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Introduction

The main health issue affecting sheep around the world is 
gastrointestinal nematode infection (CHARLIER et al., 2014). 
Production rates drop due to parasitic spoliation (SCOTT et al., 2017), 

reduced voluntary food intake (VALDERRÁBANO et al., 2002) 
and efficiency of food utilization (BLACKBURN et al., 2015), 
and due to the mobilization of immune system cells to fight 
parasitism (HOSTE et al., 2005). In the attempt to control these 
diseases, anthelmintics (AH) have been used indiscriminately, 
causing them to gradually lose their effectiveness (KAPLAN & 
VIDYASHANKAR, 2012). Today, the phenomenon of anthelmintic 
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Abstract

The aim here is to present data on the efficacy of anthelmintics in sheep flocks in Rio de Janeiro, Brazil, and to 
discuss the interpretation of the fecal egg count reduction test (FECRT) for each nematode genus. Fecal eggs counts and 
pre- and post-treatment coprocultures were performed, the former to evaluate the efficacy of and the latter to determine 
the overall parasite prevalence. An additional efficacy test was performed at Farm # 1 a year after the initial test. Severe 
anthelmintic resistance was found for the flocks, with no FECRT sensitivity at any of the 22 farms evaluated. However, 
an analysis of the infective larvae showed that some drugs were effective against certain parasitic genera; i.e., levamisole 
was more effective against Haemonchus spp. and moxidectin against Trichostrongylus spp. In the additional FECRT 
performed at Farm # 1, moxidectin and nitroxynil were ineffective separately, but when applied in combination they 
were highly effective due to their efficacy against Haemonchus (nitroxynil) and Trichostrongylus (moxidectin), respectively. 
The use of the FECRT targeting the parasitic nematode species prevalent on farms may make it possible to choose more 
effective anthelmintics.
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Resumo

O objetivo deste trabalho foi apresentar dados sobre a eficácia de anti-helmínticos em rebanhos ovinos no Rio de 
Janeiro, Brasil, e discutir a interpretação do teste de redução da contagem de ovos nas fezes (TRCOF) para cada gênero 
de nematoide. A contagem de ovos fecais (OPG) e coprocultura pré e pós-tratamento foram realizadas para avaliar a 
eficácia e a prevalência geral do parasito, respectivamente. Um teste de eficácia adicional foi realizado na Fazenda # 1 
após um ano do teste inicial. Resistência anti-helmíntica grave foi encontrada, não havendo sensibilidade no TRCOF 
em nenhuma das 22 fazendas avaliadas. No entanto, na análise das larvas infectantes observou-se que algumas drogas 
foram eficazes contra certos gêneros parasitários; por exemplo, o levamisol foi mais eficaz contra Haemonchus spp. e a 
moxidectina contra Trichostrongylus spp. No TRCOF adicional realizado na Fazenda 1, a moxidectina e o nitroxinil foram 
ineficazes separadamente, mas quando aplicados em combinação, foram altamente eficazes devido à sua eficácia contra 
Haemonchus spp. (nitroxinil) e Trichostrongylus spp. (moxidectina), respectivamente. O TRCOF visando às espécies de 
nematoides parasitas prevalentes nas fazendas pode possibilitar a escolha de anti-helmínticos mais eficazes.
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resistance (AHR) to the various classes of drugs in sheep is reported 
in several regions of the world (TORRES‑ACOSTA et al., 2012; 
GEURDEN et al., 2014; SALGADO & SANTOS, 2016), including 
to those most recently launched on the market (SCOTT et al., 
2013; CINTRA et al., 2016).

