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Abstract: The Scott-Knott cluster analysis is an alternative approach to mean 
comparisons with high power and no subset overlapping. It is well suited for 
the statistical challenges in agronomy associated with testing new cultivars, 
crop treatments, or methods. The original Scott-Knott test was developed to 
be used under balanced designs; therefore, the loss of a single plot can signifi-
cantly increase the rate of type I error. In order to avoid type I error inflation 
from missing plots, we propose an adjustment that maintains power similar to 
the original test while adding error protection. The proposed adjustment was 
validated from more than 40 million simulated experiments following the Monte 
Carlo method. The results indicate a minimal loss of power with a satisfactory 
type I error control, while keeping the features of the original procedure. A 
user-friendly SAS macro is provided for this analysis.   
Key words: Type I error rate, unequal number of observations, Monte Carlo 
simulations, means clustering procedures, SAS macro.
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INTRODUCTION

A common problem in plant breeding is comparison of new genetic 
combinations. In order to detect significant difference among treatments, several 
Multiple Comparison Procedures (MCP) were developed: LSD (Fisher 1935), 
Tukey (1949), SNK (Student 1908, Newman 1939, Keuls 1952), Scheffé (1953), 
and Duncan (1955). Nonetheless, all these procedures can result in groups 
overlapping, where one treatment ends up belonging to two or more groups 
simultaneously (Calinski and Corsten 1985). This behavior usually prevents a 
clear division of the whole set into two or more groups of treatments and also 
leads to a more complex simultaneous analysis of multiple variables due to 
the presence of overlapping subsets. Thus, selection for advancement of new 
genetic combinations to the next step in the plant breeding program requires 
extra effort to overcome this statistical issue. 

Cluster analysis is a promising solution to avoid subset overlapping from 
widely-used MCP (O’Neill and Wetherill 1971, Plackett 1971). One example 
of an intuitive and satisfactory approach, avoiding subset overlapping, is the 
use of cluster analysis over the Mahalanobis generalized distance (Rao 1952). 
Additionally, clustering techniques can be applied to taxonomy purposes since 
they have high affinity to Hotelling’s Principal Component Analysis and Fisher’s 
Discriminant Analysis (Hotelling 1933, Fisher 1936, Edwards and Cavalli-Sforza 
1965). 
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In 1974, Alastair J. Scott and Martin Knott publicized their idea of using the Maximum Likelihood (ML) ratio test to 
evaluate the significance of partitions from cluster analysis of sample treatment means in designs with an equal number 
of observations per treatment (Scott and Knott 1974). The first review of methods for Scott-Knott means separation 
suggesting their use in agronomics was provided several years afterward (Chew 1976). The Scott-Knott approach is an 
alternative to the MCP in a situation in which two or more internally homogenous subsets of sample treatment means 
are expected. It uses a univariate form of the divisive clustering procedure (Edwards and Cavalli-Sforza 1965) with a 
likelihood ratio test for determining when to stop the clustering process to create non-overlapping, distinct, and exclusive 
subsets of sample treatment means. The process orders the treatment means to minimize the number of possible 
treatment mean partitions to be pondered (Fisher 1958) and then maximizes the sum of squares between clusters to 
determine the best partitioning. Despite a significant increase in the calculation volume for every additional treatment 
even after the ordering of treatment means, it is still feasible, even manually, if the number of partitions remains lower 
than 12 (Scott and Knott 1974).  Indeed, the computations are more onerous than an MCP (Carmer and Walker 1985). 
Nevertheless, it should not be a problem for any modern computer (Gates and Bilbro 1978). 

Some procedures with the same idea of partitioning means into non-overlapping groups were published after 
Scott-Knott (1974). These procedures presented variations in regard to the decision-making process and the clustering 
logic, ranging from agglomerative to divisive, hierarchical to non-hierarchical, but all of them ensure groups with no 
overlapping (Jolliffe 1975, Cox and Spjotvoll 1982, Calinski and Corsten 1985, Bozdogan 1986, Bautista et al. 1997, Di 
Renzo et al. 2002, Ciampi et al. 2008). 

