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ABSTRACT. This paper presents a comparison between a family of simple algorithms for linear program-
ming and the optimal pair adjustment algorithm. The optimal pair adjustment algorithm improvements the
convergence of von Neumann’s algorithm which is very attractive because of its simplicity. However, it is
not practical to solve linear programming problems to optimality, since its convergence is slow. The family
of simple algorithms results from the generalization of the optimal pair adjustment algorithm, including a
parameter on the number of chosen columns instead of just a pair of them. Such generalization preserves
the simple algorithms nice features. Significant improvements over the optimal pair adjustment algorithm
were demonstrated through numerical experiments on a set of linear programming problems.

Keywords: Linear programming, von Neumann’s algorithm, Simple algorithms.

1 INTRODUCTION

The von Neumann algorithm was reported by Dantzig in the early 1990s [4, 5], and it was later
studied by Epelman and Freund [7], and Beck and Teboulle [1]. Some of the advantages pre-
sented by this method are its low computational cost per iteration, which is dominated by the
matrix-vector multiplication, in addition to its ability to exploit the data sparsity from the orig-
inal problem and the usually fast initial advance. Epelman and Freund [7] refer to this algo-
rithm as “elementary”, since each iteration involves only simple computations; therefore, it is
unsophisticated, especially when compared with the modern interior point algorithms.

In [11], three algorithms were proposed to overcome some convergence difficulties from von
Neumann’s method: the optimal pair adjustment algorithm, the weight reduction algorithm,
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and projection algorithm. The optimal pair adjustment algorithm (OPAA) provides the best
results among them. This algorithm inherits the best properties from von Neumann’s algo-
rithm. Although OPAA has a faster convergence when compared to von Neumann’s algorithm,
its convergence is also considered slow, making it impractical for solving linear optimization
problems.

This work presents a comparison between a family of simple algorithms for linear programming
and the optimal pair adjustment algorithm. This family originated from the generalization of
the idea presented by Gonçalves, Storer and Gondzio in [11] to develop the OPAA. Hence, the
optimal adjustment algorithm for p coordinates was developed. Indeed, for different values of p, a
different algorithm is defined, in which p is limited by the order of the problem, thus resulting in a
family of algorithms. This family of simple algorithms maintains the ability to exploit the sparsity
from the original problem and a fast initial convergence. Significant improvements over OPAA
are demonstrated through numerical experiments on a set of linear programming problems.

The paper is organized as follows. Section 2 contains a description of von Neumann’s algorithm.
Section 3 presents both the weight reduction algorithm and the OPAA. Section 4 discusses the
family of simple algorithms, theoretical properties of convergence of the optimal adjustment
algorithm for p coordinates, and a sufficient condition for it to present better iterations than
the iterations of von Neumann’s algorithm. Section 5 describes the computational experiments
comparing the family with the OPAA. The conclusions and perspectives for future work are
presented in the last section.

2 THE VON NEUMANN’S ALGORITHM

The von Neumann algorithm for solving linear programming problems was first described by
Dantzig in the early 1990s in [4, 5]. Such an algorithm actually solves the equivalent problem
described below.

Consider the following set of linear constraints and the the search for a feasible solution for:

Px = 0,
etx = 1,x≥ 0,

(2.1)

where P ∈ℜm×n and ||Pj||= 1 for j = 1, . . . ,n (the columns have norm one), x ∈ℜn, e ∈ℜn is
the vector with all ones.

Geometrically, the columns Pj are points on the m-dimensional hypersphere with unit radius
and center at the origin. Therefore, the above problem assigns non-negative weights x j to the
Pj columns so that its origin is the rescaled gravity center. Note that any linear programming
problem can be reduced to problem (2.1) (see [10]).

Figure 1 shows the algorithm. In the k− th iteration, the residual is Pxk = bk−1. The next residual
bk is the projection of the origin in the segment of line joining bk−1 to Ps, where Ps is the column

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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that forms the largest angle with the residual bk−1. The triangle bk−10bk has as hypotenuse 0bk−1

and cathetus 0bk, and thus, ||bk||< ||bk−1|| for all iterations.

P2

P
3

n

P
s

P1

u
k−1

b
k−1

b
k P

0

Figure 1: Illustration of von Neumann’s algorithm.

The steps of von Neumann’s algorithm are described below:

Algorithm 1: von Neumann’s Algorithm

1 begin
2 Given: x0 ≥ 0, with etx0 = 1. Compute b0 = Px0.

3 For k = 1,2,3, ... Do:
4 1) Compute:
5 s = argmin j=1,...,n{Pt

jb
k−1},

6 vk−1 = Pt
s bk−1.

7 2) If vk−1 > 0, then STOP. The problem (2.1) is infeasible.
8 3) Compute:

9 uk−1 = ||bk−1||, λ = 1−vk−1

(uk−1)2−2vk−1+1 .

10 4) Update:
11 bk = λbk−1 +(1−λ )Ps, xk = λxk−1 +(1−λ )es,

12 where es is the standard basis vector with 1 in the s-th coordinate.
13 end

In computational experiments, the stopping criterion was ||bk− bk−1||/||bk|| < ε , where ε is a
specified tolerance, and x0

j =
1
n , j = 1, . . . ,n was considered.

The effort per iteration of von Neumann’s algorithm is dominated by the matrix-vector multipli-
cation, required for the selection of the column Ps, which is O(mn). The number of operations
required in this multiplication is significantly lower, if the P matrix is sparse. For more details,
see [10, 11].

