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ABSTRACT: The radar detection with decision making in the moments space (DRACEC method) is based on a statistical analysis 
to determine the boundary between the background (absent target) and the anomaly (present target) classes. In this article, the 
boundary is taken as an ellipse and is calculated for two dimensions, emphasizing its geometric interpretation. The procedures 
to establish the shape, location, and size of the ellipse are highlighted, guaranteeing the probability of false alarm by applying the 
Neyman-Pearson criterion. The proposal establishes a methodology for calculation of the boundary when it is required to use
the moments directly as a suffi cient decision statistic.

KEYWORDS: Radar, DRACEC method, Moment space, Decision boundary.

INTRODUCTION

Th e fundamental detection problem lies in the computation of the boundary between the two classes according to some 
optimization criterion. One of the most used criteria is the Bayes’ rule (Kay 1998; Webb 2002; Bishop 2006), which employs the 
likelihood ratio to minimize the average cost of possible decisions. In radars, the decisions are to establish whether the received 
signal corresponds to noise (absent target) or if it is a useful signal in addition to noise (present target). With this purpose, the 
Neyman-Pearson criterion, derived from the Bayes’ rule, is used; it ignores the a priori knowledge of costs and it is based on fi xing 
the false alarm probability (PFA) while maximizing the detection probability (PD) (DiFranco and Rubin 2004; Richards et al. 2010).

Th e DRACEC method (DRACEC is an Spanish acronym for Radar target Detection by Analysis and Statistical Classifi cation 
of the Cellular Emission) (Chávez 2002; Chávez and Guillén 2018) applies the aforementioned criteria with a notable diff erence 
with respect to conventional techniques: instead of using echo signal parameters for detection (amplitude, phase, frequency, 
etc.), it uses a function of some of their moments (mean, second order moment, correlation, etc.). Hence, DRACEC is regarded 
as a detection method in the moment space. Th e moment’s function is referred to as suffi  cient decision statistics (SDS), which is 
obtained from the likelihood ratio, and therefore transforms the input random variables seeking to optimally diff erentiate their 
possible states. A common SDS for the classic radar techniques is the correlation of the received signal with a proper replica 
(DiFranco and Rubin 2004; Richards et al. 2010).
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To guarantee the PFA, DRACEC requires to estimate the detection threshold using the SDS Probability Density Function (PDF) 
(Chávez and Guillén 2018). Although this threshold has a direct representation in the SDS domain, it is useful to analyze its 
equivalent in the moments space: the decision boundary (Chávez and González 2008). It is possible to establish different ways to 
calculate the boundary knowing the relationship between both domains, which could be convenient depending on the application 
scenario. This article proposes a geometric approach that establishes a link between the boundary in the moment space and the 
corresponding SDS threshold. Using the relationship between both domains, a procedure is proposed to determine the shape, 
size, and location of the boundary through the Neyman-Pearson criterion. The analysis is done for the case when the boundary 
is an ellipse and only two moments are considered in order to visualize the results in a simple way.

DETERMINATION OF THE DECISION BOUNDARY

The DRACEC point of view is based on the fact that since the noise is always present, the signal scattered by the target is the 
one that disturbs the “normality” of the received signal. The searching region is divided into resolution cells, each of which, due 
to the phenomenon of secondary emission, originates an electromagnetic field that can be considered as the cell response. By 
means of a statistical analysis of this response, a classification vector (pattern) is obtained whose components (features) are some 
of its statistical moments, which allows to classify the cell into the background class or the anomaly class.

For this cellular emission classification, it is necessary to determine the decision threshold applying the Neyman-Pearson 
criterion (Kay 1998; DiFranco and Rubin 2004; Richards et al. 2010), which implies to obtain the SDS in relation to the two 
possible hypotheses: background or anomaly. When the size of the parameter sample is large enough, its moments will form a 
new random variable that is Gaussian distributed (Korn and Korn 1968; Koroliuk 1981). Consequently, considering the case of 
two statistically independent moments m1 and m2, the likelihood ratio will be expressed by:
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where: pA (m1), pA (m2), pB (m1), and pB (m2) are the PDF for the moments, subscripts A and B identify the anomaly and background 
classes, respectively, and P in the superscripts indicates the population means (mP 
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A,2, m
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Starting from Eq. 1 and after several algebraic manipulations, the likelihood ratio can be expressed in the form:
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As it is observed in Eq. 2, the likelihood ratio is monotonically increasing with Z, so the latter can be used to calculate the 
decision threshold directly, since Z > Z0 implies that Λ > Λ0. For this reason, Z is established as SDS. Eq. 3 shows the quadratic 
dependence of the moments presented by Z and it should be noted how the coefficients of Eq. 4 to Eq. 6 depend on the population 
means and variances of both classes, which causes different second-order surfaces for different anomaly and background pairs.