Many researchers prefer cluster analysis in order to facilitate interpretation and presentation of results since it 
results in non-overlapping, distinct, mutually exclusive groupings of the observed treatment means (Gates and Bilbro 
1978, Carmer and Lin 1983, Calinski and Corsten 1985, Carmer and Walker 1985). This advantage is very clear when it 
is necessary to evaluate more than one variable simultaneously because the test easily allows for a positive selection 
of primary traits and a negative selection for any traits remaining to be evaluated. It can be effortlessly performed over 
the clustered data with multiple variables by initially applying filters to keep only higher performance clusters for the 
most important trait (i.e. yield) and then by removing some clusters of lower performance in the variables of secondary 
importance (i.e. plant height, biomass, etc.). This procedure should result in a highly reduced subset of treatments that 
present higher performance for the top priority trait, with a desirable level for the secondary traits. 

An early evaluation of the Scott-Knott test with agglomerative procedures under scenarios where there is more 
than one true group of treatment means, or partial true null hypothesis (p-H0), exposed the lack of an appropriate 
experimentwise type I error control. The result of simulations suggested that the test should be used only when the 
experiment has been performed with great precision, and it may be unsuitable for experiments where use of MCP would 
be considered inappropriate, such as those whose design and purpose suggest meaningful, orthogonal, linear contrasts 
with a single degree of freedom among the treatment means. However, the Scott-Knott test exhibited a higher ability 
to correctly reject the null hypothesis (power) and detect small differences between treatments than even the LSD test 
(Willavise et al. 1980). 

Moreover, the Scott-Knott test has the highest rate of correct decisions and aptitude for improving performance as 
the number of treatments increases, in comparison with the SNK, Duncan, t-student, and Tukey tests (Silva et al. 1999, 
Borges and Ferreira 2003). The test exhibits higher than nominal type I error rate when evaluated in simulated scenarios 
in which the null hypothesis (H0) is false for some treatments (p-H0), although for scenarios where the null hypothesis is 
true for all treatments, the empirical type I error rate is under nominal levels even for the experimentwise type I error 
rate (Di Renzo et al. 2002, Borges and Ferreira 2003). 

The Scott-Knott test also provides higher robustness compared to the MCP tests for mean separation in non-Gaussian 
distributions (Borges and Ferreira 2003). Despite the lack of control of type I error, the test demonstrates much higher 
Power than any MCP, although these two features, high robustness and power, are very common to most cluster analyses 
(Bautista et al. 1997, Silva et al. 1999, Di Renzo et al. 2002, Borges and Ferreira 2003). The Scott-Knott test displays similar 
type I and type II error in comparison to Bautista et al. (1997) and Di Renzo et al. (2002). However, its performance is 
superior to that of Jollieffe (1975) (Di Renzo et al. 2002).

Group homogeneity can be improved by changing the clustering approach from divisive to non-grouped treatment 
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clustering (Bhering et al. 2008). It usually reduces the number of significantly different clusters - slightly increasing the 
number of treatments grouped in each one of the different clusters. In spite of this drawback, this consequence can be 
useful in plant breeding scenarios in which positive selection followed by retesting is applied, since it can shift a small 
number of treatments from an inferior cluster to a superior one. 

Since most plant breeding designs are unbalanced, the objective of this research is to adjust and validate the Scott-
Knott test in order to allow its use in experiments under partially balanced incomplete block designs or balanced designs 
with missing plots, since the non-adjusted procedure is only applicable to balanced designs. This paper proposes a novel 
solution for use of the Scott-Knott test under unbalanced designs followed by its validation. In order to ease its use, a 
user-friendly macro for the SAS/STAT® software is also provided. 

MATERIAL AND METHODS 

Description of the proposed adjustment procedure 
The original Scott-Knott (1974) test begins by ranking all the k treatment means to be grouped and then by calculating 

B0 from the k treatments partitioned in two smaller subsets. The B0 value is calculated for every k – 1 possible partition, 
and the partition with the highest value of B0 is tested using λ as two distinct subsets of treatment means. The test uses 
the circumference constant π (=3.14159…) and related adjusts to approximate the λ distribution to the χ2 distribution. 

