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ABSTRACT. In this work, we present three-dimensional numerical simulations of water-oil flow in porous
media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and,
mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this,
typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method)
are considered. The results show that the porosity heterogeneities have a markable influence in the flow
behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC)
relation. This kind of positive relation leads to a larger oil recovery, as the areas of high permeability (higher
flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the
breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but
independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.

Keywords: finite volume methods, heterogeneous porous media, secondary recovery of reservoirs.

1 INTRODUCTION

Every oil field has a life cycle that goes from discovery to abandonment. Therefore, predicting
when to leave the field or when to apply a secondary or tertiary recovery method to increase
the volume of the recovered oil is crucial for the oil industry. This prediction is usually made
using reservoir simulations, which consists of the elaboration of numerical models that take into
account the physical phenomenology typical of flows in porous media, in the search for approxi-
mate solutions as close as possible to reality [38]. From the mathematical model of the problem -
described by a system of partial differential equations of the hyperbolic-parabolic type - compu-
tational models are used to analyze the behavior of the reservoir by means of predictions, which
use experimental data to determine the parameters employed in the model [19].
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Oil recovery methods are classified into primary, secondary and tertiary. The primary consists
of the volume of oil produced through the natural energy given by the decompression of the
fluids [43]. When reservoirs retain a large amount of oil, after primary recovery the secondary
or tertiary methods are used to obtain additional production. Secondary recovery is the amount
of hydrocarbons obtained by supplementing the primary energy with the injection of fluids into
strategically selected wells. On the other hand, the tertiary recovery uses physical, chemical
or biological products (polymers, steam, solvents, gases, bacteria, etc.) to increase the recov-
ery factor to around 60%. It is used in reservoirs where the secondary recovery method fails or
would fails if employed; however, are expensive methods [41,43]. One of the most employed
secondary method is the injection of water, which generally produces good results in oil reser-
voirs, increasing the recovery factor to about 30%. However, when we inject water (less viscous)
into an oil-filled (more viscous) porous medium, an unstable interface (morphologically) occurs
between the two fluids, creating a finger profile. In addition, the heterogeneities present in the
rocks, mainly in the porosity and permeability, affect the appearance and behavior of this finger
growth [5]. This phenomenon is known in the literature as viscous fingering [27]. When it hap-
pens, some of the injected water advances at velocities higher than the mid-wave front, not by
sweeping the oil and arriving early to the production wells [25].

Many authors have been studied the impact of heterogeneities in the permeability or porosity
fields on the porous media flows ( [3,4,6, 8, 12, 13,16, 17, 20, 21, 24, 26, 28, 29, 30, 35, 36, 39,
42,44]). Typically, the permeability in natural reservoirs may vary in space by 3 to 4 orders of
magnitude whereas porosity vary by one order [20]. In [35] the permeability values, in square
centimeters, varies from 10710 to 1073, a range that covers 13 orders of magnitude, while the
variation in porosity values is generally no more than 0.2. As a consequence, in studies about
the influence of the heterogeneities in porous media hydraulic properties on the flow, it is usually
assumed heterogeneity acting only in the permeability field and, the variations in the porosity
field are often neglected ( [3,6, 8, 12, 16, 17, 20, 28, 29, 35, 39, 44]). On the other hand, some
authors have considered both porosity and permeability as heterogeneous fields, but independent
of each other (unrelated). For example, Amaziane et. al. [4] have studied numerical methods
for two-phase flow in heterogeneous porous media assuming that porosity and permeability are
periodic oscillatory functions in space and, Gundersen et. al. [21] have solved a 2D problem
considering a log-normal permeability field and a Gaussian porosity field. However, Sperl et
al. [42] have experimentally observed, that the permeability is determined by the micro-structure
of the material, that is, it depends on the porosity, mainly, on the arrangement and size of the
pores. Therefore, it is important to study the relationships between the porosity and permeability
fields on the water-oil flow in heterogeneous reservoirs.