Finding the points in the moment space (plane in the two-dimensional case), for which the condition Z = Z0 is satisfied, is 
equivalent to finding the projection of the cut between Z and plane Z = Z0. This projection would be the curve that determines 
the decision boundary, whose exact shape depends on the coefficients in Eq. 4 to Eq. 6, resulting in ellipses or hyperbolas as 
shown in Fig. 1.
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From now on, we only consider the background and anomaly pairs whose SDS is an elliptical paraboloid, which causes the 
boundary to be an ellipse. The points in the moments plane for which Z ≥ Z0 are declared as anomaly, while those that comply with 
Z < Z0 are declared as background. This reason can be more clearly illustrated by analyzing the one-dimensional case. Denoting 
the moment as ms (s = 1, 2), the solutions of Eq. 3 can be expressed as:

Figure 1. Intersection of the Z=Zo plane with the SDS to illustrate the different forms of the decision boundary. 
SDS = sufficient decision statistics.
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Th erefore, the moments can also be used directly as SDS.
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BOUNDARY SHAPE
As mentioned in the previous section, the boundary shape varies depending on the values of SDS coeffi  cients. Although in this 

work only the case of the ellipse is considered, in the following discussion a methodology is established that allows to determine 
the general boundary shape for the two-dimensional case.

From the calculus theory, it is known that the general second order equation for two independent variables can be expressed 
as (Korn and Korn 1968):
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where: the |.| operator denotes the determinant.
With the invariants, the conditions shown in Fig. 3 are verifi ed to establish the curve type.
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the remaining conditions are not probable or not practicable. For example, δ = 0 requires that for any moment the population 
variance is the same for both classes, which is very unlikely. A similar reasoning stands for Δ = 0 .

According to Eq. 4 and Eq. 17, the elliptical boundary is obtained when the population variance for the background moments 
is less than that for the anomaly class. As will be seen by the simulations’ results, this condition is common in the detection of 
a radiofrequency pulse in the presence of white Gaussian noise (Skolnik 2001; DiFranco and Rubin 2004; Richards et al. 2010), 
where the video signal under noise (background) has a Rayleigh distribution, while under target-plus-noise (anomaly) has a Rician 
distribution. When any moment of the background has a variance smaller than the anomaly, the corresponding coefficient of Eq. 
4 will be negative, so the boundary could be a hyperbola and this case will be studied in a future work.

APPLICATION OF THE NEYMAN-PEARSON CRITERION
By setting a value for the false alarm probability PFA and computing the R region of the moment space for which the Eq. 19 is 

satisfied, it is guaranteed that the PD is maximum (Kay 1998; VanTrees et al. 2013).
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To simplify the computation of Eq. 19, the R region is taken as the rectangle in which the ellipse is 

inscribed, so that the calculated integral is: 

                                     (23) 
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Although Eq. 19 is valid for any boundary shape, here the R region is taken as the ellipse containing the background patterns, 
so the following procedures are only valid for this case. The ellipse will be formed by all the points in the moment plane satisfying 
the condition Z=Z0 and its final size will depend on the PFA since this regulates the Z0 threshold. Therefore, we can determine the 
equation of the ellipse that conforms the boundary in Cartesian coordinates as:

where: m o  
1 and m o  

2 are the centroids, while l1 and l2 are the lengths of the semi-axes.
Making Eq. 3 equal to Z0 and after several algebraic manipulations (Guillén 2013), we arrive at Eq. 21 and Eq. 22, which 

constitute the formulas to calculate the ellipse centroid and semi-axes, allowing us to know the boundary location and precise size.

To simplify the computation of Eq. 19, the R region is taken as the rectangle in which the ellipse is inscribed, so that the 
calculated integral is:

There is a loss in detection with this procedure, since the size of the integration zone is greater than the ellipse taken as 
boundary. This issue will be addressed in a future work.

The link between the threshold of SDS and the decision boundary in the moment space is clear from Eq. 22 and Eq. 23, since 
the final size of the ellipse will depend on the Z0 value through Eq. 22, which, in turn, depends on the PFA according to Eq. 23. The 
proposed algorithm for calculating the boundary would have the following steps:
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1.	 Calculate the moments m1 and m2 for both classes, their population means and variances, as well as the SDS coefficients 
through Eq. 4 to Eq. 6.