AHR is difficult to detect in herds because it is caused by an 
increase in the frequency of resistance alleles through the selection 
imposed by the repeated use of a given AH (FLEMING et al., 2006). 
Sheep are hosts to a wide variety of gastrointestinal nematodes that 
cause clinical symptoms depending on the prevalence of each species, 
which varies as a function of climate and herd management system 
(ROSE VINEER et al., 2016). The most prevalent nematodes in 
most of Brazil are Haemonchus spp., Trichostrongylus spp., Cooperia 
spp., Oesophagostomum spp. and, in subtropical regions, Teladorsagia 
spp. (AMARANTE, 2014). Identifying parasite populations in 
the herd has become increasingly important in monitoring the 
spread of AHR in target nematode species and to keep track of 
changes in parasite prevalence resulting from climate variations 
(ROEBER et al., 2017).

Thus, the control of gastrointestinal nematode infections 
requires an in-depth understanding of parasite epidemiology and 
of the production system, including characteristics inherent to the 
animal and environment (SALGADO et al., 2018). It is also of 
paramount importance to preserve the effectiveness of compounds 
(ALBUQUERQUE et al., 2017) by implementing more sustainable 
practices (EASTON et al., 2018). Constant research focuses on 
parasite management approaches aimed at lowering AHR, such 
as methods of selective control (CHAGAS et al., 2016), pasture 
management systems (BURKE et al., 2009), refuge management 
(MUCHIUT  et  al., 2018) and selection of parasite resistant 
animals (AGUERRE et al., 2018). Nevertheless, at some point, 
AH are inevitably needed for the effective control of parasitic 
gastroenteritis (HAMER et al., 2018).

In this scenario, how can the producer choose the most suitable 
anthelmintic? It is essential to test the active substances beforehand 
so as to use the most effective one possible, with greater than 95% 
efficacy (COLES et al., 2006). AH efficacy can be determined 
by several methods, but notwithstanding a few limitations, the 
phenotypic fecal egg count reduction test (FECRT) is still the 
one most widely used in the field (LEVECKE et al., 2018). This 
test consists of counting the fecal eggs of animals before and 
after AH treatment, and it is recommended to do a fecal culture 
test to determine the species or genus of nematode resistant or 
susceptible to the evaluated product (COLES & ROUSH, 1992), 
although this is not a common practice. Considering the parasitic 
diversity in sheep and the differences in pathogenicity and AHR, 
it is important that the interpretation of FECRT be increasingly 
specific (MCINTYRE et al., 2018). There is also growing interest 
in the use of combined anthelmintics to achieve a better efficacy 
index (KOTZE et al., 2018), but the choice of this combination 
must be based on greater diagnostic precision. In this context, the 
purpose of this paper is to present data on the efficacy of AH drugs 
in sheep flocks in the state of Rio de Janeiro, Brazil, addressing 
the interpretation of FECRT for each genus of nematode in the 
search for the better use of tested drugs.

Material and Methods

Data and farms

Data were collected in the state of Rio de Janeiro, southeastern 
Brazil. Twenty-two farms distributed all over the state, each 
having at least 60 sheep, participated in the AH efficacy test. 
Predominantly healthy Santa Ines ewes and crossbred sheep were 
tested on each farm.

Fecal Egg Count Reduction Test (FECRT)

Five drugs were evaluated: albendazole, levamisole, ivermectin, 
moxidectin and closantel. Efficacy levels were evaluated based 
on the FECRT, as described by Coles & Roush (1992) and 
Coles et al. (2006). The animals were divided randomly into 
groups of 10-15 per AH, weighed, and then treated subcutaneously 
with the dose recommended by the manufacturer: ivermectin 
(0.2 mg/kg of body weight (bw), moxidectin (0.2 mg/kg bw), 
albendazole (3.4 mg/kg bw), levamisole (6.2 mg/kg bw) and 
closantel (10 mg/kg bw). These drugs were the most frequently 
used AH in sheep flocks in the state of Rio de Janeiro. Fecal 
samples were collected directly from the recta of animals on day 
zero and 14 days after administration of the AH and refrigerated 
until examination. The number of Strongyle eggs per gram of 
feces (EPG) from each animal was counted following the modified 
technique proposed by Gordon & Whitlock (1939). Fecal cultures 
from each group of tested animals were performed pre‑and 
post-treatment for each AH. Fecal cultures were performed as 
described by Bonadiman et al. (2006) to determine the genera 
of the predominant nematodes resistant to the AH treatments. 
Larvae were morphologically identified as described by Van Wyk 
& Mayhew (2013).