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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3 THE WEIGHT REDUCTION AND THE OPTIMAL PAIR ADJUSTMENT
ALGORITHMS

In this section, two algorithms developed by Gonçalves [11] are described. The algorithms are
based on von Neumann’s algorithms and were developed to improve convergence. They are the
weight-reduction algorithm and the optimal pair adjustment algorithm.

In the weight-reduction algorithm, the residual bk−1 is moved closer to the origin 0 by increasing
the weight x j of some columns Pj or decreasing the weight xi of other columns Pi. Figure 2 shows
the geometric interpretation of the weight-reduction algorithm.

Ps −

+s

bk

P

b
k−1

Figure 2: Illustration of the weight-reduction algorithm.

At each iteration, the residual bk−1 moves in the direction Ps+ − Ps− where the columns Ps+

and Ps− make the largest and smallest angle with bk−1, respectively. The new residual bk is the
projection of the origin in that line. Only the weights x+ and x− will be changed. There is no
guarantee that an iteration of this algorithm will improve as much as an iteration of the von
Neumann algorithm [11].

However, the OPAA also developed by Gonçalves improves the residual at least as much as the
von Neumann algorithm [11].

First, the OPAA calculates the columns Ps+ and Ps− . Then, the algorithm computes the values
xk

s+ , xk
s− and λ where xk

j = λxk−1
j for all j 6= s+ and j 6= s− that minimize the distance between

bk and the origin, subject to the convexity and the non-negativity constraints. The solution to this
optimization problem is easy to find by examining the Karush-Kuhn-Tucker (KKT) conditions
(see [11]).

The optimal pair adjustment algorithm is described below.

The OPAA modifies all the weights xk
i′s, while the weight reduction algorithm modifies only the

weights of columns Ps+ and Ps− . This is the main difference between them.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Algorithm 2: Optimal Pair Adjustment Algorithm

1 begin
2 Given: x0 ≥ 0, with etx0 = 1. Compute b0 = Px0.
3 For k = 1,2,3, ... Do:
4 1) Compute:
5 s+ = argmin j=1,...,n{Pt

jb
k−1},

6 s− = argmax j=1,...,n{Pt
jb

k−1| x j > 0},
7 vk−1 = Pt

s+bk−1.

8 2) If vk−1 > 0, then STOP; the problem (2.1) is infeasible.
9 3) Solve the problem:

10

minimize ||b||2

s.t. λ0(1− xk−1
s+ − xk−1

s− )+λ1 +λ2 = 1,
λi ≥ 0, for i = 0,1,2.

(3.1)

11 where, b = λ0(bk−1− xk−1
s+ Ps+ − xk−1

s− Ps−)+λ1Ps+ +λ2Ps− .

12 4) Update:
13 

bk = λ0(bk−1− xk−1
s+ Ps+ − xk−1

s− Ps−)+λ1Ps+ +λ2Ps− ,

xk
j =


λ0xk−1

j , j 6= s+ e j 6= s−,
λ1, j = s+,
λ2, j = s−.

k = k+1.

14 end

4 OPTIMAL ADJUSTMENT ALGORITHM FOR P COORDINATES

This section presents the optimal adjustment algorithm for p coordinates developed by Silva
[12]. This algorithm was developed by generalizing the idea presented in the subproblem (10) of
the OPAA. Instead of using two columns to formulate the subproblem, any number of columns
can be used, thus assigning relevancy to any number of variables. For each value of p, a different
algorithm can be formulated. Thus, a family of algorithms was developed.

The p variables can be chosen by a different method according to the problem. A natural choice
is to take p/2 columns that make the largest angle with the vector bk and p/2 columns that make
the smallest angle with the vector bk. If p is an odd number, an extra column for the set of vectors
is taken, which form the largest angle with the vector bk, for instance.

The optimal adjustment algorithm for p coordinates computes better direction than the OPAA. It
still maintains simplicity, since at each iteration, only a matrix-vector multiplication is performed
and a small linear system with a positive definite matrix is solved.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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The steps of the optimal adjustment algorithm for p coordinates are similar to those for the
OPAA. First, the s1 and s2 columns are identified; the s1 and s2 columns form the largest and
the smallest angle with the residual bk−1, respectively, where s1 + s2 = p and p is the number of
columns to be prioritized. Next, the subproblem is solved, and then, the residual and the current
point are updated.

Algorithm 3: Optimal Adjustment Algorithm for p Coordinates

1 begin
2 Given: x0 ≥ 0, with etx0 = 1. Compute b0 = Px0.

3 For k = 1,2,3, ... Do:
4 1) Compute:
5

{P
η
+
1
, . . . ,P

η
+
s1
} forming the largest angle with the vector bk−1.

{P
η
−
1
, . . . ,P

η
−
s2
} forming the smallest angle with the vector bk−1 such as

xk−1
i > 0, i = η

−
1 , . . . ,η−s2

, where s1 + s2 = p.
vk−1 = minimumi=1,...,s1{Pt

η
+
i

bk−1}.

6 2) If vk−1 > 0, then STOP; the problem (2.1) is infeasible.
7 3) Solve the problem:
8

minimize 1
2 ||Aλ ||2

s.t. ctλ = 1,
λ ≥ 0,

(4.1)

9 where A =
[
w P

η
+
1
. . .P

η
+
s1

P
η
−
1
. . .P

η
−
s2

]
,w = bk−1−

s1

∑
i=1

xk−1
η
+
i

P
η
+
i
−

s2

∑
j=1

xk−1
η
−
j

P
η
−
j
,

λ =
(

λ0,λη
+
1
, . . . ,λ

η
+
s1
,λ

η
−
1
, . . . ,λ

η
−
s2

)
, c = (c1,1, . . . ,1) and

c1 = 1−
s1

∑
i=1

xk−1
η
+
i
−

s2

∑
j=1

xk−1
η
−
j
.