If the chi-square test with  ( k
π–2 ) degrees of freedom rejects the null hypothesis, the process repeats; each one of these 

distinct subsets is, in turn, further subdivided until each of the final clusters is shown to be homogeneous by a likelihood 
ratio test on λ. 

(i)

The statistic λ (i) depends on B0 , which is the maximum value from the sum of squares of all the possible partitions 
of k treatments into two groups, and on σ̂  2

0 , which is the maximum likelihood estimator of σ2 for treatments under the 
null hypothesis. 

Equation (ii) shows how υs2 is used where s2 represents an unbiased estimator of σ2 associated with υ degrees of 
freedom, yi is the treatment mean i, and y is the mean of all k treatments. The variable n is the number of replications, 
or the total number of blocks according to the experimental design. 

(ii)

Since the full Means Square Error (MSE) model is a good measure of variance, it is used as a satisfactory term for 
estimation of s2. 

Equation (iii) shows the relation between the unbiased estimator s2 and the Standard Error of the Mean 
SEy, where RMSE is Root Mean Square Error. It is valid only under an equal number of observations for every 
treatment (n1 = n2 = ... = nk). Additionally, under a balanced experimental design, SEy has the very same value for every 
treatment and leads to equation (iv), the base of the proposed adjustment, where the mean of the sum of the squares 
of SEy estimates s2. 

(iii)

(iv)
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Moreover, equation (iv) used in a balanced experimental design can be modified and expressed as equation (v), where 
a different number of observations for every treatment is also permitted. After the modification, the corrected unbiased 
estimator of s2

c  can change according to the SEyi of treatments in the partitioned set. Thus, in order to accommodate 
subsets of treatments with unequal and equal numbers of observations, s2

c  should be calculated for every null hypothesis 
before testing the statistic λ against a χ2 distribution with the associated υ degrees of freedom. Hence, for every clustering 
step, s2

c  can change to adapt to the number of observation of each treatment in the current clustering process. 

(v)

Along with correction of s2
c , the raw treatment mean yi should be replaced by ŷi , which is the treatment mean adjusted 

to the effect of the unequal number of replications/blocks. The following changes in the original procedure are minimal 
and are disclosed in equations (vi). The notation λc should be used to identify λ statistics while using the correction even 
though the testing process against the χ2 distribution remains the same as the original procedure. 

(vi)

As expected, the correction increases the σ̂  2
0c value as the number of observations per treatment decreases - lowering 

the final λc value. This leads to a lower probability of rejecting the null hypothesis, which protects the test from the 
type I error. The unbalanced treatment adjustment maintains the same features and results as the original method in 
balanced treatment scenarios. Indeed, s2

c only changes for clusters in an unbalanced condition (i.e., missing plots). When 
clustering the same experiment, after partitioning all treatment means with missing plots, the remaining clusters should 
have the same s2

c value. It is important to keep in mind that since the process follows a hierarchical clustering sequence, 
the very same subset of treatment means with an unequal number of observations can be partitioned multiple times 
before composing the final specific cluster.  Indeed, the calculation of s2

c for every candidate partition that challenges 
the χ2 distribution makes the adjustment hard to be calculated manually, but it provides satisfactory protection to the 
original Scott-Knott test without a significant reduction in power.  

Validation of the proposed adjustment procedure
The s2

c deduction can indicate how the correction affects the Scott-Knott test; nevertheless, it is necessary to quantify 
and compare the power and type I error of the adjustment while using it. in order to validate the proposed adjustment, 
use of the Monte Carlo method (Metropolis and Ulan 1949) is a suitable option to simulate experiments with known 
parameters and then evaluate the results by comparing the original test against the adjusted solution for unbalanced 
designs (Carmer and Swanson 1971, Silva et al. 1999, Borges and Ferreira 2003). For that purpose, more than 40 million 
experiments were simulated for multiple unbalanced levels combined with several α values. The simulation scheme 
is composed of three main branches: complete H0 (μ1 = μ2 = μ3 = ... μI ), partial H0 (μ1 = ... = μI/2 ≠ μ(I/2+1) = ... μI ), and 
complete alternative hypothesis H1 ( μ1 ≠ μ2 ≠ μ3 ≠ ... μI ). The first branch was used only to quantify type I error and the 
third only to measure power, while the second branch measures type I error and power. 