The drug efficacy against each genus was calculated based 
on the difference in EPGs and infective larvae on day zero and 
14 days after treatment, and an AH was considered efficacious if 
it reduced the EPG by 95% (COLES et al., 2006).

Farm # 1 was reevaluated one year after the initial efficacy 
test. The last drugs used on the farm (closantel and levamisole), 
as well as nitroxynil (34 mg/kg BW,) were tested separately and 
in combination with moxidectin.

Statistical analysis

AH efficacy was estimated using an adapted version of the 
analytical software RESO FECRT, version 2.0 (WURSTHORN 
& MARTIN, 1990). A diagnosis of resistance was reached when: 
(i) the percentage reduction in egg count was less than 95%, and 
when (ii) the 95% confidence interval (lower and upper 95%) was 
less than 90%. If only one of the two criteria was met, resistance 
was suspected (low resistance), according to Coles & Roush (1992) 
and Coles et al. (2006). Efficacy data are presented in the form 
of box plots and descriptive figures.
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Results

Table 1 lists the efficacy data, % reduction in FECRT, and 
EPG one day prior to treatment (D0) and 14 days post-treatment 
(D14) of the five AH tested at the 22 sheep farms in the state of 

Rio de Janeiro, Brazil. According to the criteria adopted, ≥95% 
and confidence interval (CI) lower and upper 95%, none of the 
tested drugs proved efficacious on any of the evaluated farms.

According to the result of the RESO analytical program, all the 
farms with ≥95% efficacy showed “Low Resistance” due to the CI. 

Table 1. Efficacy (%), 95% confidence interval (CI), mean EPG pre (D0) and post (D14) treatment at 22 farms in the state of Rio de Janeiro, 
Brazil.

Flock

Ivermectin Moxidectin Levamisole Closantel Albendazole

Mean EPG Efficacy Mean EPG Efficacy Mean EPG Efficacy Mean 
EPG Efficacy Mean EPG Efficacy

(D0-D14) (CI) (D0-D14) (CI) (D0-D14) (CI) (D0-D14) (CI) (D0-D14) (CI)
1 967-1417 0 1269-462 65 1269-462 95 1150-525 54 783-158 (45-93) 80

(0-29) (30-81) (86-98) LR (0-86)
2 975-1067 0 1292-1442 0 1292-1442 97 167-322 72 486-186 (19-82) 62

(0-60) (0-63) (84-99) LR (29-89)
3 475-708 0 722-289 60 722-289 49 733-13 95 400-80 (0-98) 80

(0-34) (0-92) (0-82) (81-99) LR
4 580-970 0 533-820 0 533-820 77 664-464 30 2508-383 (15-97) 85

(0-41) (0-61) (26-96) (0-63)
5 986-1386 0 1888-688 64 1888-688 51 1640-1010 38 3000-2929 (0-87) 2

(0-56) (0-88) (0-88) (0-77)
6 533-467 13 833-433 48 833-433 91 460-170 63 325-213 (0-86) 35

(0-82) (0-95) (60-98) (0-89)
7 730-310 58 486-329 32 486-329 48 833-433 48 760-840 (0-74) 0

(0-88) (0-83) (0-87) (0-76)
8 538-725 0 1067-422 60 1067-422 95 975-213 78 1625-238 (32-97) 85

(0-58) (0-92) (79-99) LR (7-95)
9 600-156 74 1063-125 88 1063-125 93 1250-725 42 4067-1044 (0-96) 79

(31-90) (49-97) (75-98) (0-79)
10 1086-414 62 300-833 0 300-833 95 800-850 0 650-470 (0-63) 28