10 4) Update: 

bk = Aλ ∗,

xk
j =


λ0xk−1

j , j /∈ {η+
1 , . . . ,η+

s1
,η−1 , . . . ,η−s2

},
λ

η
+
i
, j = η

+
i , i = 1, . . . ,s1,

λ
η
−
j
, j = η

−
j , j = 1, . . . ,s2.

k = k+1.

11 end

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Subproblem (8) was built in such a way that the residual has the maximum decrease, such that,
x0 ≥ 0, with etx0 = 1.

4.1 Relation between von Neumann’s algorithm and the algorithm with ppp === 111 and
geometric interpretation

The optimal adjustment algorithms for p coordinates with p = 1 and von Neumann’s algorithm
generate the same points xk and the same residual bk as shown in Figure 1.

The optimal λ for von Neumann’s algorithm is calculated by the projection of the origin in the
segment of line joining bk−1 to Ps.

In the algorithm when p = 1, the following subproblem is solved.

minimize ||b||2

s.t. λ0(1− xk−1
s )+λ1 = 1,

λi ≥ 0, for i = 0,1.
(4.2)

where, b = λ0(bk−1− xk−1
s Ps)+λ1Ps .

The subproblem can be rewritten (4.2) as follows:

λ0(1− xk−1
s )+λ1 = 1⇔ λ1 = 1−λ0(1− xk−1

s )≥ 0

b = λ0(bk−1− xk−1
s Ps)+λ1Ps

= λ0(bk−1− xk−1
s Ps)+(1−λ0(1− xk−1

s ))Ps

= λ0bk−1 +(1−λ0)Ps.

(4.3)

Thus, the problem (4.2) will be:

minimize ||b||2

s.t. λ ∈
[
0, 1

1−xk−1
s

]
(4.4)

where, b = λbk−1 +(1−λ )Ps .

If the term 1
1−xk−1

s
is larger than 1, then there will be an increase in the number of possible

solutions in comparison with von Neumann’s algorithm. Although, the geometric interpretation
of the algorithm with p = 1 presented in Figure 3 show that the optimal λ is the same for both
algorithms.

In Step 4 of von Neumann’s algorithm, xk is updated by

xk
j =

{
λxk−1

j , j 6= s
λ (xk−1

s −1)+1, j = s.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 3: Illustration of the algorithm with p = 1.

In Step 4 of the algorithm with p = 1, xk is updated by

xk
j =

{
λxk−1

j , j 6= s
1−λ (1− xk−1

s ), j = s.

Therefore, the algorithm with p = 1 and von Neumann’s algorithm generate the same points xk

and the same residual bk.

For p = 2, the subproblem (8) is reduced to the following form:

minimize ||b||2

s.t. λ0(1− xk−1
s+ − xk−1

s− )+λ1 +λ2 = 1,
λi ≥ 0, for i = 0,1,2.

(4.5)

where, b = λ0(bk−1− xk−1
s+ Ps+ − xk−1

s− Ps−)+λ1Ps+ +λ2Ps− .

The term b can be rewritten as:

b = λ0(bk−1− xk−1
s+ Ps+ − xk−1

s− Ps−)+λ1Ps+ +λ2Ps−

= λ0bk−1 +(λ1−λ0xk−1
s+ )Ps+ +(λ2−λ0xk−1

s− )Ps−

Thus, b(λ0,λ1,λ2) is a linear transformation. When the vectors {(bk−1−xk−1
s+ Ps+−xk−1

s− Ps−), Ps+

e Ps−} are linearly independent, such linear transformation is injective. It transforms the triangle
generated by λ0(1− xk−1

s+ − xk−1
s− )+λ1 +λ2 = 1 and its interior into the triangle whose vertices

are Ps+ , Ps− and Pv =
1

(1−xk−1
s+
−xk−1

s− )
(bk−1− xk−1

s+ Ps+ − xk−1
s− Ps−), and its interior.

Therefore, the optimal residual bk is the projection of the origin on this triangle. The geometric
interpretation of the algorithm with p = 2 is given in Figure 4.

For p > 2 coordinates, the subproblem (8) will be

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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P
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s

b k

b
k-1

b

P1

P

P

P
2

3

n

p

Figure 4: Illustration of the algorithm with p = 2.

b = λ0

(
bk−1−

s1

∑
i=1

xk−1
η
+
i

P
η
+
i
−

s2

∑
j=1

xk−1
η
−
j

P
η
−
j

)
+

s1

∑
i=1

λ
η
+
i

P
η
+
i
+

s2

∑
j=1

λ
η
−
j

P
η
−
j

= λ0bk−1 +
s1

∑
i=1

(λ
η
+
i
−λ0xk−1

η
+
i
)P

η
+
i
+

s2

∑
j=1

(λ
η
−
j
−λ0xk−1

η
−
j
)P

η
−
j

with λ0+
s1

∑
i=1

(λ
η
+
i
−λ0xk−1

η
+
i
)+

s2

∑
j=1

(λ
η
−
j
−λ0xk−1

η
−
j
) = 1, then b is also an affine combination. Then,

the optimal residual bk is the projection of the origin on the affine space region with vertices in
the p columns and in vector Pv, and

Pv =
1

1−
s1

∑
i=1

xk−1
η
+
i
−

s2

∑
j=1

xk−1
η
−
j

(
bk−1−

s1

∑
i=1

xk−1
η
+
i

P
η
+
i
−

s2

∑
j=1

xk−1
η
−
j

P
η
−
j

)
.