All three branches contained nine levels of α (0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, and 0.20). Within each 
α level, there were ten levels of missing data (0.00, 0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, and 0.20). Since the 
second and third branches were used to evaluate the test Power they also exhibited four (1, 2, 3, and 4) levels of δ (true 
difference between two treatment means). In order to improve the robustness of the study, 50,000 experiments were 
simulated for all 810 Monte Carlo simulation setups across all three branches, culminating in a total of 40.5 million 
simulated experiments. 

Furthermore, every simulated experiment was composed of a random number of blocks (3 to 20) and a random 
number of treatments (4 to 100). Experiments with a number of observations lower than 50 were replaced to avoid a 
small number of degrees of freedom after data removal at random to reach the required missing level. The number of 
both blocks and treatments were from a uniform distribution. The effects of block and observation error were from a 
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normal distribution with a mean of zero and a standard deviation of one. The differences between subsets were defined 
as the product of δ and σx (standard error of the mean). After each experiment was generated, some plot values were 
removed at random. As the simulation removed plots randomly with no restriction, the minimum number of plots was 
set to one per treatment to avoid treatments with no plots. 

Instead of measuring type I error per comparison, it was measured per experiment, a situation in which rejection 
of a single incorrect null hypothesis in an experiment scores as experimentwise type I error. This approach is more 
severe and general because it does not consider the number of treatments in the experiment (i.e., a higher number of 
treatments promotes an even higher number of contrasts, and it implies a higher probability of type I error). However, 
this approach should be able to make a better distinction between the original and adjusted procedures. Converging 
results were expected for both procedures (original and adjusted) under balanced designs. Thus, contrast can be observed 
only between balanced and unbalanced designs. 

All 40.5 million experiments were simulated in SAS/IML® and analyzed with SAS System for Windows 9.3 (SAS Institute 
2011). The data were evaluated using the Generalized Linear Models Procedure (Proc GLM). Output of the adjusted 
means was grouped by a compiled macro. A recursive SAS local host multithread approach with isolated workplaces 
was used to speed up the simulation run time. 

Stability of the process and the ability to suspend it was ensured by the use of macros capable of error handling, 
also oriented to processing batches of 5,000 experiments and logging all the processing responses. 

Regarding the accuracy of the estimated type I error rates using Monte Carlo simulations, the exact binomial test 
was applied, contrasting the nominal significance level against the obtained empirical rate (Leemis and Trivedi 1996). 
In scenarios in which the exact binomial test rejected the null hypothesis (p < 0.01), the performance of the Scott-Knott 
test should be considered conservative when the empirical rate is lower than the nominal rate and should be considered 
liberal if higher. In scenarios in which the exact binomial test did not reject the null hypothesis, the tests were classified 
as precise. The F-value was obtained using equation (vii), where y represents the number of experiments with at least 
one type I error, α is the nominal significance level, and N is the number of simulated experiments (50,000). The p-value 
was found using υ1 = 2(N – y) and υ2 = 2(y + 1) degrees of freedom (Santos et al. 2001).