(0-89) (0-15) (86-99) LR (0-0)
11 1114-1129 0 1388-163 88 1388-163 62 986-229 77 2700-1671 (0-87) 38

(0-79) (36-98) (0-86) (29-92)
12 4500-5767 0 617-717 0 617-717 73 1538-625 94 771-400 (0-86) 48

(0-62) (0-79) (28-90) (0-91)
13 1967-633 68 1871-71 96 1871-71 92 2189-600 73 1438-663 (0-89) 54

(15-88) (74-99) LR (75-98) (26-90)
14 570-840 0 988-638 35 988-638 57 443-157 65 700-640 (0-67) 9

(0-38) (0-73) (0-91) (14-85)
15 1556-889 43 540-20 96 540-20 96 820-260 68 889-1167 (0-53) 0

(0-86) (84-99) LR (86-99) LR (42-83)
16 590-540 8 283-383 0 283-383 0 333-200 40 638-338 (0-87) 47

(0-71) (0-46) (0-54) (0-73)
17 4500-5767 0 3450-2813 21 3450-2813 0 2644-1111 58 2000-2657 (0-63) 0

(0-62) (0-73) (0-53) (6-81)
18 4500-5467 0 571-1243 0 571-1243 0 1083-617 43 300-400 (0-49) 0

(0-62) (0-48) (0-0) (0-76)
19 1775-1600 10 1100-117 89 1100-117 53 780-300 62 1650-1017 (0-89) 38

(0-55) (38-98) (0-87) (0-93)
20 5680-5800 0 1100-117 89 1100-117 43 1457-557 62 583-583 (0-56) 0

(0-72) (65-97) (0-71) (0-89)
21 880-380 57 380-40 89 380-40 68 340-20 94 1750-1450 (0-54) 17

(5-80) (56-97) (0-92) (75-99)
22 233-300 0 200-517 0 200-517 89 425-150 65 457-357 (0-74) 22

(0-19) (0-24) (53-97) (1-87)
LR: low resistance. The unmarked farms were resistant to the drugs tested.
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This finding applied to Farm # 3 for Closantel, on Farms 13 and 15 
for Moxidectin, and Farms 1, 2, 8, 10, and 15 for Levamisole. 
Resistance against Albendazole and Ivermectin was found at all 
the farms.

The parasite with the highest prevalence in the herds under 
study was Haemonchus spp. The average percentage of genera 
identified in the first fecal culture from the 22 farms was 75% 
Haemonchus spp., 20% Trichostrongylus spp., 3% Cooperia spp. 
and 2% Oesophagostomum spp. The genus Strongyloides was 
identified at 35% of the farms, but was not quantified in fecal 
cultures. Trichostrongylus was predominant only at Farms 1 and 6.

Figure 1 summarizes the specific efficacy, separated by nematode 
genus, of the five AH drugs employed at the 22 aforementioned 
farms. The most effective drugs against Haemonchus were levamisole 
(65% average and 79% median efficacy) and closantel (62% 
average and 65% median). Macrocyclic lactones (ivermectin and 
moxidectin) were more effective against Trichostrongylus spp., with 
an average of 68% and 73%, respectively, and a median of 86% 
and 97%, respectively. The least drug resistant nematodes were 
Cooperia spp. and Oesophagostomum spp. Only closantel presented 

low efficacy levels (61% and 64%, respectively), as expected of this 
anthelmintic due to its specific spectrum against hematophagous 
nematodes. However, the calculation of efficacy may have been 
impaired by the low prevalence rates of these nematodes.

Table 2 lists the number of farms (among the 22 under study) 
that showed Resistance (R), Low Resistance (LR) or Susceptibility 
(S) to the five drugs subjected to the FECRT by the prevalent 
parasites, namely, Haemonchus and Trichostrongylus, which were 
identified at all the farms. The efficacy status (R, S or LR) of all 
the drugs varied according to the parasite genus, and the number 
of farms with status (R) decreased in a specific calculation of each 
nematode genus.