Hassan et al. [22, 23] have concluded that direct relations between porosity and permeability
fields have pronounced influence on the macrodispersion of solutes in heterogeneous porous me-
dia. More recent, Correa et al. [13] have analized the relationship between the porosity and per-
meability fields on the two-phase flow (water-oil) in a 2D toy problem using the Kozeny-Carman
relation. It was observed a delay in the breakthrough time when the heterogeneous porosity and
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permeability fields are related in comparison with the case where the same permeability fields
were used but the porosity field considered a constant (equal to the mean of heterogeneous one).
Finally, we comment that Henderson et al. [24] have used a generalized three-parameter Kozeny-
Carman model (TPKCG) to obtain the permeability field from the Gaussian distributed fractal
porosity field to study the viscous fingering phenomena during a water injection process in oil
reservoir simulations. They have found that this generalization of the Kozeny-Carman equation
can be used in numerical simulations of oil recovery processes susceptible to hydrodynamic
instability phenomena.

Motivated by the previous discussion, the objective of this work is to study the influence of the
heterogeneities present in the porosity and permeability fields and their relations on the behavior
of the water front, taking into account the appearance and evolution of the viscous fingering, in
reservoirs submitted to the secondary recovery process. For this end, we performed and analized
numerical simulations in tri-dimensional scenarios based on the SPE benchmark model 2 (SPE2)

[11].

The outline of this work is as follows. Section 2 shows the mathematical model of the problem,
as well as the KT method to approximate the saturation equation. Numerical experiments are
reported in Section 3. Finally, conclusions are given in Section 4.

2 THE MODEL PROBLEM

The mathematical model that describes an immiscible two-phase flow in a rigid saturated porous
medium, with incompressible fluids, and in the absence of capillary forces, consists of a system
of equations formed by the water saturation transport equation (2.1), Darcy’s Law (2.2) and the
condition of incompressibility (2.3), that is,

d

37 95w + V- [five = Ao fu(po = pu)gkV2)] = 0, in Q@ x (0,T), 2.1
Vi = *kﬁf [VP - (Z'pr +A’up())gvz}7 (22)

and
V-v,=0. 2.3)

where S,, is the water saturation, ¢ is the porosity, k is the permeability, f,, is the flux function of
water, v; = v, +V, is the total velocity, p, is the density of crude oil, p,, is the density of water,
g is the acceleration of gravity, z is the depth, A, = k,, /Uy, and A,, = k;,, /W, are the mobilities
of oil and water, respectively, with A, = A, + A,,. Here k,,, and k,, are the relative permeabilities
of water and oil and y,,, U, the respective viscosities.

For the problem defined by equations (2.1), (2.2) and (2.3) to be complete, it is necessary to
establish initial and boundary conditions. To do this, first we exhibit in Figure 1 the 1/4 five-
spot geometry, that will be used in the numerical examples. Considering the symmetry of the
problem, our study is restricted to the hatched area where we have one injector well (in the lower
left corner) and one producer well (in the upper right corner).
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Figure 1: 1/4 Five-spot model, adapted from [41]. Four production wells (corners) and one
injection well (center).

The domain to be studied (1/4 model) consists of a parallelepiped Q C R3 with injector (I'yy,,
black ) and producer (I',,;, gray) wells located in opposite corners, as shown in Figure 2. The
null-flow condition is imposed across the dQ (boundary of Q), except in I';, UL, where we
consider v¢-n = gj, in I';;, and pressure P = 0 in I',,;. For the initial time condition, ¢ = 0, we
assume the reservoir is completely filled with oil [13].

In order to increase computational efficiency and allow that different numerical methods may be
used, we decouple the system (2.1)-(2.3), and the velocity-pressure and saturation problems are
solved separately. Therefore, we take macro time steps, in which the velocity-pressure problem
is solved using a mixed method with lower-order Raviart-Thomas elements [2, 18]. Between two
macro-steps, with the velocity frozen, transport micro-steps are performed, respecting the CFL
condition, to update the saturation [37]. In this step we apply an extension of the Kurganov and
Tadmor (KT) method [32] for heterogeneous porosity fields [13], that is briefly described in the
next section.