4.2 Subproblem Solution Using Interior Point Methods

In [11], Gonçalves solved the subproblem (10) by checking all feasible solutions that satisfies
the KKT condition of this subproblem and there are 23− 1 possible solutions, see [11]. For the
optimal adjustment algorithm for p Coordinates, the possible solutions of the subproblem (8) are
2p− 1 [9]. The strategy used by Gonçalves in [11] is inefficient even for small values of p; the
number of cases will increase exponentially. The subproblem (8) can be solved by interior point
methods.

Consider the subproblem (8). The KKT equations from the problem (8) are given by:

AtAλ + cτ−µ = 0,
µ tλ = 0,

ctλ −1 = 0,
−λ ≤ 0,

(4.6)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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where τ is a vector of free variables and 0≤ µ . The vectors τ and µ are the Lagrange multipliers
for equality and inequality constraints, respectively, and AtA is a (p+1)× (p+1) matrix.

The path-following interior point method is used to solve the problem (4.6). At each iteration
of the interior point method, the linear system of Equation (4.7) is solved to compute the search
directions (dλ ,dτ,dµ):

 AtA c −Id
U 0 Λ

ct 0 0


 dλ

dτ

dµ

=

 r1

r2

r3

 (4.7)

where U = diag(µ), Λ = diag(λ ), r1 = µ− cτ−AtAλ , r2 =−τ tλ , and r3 = 1− ctλ .

The directions dλ , dτ and dµ are given by:

dµ = Λ−1r2−Λ−1Udλ ,

dλ = (AtA+Λ−1U)−1r4− (AtA+Λ−1U)−1cdτ,

ct(AtA+Λ−1U)−1cdτ = ct(AtA+Λ−1U)−1r4− r3,

where r4 = r1 +Λ−1r2.

Consider l1 = (AtA + Λ−1U)−1c and l2 = (AtA + Λ−1U)−1r4; then, the solution of the lin-
ear systems (AtA+Λ−1U)l1 = c and (AtA+Λ−1U)l2 = r4 will be necessary to compute the
directions.

The matrix AtA+Λ−1U is a symmetric (p+1)× (p+1) positive definite. Both systems can be
solved with the same Cholesky factorization.

4.3 Theoretical Properties of the Family of Algorithms

The theorem 3.1 in [11] ensures that the OPAA converges, in the worst case, with the same rate of
convergence as von Neumann’s algorithm. This result can be extended for the optimal adjustment
algorithm for p coordinates, and an increase in the value of p leads to a more efficient algorithm
with improved performance. This is shown in Theorem 4.1. Only the second part will be proved.

Teorema 4.1. The residual ||bk|| after an iteration of the optimal adjustment algorithm for p coor-
dinates is, in the worst case, equal to the residual after an iteration of von Neumann’s algorithm.
Furthermore, suppose that ||bk

p1
|| is the residual after an iteration of the optimal adjustment al-

gorithm for p1 coordinates, ||bk
p2
|| is the residual after an iteration of the optimal adjustment

algorithm for p2 coordinates, and p1 ≤ p2 ≤ n, then ||bk
p1
|| ≤ ||bk

p2
|| where n is the number of

columns P.

Proof. Let k ≥ 1 and bk−1 be the residual at the beginning of the iteration k. Further,
{P

η
+
1
, . . . ,P

η
+
s1
} and {P

η
−
1
, . . . ,P

η
−
s2
} are sets of vectors forming the largest and the smallest an-

gles with the vector bk−1, respectively, for the algorithm prioritizing the p2 coordinates, where

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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s1 + s2 = p2; and {P
η
+
1
, . . . ,P

η
+
s3
} and {P

η
−
1
, . . . ,P

η
−
s4
} are sets of vectors forming the largest

and the smallest angles with the vector bk−1, respectively, for the algorithm prioritizing the p1

coordinates, where s3 + s4 = p1.

After the k-th iteration in the optimal adjustment for the p2 coordinates, the residual bk
p2

will be

bk
p2
= λ 1

(
bk−1−

s1

∑
i=1

xk−1
η
+
i

P
η
+
i
−

s2

∑
j=1

xk−1
η
−
j

P
η
−
j

)
+

s1

∑
i=1

λ
η
+
i

P
η
+
i
+

s2

∑
j=1

λ
η
−
j

P
η
−
j
,

where (λ 1,λ η
+
1
, . . . ,λ

η
+
s1
,λ

η
−
1
, . . . ,λ

η
−
s2
) is the optimal solution of the subproblem (8)

prioritizing p2 coordinates.

The optimal solution of the subproblem (8) prioritizing p1 coordinates

(λ̃1, λ̃η
+
1
, . . . , λ̃

η
+
s3
, λ̃

η
−
1
, . . . , λ̃

η
−
s4
),

is also a feasible solution for the subproblem (8) when p2 coordinates are prioritized.