Table 3 lists the farms where the FECRT and the fecal cultures 
produced different results. Although the FECRT showed no efficacy, 
the fecal cultures showed susceptibility (S) of Trichostrongylus at 
farms 2, 3, 4 and 15 and of Haemonchus at farms 9 and 15.

Figure  2 illustrates the results of the first evaluation of 
anthelmintic efficacy based on the FECRT and infective larvae at 
Farm # 1 and the results after one year of application of the most 
effective anthelmintic. In the first evaluation, the parasite population 

Figure 1. Distribution of anthelmintic efficacy against (a) Haemonchus, (b) Trichostrongylus, (c) Cooperia and (d) Oesophagostomum of the five 
drugs tested on 22 farms in the state of Rio de Janeiro, Brazil. The horizontal lines represent median values, the “x” represent arithmetic means, 
and the points represent outliers. Anthelmintics: IVE: ivermectin, MOX: moxidectin; LEV: levamisole; CLO: closantel; ALB: albendazole.
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consisted of 63% Trichostrongylus, 35% Haemonchus and 2% 
Oesophagostomum. The last drug used at this farm was closantel, 
and the most effective drug in the FECRT was levamisole (95% 
– Table 1 and Figure 2A). A year later, in the second evaluation, 
the parasite population consisted of 60% Haemonchus spp., 35% 
Trichostrongylus spp. and 5% Oesophagostomum spp. The efficacy 
of levamisole in the FECRT decreased in one year from 95% to 
75%, and Haemonchus spp. was the most drug-resistant parasite 
(Figure 2B). Nitroxynil attained 78% efficacy in the FECRT and 
98% efficacy against Haemonchus, but its spectrum of action did 
not include the other parasites. On the other hand, moxidectin 

showed 60% efficacy in the FECRT (similar to the preceding year), 
and was effective against Trichostrongylus and Oesophagostomum 
(100%). The combination of nitroxynil and moxidectin resulted 
in an overall efficacy of 98% and was highly effective against all 
the nematode genera identified at that time.

Discussion

Severe AHR was diagnosed at 22 sheep farms located in 
the state of Rio de Janeiro, Brazil. The findings of this study 
are consistent with those reported by Cruz et al. (2010), who 

Table 3. Efficacy (%) of the anthelmintics on the farms where differences were found in the FECRT and larval population.

FECRT(%) Efficacy per nematode genus (%) Larval population % (D0)
Flock Drug Hc. Tric. Coo. Oes. Hc. Tric. Coo. Oes.

2 Alb. 62 (R) 58 (R.) 100 (S.) . . 74 26 0 0
3 Lev. 49 (R) 47 (R.) 100 (S.) . . 85 15 0 0
4 Mox. 0 (R) 0 (R.) 100 (S.) . 100 (LR.) 78 22 0 0
9 Clos. 42 (R) 100 (S.) 65 (R.) 0 (R.) 0% 59 31 8 2
15 Mox. 96 (LR) 96 (LR.) 100 (S.) 100 (LR.) 100 (LR.) 86 1 1 12
15 Lev. 96 (LR) 97 (S.) 20 (R.) 100 (LR.) 100 (LR.) 95 6 1 3

Drugs: Alb: albendazole, Lev: levamisole, Mox: moxidectin, Clos: closantel. D0: Population of nematode larvae on day zero of the anthelmintic test Nematodes genus: 
Hc.: Haemonchus sp., Tric.: Trichostrongylus sp., Coo.: Cooperia sp., Oes.: Oesophagostomum sp. Efficacy Status: R: resistant, S: susceptible and LR: Low resistance.

Table 2. Number of farms, of the 22 farms, where Resistance (R), Low Resistance (LR) or Susceptibility (S) to the five tested drugs was 
identified in the FECRT and by Haemonchus and Trichostrongylus.