(vii)

RESULTS AND DISCUSSION 

Table 1 summarizes the results of 4.5 million simulated experiments. These experiments were simulated under the 
complete H0 hypothesis (no real difference among treatments). For experiments with a balanced design (no missing 
plots), as the nominal α level increased, the empirical experimentwise type I error became higher. This persisted under 
experiments with missing plots using the proposed Scott-Knott adjustment, but reduced when the level of imbalance 
increased. It can be observed that the empirical values obtained using the Monte Carlo method for a balanced design (0% 

Table 1. Empirical experimentwise type I error under no true difference between treatments 

Nominal
Alpha

Unbalance level (%) 
0 1 2 5 8 10 12 15 18 20

1 0.932 0.926 0.834† 0.820† 0.896 0.760† 0.776† 0.760† 0.778† 0.672†

2 1.910 1.920 1.768 1.758 1.746† 1.728† 1.724† 1.736† 1.554† 1.692†

5 4.854 4.762 4.918 4.914 4.804 4.524† 4.358† 4.558† 4.318† 4.316†

8 8.046 8.168 7.832 7.760 7.686† 7.596† 7.556† 7.356† 7.190† 7.106†

10 10.184 10.334 10.284 9.830 9.936 9.546† 9.634† 9.498† 9.500† 9.514†

12 12.436† 12.374 12.166 12.024 12.018 11.728 11.814 11.576† 11.192† 11.234†

15 15.366 15.728† 15.430† 15.248 15.052 15.058 15.062 14.602 14.580† 14.060†

18 18.686† 18.910† 18.394 18.446† 18.284 18.120 18.200 17.658 17.750 17.382†

20 20.982† 20.900† 20.614† 20.508† 20.370 20.444 19.878 19.706 19.800 19.840
† represents scenarios where the exact binomial test rejected the null hypothesis



6 Crop Breeding and Applied Biotechnology - 17: 1-9, 2017

TV Conrado et al.

of missing plots), in which the adjusted and non-adjusted procedures exhibit the same results, are below the nominal α 
level for values smaller than 0.05, but according to the exact binomial test, the difference is not significant. In contrast, 
the empirical value is significantly higher than the nominal value for some α levels higher than 0.10, which means that 
the original procedure should be considered liberal at these levels since it does not properly control the type I error 
even under the complete H0 hypothesis. The intermittent classification for the alpha levels of 0.12 and 0.15 as a trend 
for empirical rates to surpass nominal rates as the nominal alpha level increases could be caused by approximation to 
the χ2 distribution used by Scott-Knott (1974), but this thesis should be evaluated in further studies and does not belong 
to the scope of this study. 

Moreover, in half of the simulated combinations, the experimentwise type I error was evaluated as significantly 
different from the nominal value by the exact binomial test. As expected, the adjustment led to a more conservative 
approach as the level of missing plots increased. This result suggested that in order to use the proposed adjustment, 
the user must take into account the level of imbalance (either from the planned design or from random loss of plots) 
before selecting the nominal α level. 

In contrast, the adjusted and non-adjusted (original) Scott-Knott test exhibited a higher empirical experimentwise 
type I error rate than the nominal rate under p-H0 (Table 2). It also showed a small increase in the experimentwise type 
I error rate when the level of missing plots became higher, but the magnitude of the experimentwise type I error rate 
reduced as the α level increased. This result validated the findings of Silva et al. (1999) and exposed the weakest point of 
the Scott-Knott test - the lack of control of experimentwise 
type I error under a p-H0.  

Additionally, lower values of δ culminated in smaller 
differences in the experimentwise type I error rate between 
the adjusted and non-adjusted results of the Scott-Knott 
procedure (Figure 1). This trend persisted upon increasing 
the nominal α. Increasing α or δ led to a reduction in the 
difference in Power among balanced and unbalanced 
experimental designs (Table 3). It is also important to keep 
in mind that a higher value of δ indicates larger differences 
among the treatment values. Hence, it is easier for both 
procedures to detect these differences and reject the null 
hypothesis for any level of imbalance. The adjusted and 
non-adjusted tests exhibited lower Power for δ < 1. No 
significant differences in Power between the adjusted and 
non-adjusted procedures were noticed for δ > 1. Additionally, 
the adjusted Scott-Knott test maintained very high Power, 
even with a small α value under a complete H1 (Figure 2). 