Therefore,

∥∥∥∥∥λ̃1

(
bk−1−

s3

∑
i=1

xk−1
η
+
i

P
η
+
i
−

s4

∑
j=1

xk−1
η
−
j

P
η
−
j

)
+

s3

∑
i=1

λ̃
η
+
i

P
η
+
i
+

s4

∑
j=1

λ̃
η
−
j

P
η
−
j

∥∥∥∥∥=
=
∥∥bk

p1

∥∥≥ ∥∥bk
p2

∥∥ ,
where bk

p1
is the residual after an iteration of the optimal adjustment algorithm for the p1 coor-

dinates. Consequently, the reduction of the residual after an iteration of the optimal adjustment
algorithm for the p2 coordinates is, in the worst case, equal to the reduction of the residual after
an iteration of the optimal adjustment algorithm for the p1 coordinates.

This theorem does not ensure that one iteration of family of algorithms is better than one iteration
of von Neumann’s algorithm. In the next section, we give the sufficient conditions for that to
happen.

4.4 Sufficient Conditions for ||||||bbbk||||||<<< ||||||bbbk
v||||||

Let bk be the residual of the algorithm with p = 2 in the iteration k, and let Ps+ and Ps− be the
columns forming the largest and smallest angles with the vector bk−1. If the projection of the
origin is in the interior of the triangle bkPs+Ps− and coincides with the projection of the origin
in the plane determined by bk−1,Ps+ and Ps− , then ||bk||< ||bk

v||, where bk
v is the residual of von

Neumann’s algorithm in the iteration k. In fact, we can see this clearly in Figure 5, noting that
the triangle 0bkbk

v has the 0b
k
v hypotenuse and side 0b

k
.

Thus, we concluded that under these conditions, the OPAA for p coordinates has better
performance than von Neumann’s algorithm.
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Figure 5: Illustration of the Sufficient Condition.

5 COMPUTATIONAL EXPERIMENTS

The algorithm with p=2 is the same of the optimal pair adjustment algorithm. In particular, for
the algorithm with p = 2, we could use the same strategy and compute all possible solutions of
the subproblem, since there are only 23− 1 possible solutions. However, this strategy becomes
impractical for larger values of p, so, the strategy is to solve the subproblem by interior point
methods for all differents value of p.

We make two experiments. In the first one, the performance of the family of algorithms for
moderate values of p is compared with OPAA, when p = 2. The choice for moderate p values
comes from the fact that for larger p values, the cost of solution of the subproblem in each
iteration becomes noticeable.

The second experiment explores the fact that the optimal adjustment algorithm for p coordinates
allows a dynamic choice of p considering the size of linear problem to be solved. This approach
was proposed in [8], the developed heuristic was based on numerical experiments and its given
by

0 < (m + n) ≤ 10000 → p = 4;
10000 < (m + n) ≤ 20000 → p = 8;
20000 < (m + n) ≤ 400000 → p = 20;

400000 < (m + n) ≤ 600000 → p = 40;
600000 < (m + n) ≤ → p = 80

where m is the number of rows and n is the number of columns for the constraint matrix A of the
linear problem.

For the second experiment, we proposed a new heuristic p = nz(A)√
mn where nz(A) is the number of

nonzeros entries of A. And we compare this new heuristic with the heuristic proposed in [8].
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For the all experiments, a collection of 151 linear programming problems is used. The problems
are divided into 95 Netlib problems [3], 16 Kennington problems [2], and 40 other problems
supplied by Gonçalves [11]. These experiments were performed on an Intel Core 2 Quad Q9550
2.83 GHz and 4GB of RAM machine in a Linux using the gcc compiler.

5.1 Implementation Details

The family of algorithms is implemented in C using the format of the problem given in [10]
Subsection 2.5.1. The matrix P is not built explicitly. More precisely, it is divided into two
blocks. Only one of these blocks is considered in Step 1, at each iteration, to find s1 and s2

columns, which form the largest and smallest angles with residual bk, respectively.

To solve the subproblem, the classical path-following interior point method was implemented in
C. The perturbation in the complementarity is µt λ

(p+1)2 .

The initial point was the point with all coordinates equal to one. The tolerance is 10−12; since the
linear equation etx = 1 of the problem (2.1) makes each component x j small, if a solution with a
good precision is not computed, the method may not work properly.

5.2 Experiment Design

The first experiment was performed following the steps presented by Gonçalves, Storer and
Gondzio in [11]:

1. Initially, von Neumann’s algorithm is run on all problems;

2. Next, when the relative difference between ||bk−1|| and ||bk|| was less than 0.5%, the time
t1(CPU seconds) and number of iterations (up to t1) are recorded.

3. Additionally, the times t2, t3, t4, and t5 (CPU seconds), which correspond respectively to
3, 5, 10 and 20 times the number of iterations in t1 are also recorded.

4. Next, the optimal adjustment algorithm for p coordinates, where p = 2, p = 4, p = 10,
p = 20, p = 40 and p = 100 is ran on the test problems.

5. Finally, for the ti times, i = 1, . . . ,5, the residual ||bk|| is recorded.

In the second experiment, both approaches use the termination criteria described in [8]. This
is, the experiment stops when the algorithm exceeds its allotted maximum number of iterations
(100) or when the relative error of the residual norm is smaller than a tolerance 10−4. The most
successful approach is the one with the smaller residual ||bk||.