Drugs
FECRT Haemonchus Trichostrongylus

R LR S R LR S R LR S
Ivermectin 22 0 0 22 0 0 20 1 2
Moxidectin 20 2 0 20 1 1 12 1 9
Levamisole 19 3 0 16 4 2 16 3 3
Closantel 21 1 0 19 1 2 22 0 0
Albendazole 22 0 0 21 1 0 19 0 3

Figure 2. Anthelmintic efficacy in sheep at Farm # 1 in the first year of evaluation (A) and after one year of use of levamisole (B). The lines 
represent the effectiveness (measured by the FECRT). The percentage of prevalent parasite populations in each year is shown in parenthesis 
next to the names of parasite genera. Anthelmintics: IVE: ivermectin, MOX: moxidectin; LEV: levamisole; CLO: closantel; ALB: albendazole; 
NIT: nitroxynil.



Optimization of the FECRT for better use of drugsv. 28, n. 4, oct.-dec. 2019 705/707   705

diagnosed management failures and AHR in a herd in the north 
and northwest of the state. This study, which evaluated a larger 
number of sheep (1300) from flocks distributed throughout the 
state, represents the most extensive study involving the diagnosis 
of AHR in sheep in Rio de Janeiro.

The results confirm the serious situation of multiple AHR 
in Brazil. Salgado & Santos (2016) compiled 47 reports of 
failed efficacy (measured by the FECRT) in small ruminants 
in the country, of economic importance in the regions with 
the largest number of herds, such as the northeast (goats) 
and the south (sheep). There are numerous similar reports of 
AHR worldwide, with emphasis on the countries where sheep 
production is significant, such as Australia, the UK, New 
Zealand and Uruguay (FALZON  et  al., 2014). Resistance 
to active substances can be established rapidly, even after the 
introduction of new molecules, especially in the absence of 
alternative control programs (OLIVEIRA et al., 2017).

Therefore, considering that many AH do not reach the expected 
efficacy of at least 95% (COLES et al., 2006), the accurate diagnosis 
of parasitism and of the degree of effectiveness of AH is becoming 
increasingly necessary, as is the transmission of affordable control 
strategies to rural producers (LEARMOUNT  et  al., 2018). 
None of the AH available on the local market was effective 
(≥95% and CI≥90) at any of the farms where the FECRT test 
was applied in this study. In this situation, which is common in 
other regions of Brazil and around the world, and considering 
the difficulty of launching other classes of AH drugs, it is crucial 
for veterinarians to know how to work with whatever tools are 
available at the time, considering the epidemiology of these 
parasites. This was clearly shown by the efficacy tests aimed at 
the parasite population present in the group of tested animals, 
which revealed differentiated efficacy against the prevalent 
parasites, including susceptible genera.

Four genera of nematodes were prevalent in the analyzed herds, 
in descending order: Haemonchus, Trichostrongylus, Cooperia and 
Oesophagostomum, which are also prevalent in other regions of 
Brazil (AMARANTE et al., 2014). In this study, specific efficacy 
against Haemonchus influenced the FECRT results, due to its high 
prevalence. The AH that presented the highest overall reduction 
in FECRT was levamisole, given that it also presented higher 
efficacy against Haemonchus. This drug is widely used to control 
nematodes in ruminants, and was found to be the most effective 
in a study of 30 sheep flocks, also in the state of São Paulo, in 
southeastern Brazil (VERÍSSIMO et al., 2012).

Trichostrongylus was prevalent at Farms 1 and 6 of this study. 
Wilmsen et al. (2014) reported the prevalence of Haemonchus and 
Trichostrongylus in sheep in southeastern Brazil, with Trichostrongylus 
being the most prevalent due to its resistance to drought and low 
temperatures. This is an interesting fact, given that Farm # 1, 
for instance, is close to the other farms (3, 4, 5). Moreover, the 
data were collected in the same season; hence, the prevalence of 
Trichostrongylus was influenced not only by the climate. In an 
investigation of the AH drug management practices at this farm, 
the producer reported that closantel was the last drug used over a 
one year period, so the management of antiparasitics may have had 
a positive effect on Trichostrongylus populations, since closantel 
is recommended against hematophagous parasites (LANUSSE, 

1996). Thus, parasite dynamics also changes as a result of AH 
drug management practices.