However, as the level of imbalance got higher, there was 

Table 2. Empirical experimentwise type I error under true difference between treatments of four standard errors of the mean (4σx) 

Nominal
Alpha

Unbalance level (%)
0 1 2 5 8 10 12 15 18 20

1 13.842 14.136 13.962 14.748 14.722 14.740 15.280 15.398 15.986 16.482
2 15.124 15.560 15.740 15.870 16.474 16.504 16.860 17.132 17.374 17.894
5 20.218 20.280 20.456 20.830 21.100 21.558 21.532 21.692 22.472 22.246
8 25.406 25.408 25.136 25.244 25.944 25.798 25.974 26.114 26.246 26.952
10 28.676 28.178 28.818 28.674 28.706 29.046 29.222 29.440 29.756 29.684
12 31.684 31.522 31.628 31.670 31.874 31.722 32.100 31.938 32.492 32.448
15 36.538 36.356 36.696 36.192 36.470 36.186 36.368 36.632 36.688 36.554
18 40.600 40.778 40.530 40.698 40.960 40.770 40.602 40.984 41.238 41.174
20 43.680 43.630 43.438 43.448 43.514 43.486 43.530 43.846 43.260 43.600

Figure 1. Empirical experimentwise error under the partial null 
hypothesis in the combination of three significance levels (ɑ) by 
four levels of true difference between two treatment means (δ).
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a small loss of power when using the proposed adjustment. 
This performance was expected since missing information 
causes lower ability to reject the null hypothesis due to the 
additional protection required to control type I error. The 
small loss of power is a suitable indicator for adjustment 
efficiency, which is very important since the Scott-Knott test 
is recognized for its high power, with superior performance 
over the LSD and other widely used MCP (Willavise et al. 
1980, Silva et al. 1999, Borges and Ferreira 2003). In spite 
of that, there is a trend of power reduction as the number 
of members per cluster decreases. This has already been 
pointed out and is similarities between hierarchical and 
non-hierarchical procedures (Tasaki et al. 1987), but it 
should not be assumed to be common to all clustering 
procedures since the clustering procedure of Bozdogan 
(1986) shows exactly the opposite response. 

Although the loss of power lowers the total number 
of clusters, it is a tolerable deficiency for scenarios where 
the entries that are wrongly clustered together should be retested in the next stage of research. Since the retesting 
routine is often used in plant breeding programs, this error is preferable to the possibility of the error of discarding an 
entry without a satisfactory level of confidence. Thus, as for the non-adjusted Scott-Knott procedure, it is necessary to 
understand the error tolerance of the experiment under evaluation before using the proposed adjustment. 

It is noteworthy that even using the proposed adjustment, the most common cause of the type I error under p-H0 for 
the Scott-Knott test is late compensation for incorrect partitioning in the previous step, as a consequence of divisive binary 
partitioning. This usually occurs in scenarios where the true number of clusters is different from powers of 2 or from the 
geometric sequences with common ratio 2 (data not shown). This unsatisfactory compensation is very noticeable when 
the true number of clusters is 3, which is a weakness common to various clustering procedures (Tasaki et al. 1987). If the 
gap between clusters is not clear enough, the maximum likelihood test may select a splitting point around the median 
by mistake. Then, in the next step, while it seeks for the point that maximizes the likelihood, it has a chance to correctly 
split the subset between the first and second clusters. A clear demonstration of this is an experiment with 9 treatments 

Table 3. Power of Adjusted Scott-Knott in several unbalance levels under the partial null hypothesis (H0) under four levels of true differ-
ence between two treatment means (δ)

δ
Unbalance level (%)