2.1 The Kurganov and Tadmor (KT) method

For the sake of simplicity, we present the KT method for a unidimensional transport problem,
considering the porosity ¢ = 1. To this end, let the conservation law equation given by

ds df . _
EJrng, in Q=[0,L] CRx(0,T], (2.4)
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Fin

Figure 2: Boundary conditions scheme for the proposed model.

subject to the following initial and boundary conditions

(2.5)

It is important to note the relation between equations (2.1) and (2.4). To define the KT method,
we integrate the hyperbolic differential equation (2.4) at each time step over the intervals
i1 /20X -1 /2,0 U X1 /200X 41 j2,0) X 27, t"*1], as illustrated in Figure 3. Next, we use the REA
(Reconstruct-Evolve-Average) algorithm, in the form

Tj-1 Tj-1/2 Tj Tjt1/2 Tjp

Figure 3: KT scheme adapted from [32].
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Reconstruction (R): The values of 3? are reconstructed by piecewise linear polynomial
functions, that is

s(r,t") = Y S(e, ") (x) == YIS+ (S (x—x)x (%), xj_ip Sx < xjpyp, (2.6)
J J

where x(x) = Lif x € x;_;» <x < xjy and x(x) = 0, otherwise. We observe that to ensure

mass conservation, linear reconstructions must satisfy

. 1 Xjt1/2 ~n

S-":—/ S; dx. 2.7

’ Ax Xj-1/2 ! @0
In addition, to avoid the appearance of spurious oscillations, due to proposed linear

reconstruction by parts, the slopes must be chosen conveniently, that is,

. Os"
(Sx)j ~ ox

+ 0(Ax), (2.8)
(x)

Thus, the KT method has the TVD (Total Variation Diminishing) property, described below [33].
First of all, we consider the S function defined in a mesh with M cells, a Total Variation TV is
set as

M
TV(ES) =) IS;—Sj-1l- (2.9)
i=2

One method is called TVD if, for any §”, its values for §"*! satisfy the following inequality
TV(S") < TV(S"). (2.10)
Therefore, the KT method uses a slope limiter to determine (SX)’} in order to satisfy the TVD

relation (2.10). To do this, a MC limiter (monotonized central-difference limiter) is employed. It
is given by a family of discrete derivatives, parameterized by 0, with 1 < 0 <2, that is,

S-S5, S-S, S, -5,
o . j j—1 j+1 j—1 Jj+1 Jj
(Sx); = MinMod (9 A TAx ,0 Ar , (2.11)
where the MinMod is defined by
1
MinMod(a,b) = 3 [sign(a) 4 sign(b)] - min(|a|,|b]). (2.12)

Evolution (E): In the evolution step the local propagation velocities of the wave are estimated
at the boundaries of each control volume, in order to obtain the new cells of the auxiliary mesh

(where the quantities W’}“ are computed, see Figure 3).

Average Calculation (A): With the average solutions on the displaced mesh, we perform the
L L . . <+l
projection on the original mesh /; to obtain the approximate average value S’; .
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Therefore, the semi-discrete KT formulation is given by

%Ej(t) o [HjH/Z([)A_xHj]/z(tq . (2.13)
with
f(5™ +f x1/2\) (5 5.
Hyo 1) e (Sj1/2(0)) ' (Sj21/2(1)) _“/ilz/z( ) (51 =Siip®). @14

In (2.14), the coefficients a;f L1 Are the local propagation velocities

of
]il/z —maxuea STl /:H/Z P (aS(S)) ) (215)

with p the spectral ratio. If f is a convex function we have

i1 ja 1= max { £ (57, (O 1 (5520 (1)1} (2.16)

where sjtl n and Sy, are the values of s(x,#) in the point (x;_;,,#") on the linear piecewise

reconstructions 5‘3’ (x) and 5‘3!71 (x), respectively, given by

and

- _ _ Ax\ - Ax
Sii1 =8 S (o —xm) =5+ (S0 (2> =5, +7(sx);t1. (2.18)