Table 1 shows the problems and the results for time t5, which was used in the performance
profile. We use time t5, because in t5 the algorithms get more time running.
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Table 1: Problems test and time t5

Problem Line Column Time t5 Problem Line Column Time t5

25fv47 769 1821 0.060000 ship04l 292 1905 0.030000
80bau3b 1965 10701 0.240000 ship04s 216 1281 0.090000
adlittle 53 134 0.000001 ship08l 470 3121 0.120000
afiro 25 48 0.000001 ship08s 276 1604 0.100000
agg 319 404 0.000001 ship12l 610 4171 0.040000
agg2 455 689 0.010000 ship12s 340 1943 0.150000
agg3 455 689 0.020000 sierra 1129 2618 0.080000
bandm 211 366 0.000001 stair 356 531 0.060000
beaconfd 73 148 0.020000 standata 292 582 0.050000
blend 66 101 0.020000 standgub 292 582 0.050000
bnl1 558 1439 0.020000 standmps 388 1146 0.040000
bnl2 1848 3800 0.080000 stocfor1 94 142 0.010000
boeing1 294 660 0.040000 stocfor2 1968 2856 0.030000
boeing2 125 264 0.000001 stocfor3 15336 22202 0.190000
bore3d 64 90 0.010000 truss 1000 8806 0.050000
brandy 116 216 0.020000 tuff 246 553 0.120000
capri 235 421 0.010000 vtp base 46 82 0.000001
cycle 1400 2749 0.020000 wood1p 171 1718 0.180000
czprob 661 2705 0.040000 woodw 708 5364 0.090000
d2q06c 2012 5561 0.130000 cre-a 2994 6692 0.040000
d6cube 403 5443 0.480000 cre-b 5336 36382 0.230000
degen2 444 757 0.050000 cre-c 2375 5412 0.030000
degen3 1503 2604 0.260000 cre-d 4102 28601 0.190000
dfl001 5907 12065 1.440000 ken-07 1427 2603 0.030000
e226 161 392 0.020000 ken-11 10061 16709 0.540000
etamacro 331 666 0.020000 ken-13 22519 36546 2.060000
fffff800 313 817 0.040000 ken-18 78823 128395 21.310000
finnis 359 775 0.010000 osa-07 1047 24911 0.160000
fit1d 24 1047 0.010000 osa-14 2266 54535 0.380000
fit1p 678 1706 0.010000 osa-30 4279 103978 0.000001
fit2d 25 10387 0.280000 osa-60 10209 242411 1.840000
fit2p 3170 13695 0.240000 pds-02 2603 7333 0.070000
forplan 104 411 0.090000 pds-06 9119 28435 0.490000
ganges 840 1197 0.030000 pds-10 15587 48719 1.240000
gfrd-pnc 590 1134 0.020000 pds-20 32287 106080 5.440000
greenbea 1872 4081 0.070000 BL 5468 12038 0.830000
greenbeb 1865 4065 0.090000 BL2 5480 12063 0.840000
grow15 300 645 0.010000 CO5 4471 10318 0.240000
grow22 440 946 0.020000 CO9 8510 19276 0.470000
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Table 1 (Continued from previous page)

Problem Line Column Time t5 Problem Line Column Time t5

grow7 140 301 0.000001 CQ9 7073 17806 0.300000
israel 166 307 0.010000 GE 8361 14096 0.200000
kb2 43 68 0.000001 NL 6478 14393 0.560000
lotfi 117 329 0.000001 a1 42 73 0.000001
maros 626 1365 0.030000 fort45 1037 1467 0.060000
maros-r7 2152 6578 0.090000 fort46 1037 1467 0.060000
modszk1 658 1405 0.010000 fort47 1037 1467 0.050000
nesm 646 2850 0.080000 fort48 1037 1467 0.060000
perold 580 1412 0.020000 scagr25 344 543 0.020000
pilot 1350 4506 0.090000 fort49 1037 1467 0.050000
pilot4 389 1069 0.030000 fort51 1042 1473 0.060000
pilot87 1968 6367 0.220000 fort52 1041 1471 0.060000
pilot ja 795 1834 0.040000 fort53 1041 1471 0.050000
pilot we 691 2621 0.050000 fort54 1041 1471 0.050000
pilotnov 830 2089 0.050000 fort55 1041 1471 0.060000
recipe 61 120 0.000001 fort56 1041 1471 0.040000
sc105 104 162 0.000001 fort57 1041 1471 0.060000
sc205 203 315 0.000001 fort58 1041 1471 0.050000
sc50a 49 77 0.000001 fort59 1041 1471 0.050000
sc50b 48 76 0.000001 fort60 1041 1471 0.060000
scagr25 344 543 0.010000 fort61 1041 1471 0.050000
scagr7 92 147 0.000001 x1 983 1413 0.050000
scfxm1 268 526 0.020000 x2 983 1413 0.050000
scfxm2 536 1052 0.030000 pata01 122 1241 0.010000
scfxm3 804 1578 0.040000 pata02 122 1241 0.020000
scorpion 180 239 0.060000 patb01 57 143 0.000001
scrs8 418 1183 0.080000 patb02 57 143 0.000001
scsd1 77 760 0.260000 vschna02 122 1363 0.010000
scsd6 148 1350 0.430000 vschnb01 57 144 0.000001
scsd8 397 2750 0.070000 vschnb02 58 202 0.000001
sctap1 269 608 0.010000 willett 184 588 0.030000
sctap2 977 2303 0.010000 ex01 234 1555 0.070000
sctap3 1346 3113 0.020000 ex02 226 1547 0.070000
seba 2 9 0.130000 ex05 831 7747 0.090000
share1b 107 243 0.040000 ex06 824 7778 0.090000
share2b 92 158 0.010000 ex09 1821 18184 0.340000
shell 487 1450 0.020000
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5.3 Computational Results

Table 2 shows the relative gain by each algorithm in all problems considering the five different
times, i.e., the percentage of problems where the algorithm obtained the lowest value for the
residual ||bk||, in the times t1 up to t5.