0 1 2 5 8 10 12 15 18 20
p=0.01
1 32.525 32.652 32.233 31.884 31.453 30.982 31.306 30.748 30.236 29.735
2 84.938 84.993 85.082 85.029 85.062 85.107 85.015 85.014 85.067 85.027
3 96.582 96.574 96.566 96.537 96.516 96.513 96.491 96.459 96.452 96.433
4 99.519 99.513 99.515 99.484 99.469 99.477 99.454 99.438 99.415 99.397
p=0.05
1 48.049 47.38 47.468 47.305 46.570 46.849 46.455 46.399 45.756 45.600
2 85.206 85.256 85.253 85.295 85.259 85.289 85.289 85.292 85.339 85.228
3 96.662 96.673 96.605 96.627 96.638 96.625 96.596 96.565 96.529 96.534
4 99.552 99.546 99.538 99.514 99.500 99.475 99.476 99.456 99.430 99.430
p=0.10
1 53.764 53.616 53.668 53.400 53.436 52.877 53.281 52.663 52.678 52.265
2 85.406 85.338 85.369 85.365 85.362 85.396 85.386 85.453 85.439 85.464
3 96.792 96.786 96.794 96.757 96.710 96.718 96.694 96.690 96.659 96.653
4 99.560 99.559 99.542 99.542 99.532 99.509 99.502 99.479 99.459 99.459

Figure 2. Empirical power under the complete H1 hypothesis in 
nine significance levels (ɑ) across ten unbalance levels.
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truly distributed in 3 clusters, for example ABC/DEF/GHI, in which the test incorrectly performs the first partitioning as 
ABCDE/FGHI and then it differentiates the first true cluster from the rest of the subset, resulting in (ABC/DE)/FGHI. In 
following, for the same reason, the test can correctly discriminate the third true cluster from treatment F, culminating in 
4 clusters: (ABC/DE)/[F/GHI]. Although the first and third clusters are correct, the second cluster is improperly divided, 
increasing the type I error rate. This type of result is a consequence of adoption of a divisive hierarchical approach in order 
to allow comparison of the selected critical value which was obtained by empirical approximation, and afterwards, to 
declare the computed statistic significant or not (Carmer and Lin 1983). Some approaches avoiding hierarchical clustering 
have been published to avert this undesirable feature by simply allowing the creation of completely new clusters in 
every step of evaluation (Cox and Spjotvoll 1982, Calinsk and Corsten 1985, Bozdogan 1986). Despite that, the divisive 
hierarchical approach is still used for clustering (Di Rienzo et al. 2002, Valdano and Di Rienzo 2007). 

Within plant breeding applications, the use of non-overlapping, mutually-exclusive subsets such as Scott-Knott 
creates a clear cutoff for the genotype advancement procedure, while results with multiple distinct subsets can help in 
financial management by assigning the right subset to an appropriate testing pipeline. Using the proposed adjustment 
procedure, this distinguishing feature is extended to experiments with missing data, which are very common in yield 
trials. For example, using cluster analysis on an unbalanced yield trial that results in 6 distinct subsets, the breeder 
would be able to submit solely the genotype subset partitioned in the highest category, “Group A”, to be tested in the 
most accurate and expensive Pipeline I (the maximum number of locations in a randomized complete block design). 
Group B of genotypes could be placed in the intermediate Pipeline II (a smaller set of locations), and Group C and D 
could be tested in the lower cost Pipeline III (augmented blocks in the same locations as Pipeline II), while discarding the 
genotypes in Groups E and F (that have inferior performance compared to the commercial checks, clustered in Group 
C). After harvesting, the breeder can choose to retest only the superior genotypes from Pipeline III together with the 
new entries to be tested in Pipeline II or I. 

A small drawback to the use of the proposed adjustment procedure is the increased complexity and volume of 
calculations in comparison to the non-adjusted procedure. Thus, in order to promote better dissemination of the 
proposed adjustment, a free compiled SAS GLM macro was developed and can be downloaded at http://www.tconrado.
com/sas/sk.zip. The compressed file also contains an example to provide better understanding of the macro options 
and about how to use the software. 

The proposed adjusted Scott-Knott procedure had performance similar to the original procedure under unbalanced 
experimental designs, with minimal loss of power, while maintaining satisfactory control of the experimentwise type I 
error and improved performance at α > 0.05. This adjustment increases the spectrum for use of the test, providing the 
researcher with an alternative to the MCP, even under a significant loss of experimental data (missing plots), and it is 
readily available for use in SAS.
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