2.	 Calculate the invariants and determine the boundary shape (ellipse in this work).
3.	 Choose a value of Z0 and obtain the projection in the moment’s plane that will be used to numerically evaluate the integral 

of Eq. 23.
4.	 Depending on whether the integral calculated in step 3 is greater or less than the required PFA, the value of Z0 is decreased 

or increased with a descendent-step algorithm (see the explanation bellow), and step 3 is repeated to re-calculate the 
integral over the new projection.

5.	 Repeat steps 3 and 4 until the Z0 value guarantees the PFA.
The algorithm to compute Z0 is summarized in Fig. 4. The initial value for Z0 is set to the minimum of the SDS and it is seen 

how the descendent-step algorithm works, through both control indicators (flag1 and flag2). In order to establish the Z0 that 
ensures PFA, the equality in Eq. 23 is verified with an error of four decimal digits, which could be modified as convenient. The 
variation of the step α proposed by this algorithm guarantees that Z0 converges to the correct value. It is clarified that the double 
integral of Eq. 23 is denoted as I and is evaluated by the trapezoids method (Korn and Korn 1968).

Figure 4. Flowchart of the algorithm to compute Z0.
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SIMULATIONS’ RESULTS
To show the possibilities of the proposed methodology it is simulated by MATLAB (MathWorks 2015) an anomaly-background 

pair with the characteristics detailed next. The background is considered as the receiver internal noise, which is white, Gaussian, 
with zero mean, and total variance σ . Therefore, the amplitude x of the video signal for this class will be characterized by a Rayleigh 
PDF (Skolnik 2001) given by:



J. Aerosp. Technol. Manag., São José dos Campos, v11, e2219, 2019

Guillén C; Chávez Nxx/xx08/10

On the other hand, the anomaly consists in the received radiofrequency pulses, so the amplitude x of the video stage under 
signal-plus-noise condition follows a Rice PDF (Skolnik 2001):
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where: A is the maximum amplitude of the received pulse that will be detected and I0(.) is the modified Bessel function 
of first kind and zero order.

This model corresponds with a non-fluctuating target, sometimes referred as Swerling 0 or Swerling V (Skolnik 2001; 
DiFranco and Rubin 2004; Richards et al. 2010).

To exemplify the boundary computation for one resolution cell, it is analyzed the behavior under both hypotheses of 
the video signal, which will be named hereafter as cellular emission. The selected moments are the mean and mean square 
(first and second order moments), both constituting a measure of the target radar cross-section and computed from 500 
samples of the signal. Figure 5 shows the cellular emission behavior under both hypotheses, taking σ = 1 and A = 0,4 
in Eq. 24 and Eq. 25. In the left it is observed one of the 1000 realizations of the process corresponding to the cellular 
emission, while in the right are the histograms of all samples. From the two graphs, it is verified the high similarity of 
the video signal under both hypotheses, what hinders the correct decision making.

On the other hand, the left part of Fig. 6 shows the 1000 patterns of the cellular emission (one for each realization) 
and the computed boundary for PFA = 10-6 by the procedure of the previous section. The right part shows the Gaussian 
joint PDF of the moments. From both graphs, it is appreciated how the analysis in the moments space could be used to 
increase the detection possibilities (Guillén 2013; Guillén and Chávez 2016; Chávez and Guillén 2018).

Figure 5. One realization of the cellular emission (a) and histogram (b) of the samples under both hypotheses: the background 

has a Rayleigh density with σ = 1 and the anomaly is Rician with A = 0,4 and σ = 1.
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CONCLUSIONS

In the particular case of statistical independent moments, the SDS results in second-order hypersurfaces. Th e proposed 
algorithm allows us to calculate the ellipse boundary that guarantees the PFA by applying the Neyman-Pearson criterion. Besides, 
the infl uence of SDS coeffi  cients on the boundary shape will determine the characteristics and complexity of the algorithm.

Although the proposed methodology to determine the boundary shape is general, the algorithm to compute its size is a topic 
that should be thoroughly discussed in a future work, since the boundary can alternate typically between ellipse and hyperbola. 
Th is happens because the moments are random variables, and therefore the relationship between mean and population variance 
changes depending on the background and anomaly to be detected, especially in environments where there is great statistical 
similarity between both classes.

Th e multidimensional characteristic of detection by DRACEC allows envisaging important applications of this technique, 
especially in cases in which the dispersing properties of targets are similar to those of the environment that surrounds them. It 
is possible to ensure the above because, in general, the more statistical knowledge we have of the phenomena to be classifi ed, 
which would be equivalent to using a great number of relevant features, the better the characterization of these, and therefore 
their classifi cation.
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