Table 2: Percentage of the relative gain by the algorithms on the problems in five
different times

Algorithm t1 t2 t3 t4 t5

Algorithm with p=2 7.28% 9.93% 19.20% 4.63% 11.92 %
Algorithm with p=4 23.84% 28.47% 23.17% 19.20% 19.20 %
Algorithm with p=10 17.88% 17.21% 15.89% 19.21% 13.25 %
Algorithm with p=20 23.85% 6.63% 8.63% 27.81% 3.98%
Algorithm with p=40 4.64% 4.64% 1.33% 2.66% 9.27%
Algorithm with p=100 22.51% 33.12% 31.78% 26.49% 42.38%

According with Table 2, for the optimal adjustment algorithm for p = 100 and p = 4 coordinates,
more problems obtain the lowest value of the residual in comparison with the OPAA (p = 2) on
the five times. And for p = 4, the performance was worse. Especially, the optimal adjustment
algorithm for p = 100 coordinates had better performance.

The performances of the algorithms using performance profile [6] was also analyzed. The dis-
tance of the residual ||bk|| to the origin was used to measure the performance. In these graphs,
ρ(1) represents the algorithm’s total gain. The best performance algorithms are the ones above
the others in graphics.

In Figure 6, the performance profile of the six algorithms with time t5 are compared. This figure
shows that the optimal adjustment algorithm for p coordinates is more efficient than the OPAA
(p = 2) for p = 100, p = 10 and p = 4. However the algorithm loses in performance for p = 20
and p = 40. Table 2 shows the performance of the algorithms in the t5 column. In terms of
robustness, for all values of p the behaviour is the same.

Figures 9, 10, and 7 show the performance profiles among family algorithms for p= 100, p= 40,
p = 20, p = 10, and p = 4 and OPAA at the time t5. The five figures show that the five family
algorithms are more efficient and robust. The highest efficiency was achieved by the algorithm
with p = 4, which had 88% efficiency, followed by the algorithm with p = 10, which had 84%
efficiency, followed by the algorithm with p = 20, which had a 74% efficiency, followed by the
algorithm with p = 40, which had a 60% efficiency and ending with the algorithm with p = 100,
which had a 57% efficiency. Thus, at time t5, the family algorithms achieved higher efficiency
when compared with OPAA. As for robustness, the five figures show that the curves from the
five family algorithms are on top of the curve from the OPAA, thus demonstrating their strength.
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Figure 6: Performance profile of six algorithms in t5 time.
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Figure 7: Performance profile of the algorithms with p = 2 and p = 100 in time t5.
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Figure 8: Performance profile of the algorithms with p = 2 and p = 40 in time t5.
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Figure 9: Performance profile of the algorithms with p = 2 and p = 20 in time t5.
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Figure 10: Performance profile of the algorithms with p = 2 and p = 10 in time t5.
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Figure 11: Performance profile of the algorithms with p = 2 and p = 4 in time t5.
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Thus, the performance profiles show that the family of algorithms has good performance for
moderate p values.

The results obtained in the second experiment are presented in Table 3. The best-performing
approach is given by the heuristic p = nz(A)√

mn . It achieves a smaller number of iterations in 52%
of the 151 problems tested, a lager number of iterations in 35% of the problems and the same
number of iterations in 13% of them. In the Table 3 we present the value of p and the number of
iterations (it) for the approach in [8] (H) and the new heuristic (NH).

Table 3: Heuristic: H×NH

H NH H NH
Problem p it p it Problem p it p it

25fv47 4 100 9 100 ship08s 4 100 6 100
80bau3b 8 47 3 17 ship12l 4 100 6 100
adlittle 4 100 5 100 ship12s 4 100 6 100
afiro 4 100 3 100 sierra 4 100 2 100
agg 4 100 5 49 stair 4 100 9 100
agg2 4 6 8 63 standata 4 100 3 100
agg3 4 6 8 8 standgub 4 100 3 100
bandm 4 100 7 100 standmps 4 100 4 100
beaconfd 4 100 11 100 stocfor1 4 100 4 100
blend 4 100 6 100 stocfor2 4 100 4 100
bnl1 4 100 6 100 stocfor3 20 100 4 100
bnl2 4 100 6 100 truss 4 100 10 100
boeing1 4 100 5 100 tuff 4 46 11 100
boeing2 4 100 4 100 wood1p 4 100 83 3
bore3d 4 100 5 100 woodw 4 100 11 100
brandy 4 100 11 100 pds-10 20 100 3 100
capri 4 100 4 100 pds-20 20 100 2 100
cycle 4 100 8 100 scagr25 4 100 4 100
czprob 4 100 5 100 gfrdpnc 4 100 3 100
d2q06c 4 100 10 100 pilotja 4 100 8 100
d6cube 4 100 24 100 pilotwe 4 82 6 100
degen2 4 100 8 100 vtpbase 4 63 3 100
degen3 4 100 13 100 cre-a 4 100 4 100
dfl001 8 100 5 3 cre-b 20 100 9 100
e226 4 100 9 100 cre-c 4 100 4 100
etamacro 4 13 4 13 cre-d 20 100 9 100
fffff800 4 100 11 100 ken-07 4 100 2 100
finnis 4 100 4 100 ken11 20 100 2 100
fit1d 4 33 10 53 ken13 20 100 2 100
fit1p 4 100 7 100 ken18 20 100 2 100
fit2d 8 5 9 5 osa-07 20 100 18 45
fit2p 8 100 4 100 osa-14 20 65 18 71
forplan 4 6 18 96 osa-30 20 73 18 67
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Table 3 (Continued from previous page)