Overall, Trichostrongylus spp. were more sensitive to macrocyclic 
lactones, particularly moxidectin. Therefore, in the cases under study, 
these drugs showed a promising potential for use in situations where 
this parasite is highly prevalent, or in combination with another 
drug highly effective against the other parasites. However, previous 
testing is always necessary, as resistance of Trichostrongylus spp. has 
already been reported even to new drugs such as monepantel, for 
example (CINTRA et al., 2016; HAMER et al., 2018).

The monitoring of Farm # 1 for one year yielded important 
information about parasite dynamics regarding the evolution of 
drug efficacy. At the time of the first test, Trichostrongylus spp. was 
prevalent in the herd, and the most effective drug was levamisole 
(95%), whose use was therefore implemented. After one year, 
the tests were repeated based on the proportion of genera then 
present, when Haemonchus spp. was prevalent and levamisole 
showed 75% efficacy. Due to the decline in efficacy, drugs with 
potential efficacy were tested, such as nitroxynil (commercially 
available at the time of testing) and whose spectrum is aimed more 
at hematophages, and moxidectin, which had previously shown 
a good response against the other parasites. Thus, nitroxynil was 
effective (>95%) against Haemonchus spp. and moxidectin against 
Trichostrongylus spp. Since none of these drugs, alone, were more 
than 95% effective in the FECRT, a combination of nitroxynil 
+ moxidectin was tested, resulting in 98% efficacy against the 
parasites identified at Farm # 1.

It should be noted that the aim here is not to encourage the 
indiscriminate use of combinations of drugs, but to suggest the 
possibility of effective treatment for livestock when none of the 
available drugs is effective separately. Given the difficulty of launching 
new drugs, there is growing interest in the combined use of drugs 
(KOTZE et al., 2018). However, the pharmacological interactions 
of these combinations must be considered (LANUSSE et al., 2018).

The efficacy of narrow spectrum drugs may be impaired in 
herds where there is a high percentage of other parasites, as was 
the case of nitroxynil at Farm # 1. For example, at Farm # 9 
(Table 3), where closantel had never been used, it reduced 100% 
of the Haemonchus spp. population, but it was not effective overall 
because of the prevalence of other parasites that represented 41% 
of the parasite population at the time, and against which this drug 
was ineffective. Note that the results presented here are specific 
to each farm at the time of the tests and cannot be extrapolated 
to other herds.

In addition to specific diagnoses, constant parasitological monitoring 
of farms with adequate antiparasitic management is important to 
ensure better use of available drugs (MCINTYRE et al., 2018). 
Chagas et al. (2016) used levamisole on a herd for five consecutive 
years in a scheme based on selective treatment (EPG>4000, 
FAMACHA 4 or 5 and/or PCV<20%) of periparturient sheep and 
lambs after weaning, and found that effectiveness dropped from 
100 to 70%. Thus, it is important to have trained professionals 
acting as advisors for rural producers to improve the practices of 
anti-parasite management (VANDE VELDE et al., 2015). It is 
also important that guidelines given to producers be clear and easy 
to understand, since they are a critical link in the dissemination of 
knowledge and promotion of diagnosis (EASTON et al., 2018).
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Conclusions

The AH evaluation in 22 sheep flocks in the state of Rio de 
Janeiro, Brazil showed high levels of resistance and the efficacy 
based on egg count reduction differed from efficacy calculated by 
nematode genera. Thus, a more specific interpretation of efficacy 
tests increases the ability to choose drug combinations based on 
species differences in resistance levels.
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