132 quadri-
lateral eight-nodes elements to represent the concrete, and 22 one-
dimensional three-nodes elements to represent the reinforcement.
In the analysis, the direct displacement control method was ad-
opted, incrementing of 0,001 mm the horizontal displacement of 
the supported right node, tolerance for convergence of 1 × 10-4 
and reference load P = 1,0N. The model was analyzed considering 
plane stress conditions.

Figure 13
Dogbone-shaped panel – FEM meshes with: (a) 03, (b) 12, (c) 24 and (d) 128 quadrilateral 
eight-nodes elements

Figure 14
Dogbone-shaped panel – 
load factor-displacement curves

Table 4
Reinforced concrete beam: material parameters for a concrete 

Young’s modulus 
(E) – Concrete

Poisson’s ratio 
(ν) – Concrete

Compressive 
strength 

(σc)

Initial 
cracking 

tensile 
strength 

(σt)

Tensile 
strength 

(σu)
a b k0 n

30,000.0 MPa 0.20 20 MPa 2.0 MPa 2.0 MPa 0.96 2,850.0 n 1.0

Table 5
Reinforced concrete beam: material parameters 
for a steel

Young’s Modulus 
(E)

Poisson 
ratio 
(ν)

Yelding 
(σu)

Hardening 
modulus 

(H)
210,000.0 MPa 0.30 420.0 MPa 1.0 × 10-8 MPa

Figure 15
Reinforced concrete beam
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Load-Displacement curves corresponding to the vertical displace-
ment of the point where the load is applied are shown in Figure 
[17]. The numerical results are compared to the experimental val-
ues presented by MAZARS and PIJAUDIER-CABOT [24]. 
The graphic shows good agreement between the experimental re-
sults and the results obtained with Ottosen’s model, even that the 
model presents a higher initial stiffness and a lower yielding load 
when compared with the experimental values.

5.	 Conclusion 

In this paper an elastoplastic constitutive model applied to con-
crete, emphasizing the criteria of Drucker-Prager and Ottosen, 
has been presented. In addition to the constitutive models, also 
has been presented equations for the implementation of the 
Cutting-plane return mapping algorithm, required for the inte-
gration of the constitutive relations governing the behavior of 
the material.
The constitutive models have been implemented in the computa-
tional system INSANE (INteractive Structural ANalysis Environ-
ment), according to the theoretical and computational environment 
for constitutive models developed by PENNA [17] and GORI et al. 
[18]. Classical models of associated and non-associated plasticity 
were easily incorporated in the theoretical framework, varying only 
the return algorithm according to the needs of each model.

Numerical simulations presented in order to illustrate, validate and 
emphasize the individual characteristics of each model. From the 
results presented, the following considerations can be made:
i.	 Models showed appropriate behavior, and the responses were 

consistent;
ii.	 Models showed appropriate behavior using the Cutting Plane 

return mapping algorithm;
iii.	 By analyzing all numerical simulations presented, the constitu-

tive models representing the elastoplastic behavior of concrete 
showed a good correlation among numerical, experimental 
and analytical results.
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