H NH H NH
Problem p it p it Problem p it p it

ganges 4 2 4 2 osa-60 20 100 2 9
greenbea 4 54 8 40 pds-02 4 100 3 100
greenbeb 4 100 8 68 pds-06 20 100 3 100
grow15 4 100 6 100 BL 8 100 4 100
grow22 4 100 6 100 BL2 8 100 4 100
grow7 4 100 6 100 CO5 8 100 7 100
israel 4 100 11 100 CO9 20 100 7 100
kb2 4 100 5 100 CQ9 20 100 7 100
lotfi 4 55 5 100 GE 20 6 4 6
maros 4 6 7 72 NL 20 100 4 100
maros-r7 4 28 26 100 a1 4 100 3 100
modszk1 4 25 3 34 fort45 4 62 3 84
nesm 4 100 5 100 fort46 4 100 3 100
perold 4 100 6 100 fort47 4 83 3 100
pilot 4 100 12 54 fort48 4 92 3 100
pilot4 4 100 8 100 fort49 4 34 3 54
pilot87 4 100 14 100 fort51 4 42 4 42
pilotnov 4 100 8 52 fort52 4 100 3 100
recipe 4 100 4 100 fort53 4 100 3 100
sc105 4 100 3 100 fort54 4 36 3 100
sc205 4 100 3 100 fort55 4 34 3 100
sc50a 4 100 3 100 fort56 4 100 3 100
sc50b 4 100 3 100 fort57 4 100 3 100
scagr25 4 100 4 100 fort58 4 100 3 100
scagr7 4 100 3 100 fort59 4 100 3 100
scfxm1 4 100 6 100 fort60 4 100 3 100
scfxm2 4 100 6 100 fort61 4 100 3 100
scfxm3 4 100 6 100 x1 4 4 3 6
scorpion 4 100 4 100 x2 4 100 3 76
scrs8 4 100 5 100 pata01 4 100 7 100
scsd1 4 100 10 100 pata02 4 100 7 100
scsd6 4 100 10 100 patb01 4 100 4 100
scsd8 4 100 9 100 patb02 4 100 4 100
sctap1 4 100 5 100 vschna02 4 100 7 100
sctap2 4 100 5 100 vschnb01 4 100 4 100
sctap3 4 100 5 100 vschnb02 4 100 4 100
seba 4 100 4 100 willett 4 100 8 100
share1b 4 88 7 100 ex01 4 100 5 100
share2b 4 100 7 100 ex02 4 100 5 100
shell 4 68 3 100 ex05 4 100 5 100
ship04l 4 100 6 100 ex06 4 100 5 100
ship04s 4 100 6 100 ex09 20 100 5 100
ship08l 4 100 6 100
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6 CONCLUSIONS

The family of simple algorithms arose from the generalization of the OPAA. The major advantage
of this family of algorithms is its simplicity and fast initial convergence. This paper presents
a comparison between a family of simple algorithms for linear programming and the OPAA.
Besides, it is proved that the algorithm with p = 1 is equivalent to von Neumann’s algorithm.
Finally, sufficient conditions show that the family of algorithms has better performance than von
Neumann’s algorithm.

The first experiment is performed in a similar framework as reported by in Gonçalves, Storer and
Gondzio in [11] and the second experiment is performed in a similar framework as reported in [9].
In the first experiment the computational results show the superiority of the family of algorithms
for moderate p values, in comparison with OPAA. Performance profile graphs indicate that the
family of algorithms has significantly more efficiency and robustness. In the second experiment
the new heuristic p = nz(A)√

mn achieves better results than the approach given in [9].

Despite the improvements with respect to OPAA, the family of algorithms is not practical
for solving linear programming problems up to a solution. However, it can be useful in some
instances, such as, improving the starting point for interior point methods as in [8], or to work in
combination with interior point methods using its initial fast convergence rate as reported in [9].
Nevertheless, future researches are needed to measure the impact that the family of algorithms
can have in this direction.
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RESUMO. Este artigo apresenta uma comparação entre uma famı́lia de algoritmos sim-
ples para programação linear e o algoritmo de ajustamento pelo par ótimo. O algoritmo de
ajustamento pelo par ótimo foi desenvolvido para melhorar a convergência do algoritmo
de von Neumann que é um algoritmo muito interressante por causa de sua simplicidade.
Porém não é muito prático resolver problemas de programação linear até a otimalidade com
ele, visto que sua convergência ainda é muito lenta. A famı́lia de algoritmos simples surgiu
da generalização do algoritmo de ajustamento pelo para ótimo, incluindo um parâmetro
sobre o número de colunas escolhidas, em vez de manter fixa duas. Esta generalização
preserva a simplicidade dos algoritmos e suas boas qualidades. Apresentamos experimentos
numéricos sobre um conjunto de problemas de programação linear que mostram melhorias
significativas em relação ao algoritmo de ajustamento pelo par ótimo.

Palavras-chave: Programação Linear, Algoritmo de von Neumann, Algoritmos Simples.
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