Similary, we have

N Ax _ — Ax
sjﬂ/z =S5 - 7(s,c);%ﬂ and s, = Si+ 7(S,C);%. (2.19)

The ordinary differential equation (2.13) defines the KT method for a hyperbolic differential
equation of the type (2.4). This equation will be solved using the explicit Euler method, that is,
denoting the right hand side of equation (2.13) by E, the Euler method can be formulated by

n+l

S\ =S +ME. (2.20)

This method is restrict to the CFL condition [32,34] given by

df| A

ds

B < 1/8} 221

max _max
NS [sm“" ,sma"] XEQ

where s™" and s™#* are the maximum and minimum values of a scalar quantity for a given 7".
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2.2 The Kozeny-Carman (KC) relation

As we have already mentioned, the main objective of this work is to study the effects of hetero-
geneities in the permeability and porosity fields as well as possible relationships between them on
the viscous fingering process. Several laboratory studies have shown that the permeability mainly
depends on the pore size and shape of the pore [7, 10, 15,40,42]. One of the widely used models
associating the porosity (¢) and the permeability k(¢) is the Kozeny-Carman correlation [9,31]
given by X

¢’
e2(1-9)

where c is the Kozeny constant representing the particle shape factor and .# is the specific sur-

k(¢) (2.22)

face. In the following experiments, equation (2.22) will be take into account as an example, for
the construction of related permeability and porosity fields. It should be noted that any other type
of model that relates these two fields could be used. We are not presenting any defence of the KC
model.

3 NUMERICAL RESULTS

All numerical simulations are based on the SPE benchmark 2 (SPE2) [11] adapted to simulate
the secondary recovery process (water-oil) in a three-dimensional domain with 304.80 x 15.24 x
304.80m?. Figures 4 and 5 illustrate the permeability (k) and porosity (¢) fields of the original
SPE2 geological model. In particular, we consider the Upper Ness formation cut from the Brent
Group field, since this region has well-defined permeable zones (channels) that accentuate the
viscous fingering process. Specifically, in this work we choose sections of the original geological
models that are displayed in Figures 6 and 7, where we have the following average values: for
permeability (k) = 6.40 x 10~ '9m? (with variance 67 = 4.86 x 10~ 18m*); and for porosity (¢) =
0.387 (with variance G, = 9.60 x 107%).

To perform the simulations we used the computational code developed by the Reservoir Simu-
lation Group of the National Laboratory of Scientific Computation (LNCC) in the scope of the
project Modeling and Numerical Simulation of Flows in Heterogeneous Reservoirs with Geome-
chanical Coupling of the Petrobras SIGER Network and ran in the Altix-XE Cluster [1] using 2
threads.
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Figure 4: Original SPE2 permeability field (k).
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Figure 6: Permeability field (section taken from the original field displayed in Figure 4).
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Figure 7: Porosity field (section taken from the original field displayed in Figure 5).

In the following simulations we analyze five scenarios:

¢ Case 0: k and ¢ homogeneous;

* Case 1: k heterogeneous and ¢ homogeneous;
* Case 2: k homogeneous and ¢ heterogeneous;
* Case 3: k and ¢ heterogeneous, and,;

« Case 4: the inverse of the relation KC (2.22) with ¢ = 5 and . = 4.47 x 10* are used to
generate the ¢ from k (Figure 6).

The parameters ¢ and . are chosen such that the average of the porosity field is equal to the
original one. The fluid properties were adapted from SPE2 benchmark and are presented in Ta-
ble 1. The parameters associated with the five-spot problem described at section 2 are given in
Table 2. In addition, we present the relative permeability functions

2 2
Sw_Srw 1_Sro_Sw
w ( 1—S,, ) , an ro < =S, ) ) (3.1

where S,,, and S, are the residual saturations of water and oil, respectively.

Figure 8 exhibits the water saturation results at ¢ = 180,360,540,720 and 900 days for Case 0
(k and ¢ homogeneous) which are used only for comparison with heterogeneous cases. These
results are consistent with those found in [41].

Figures 9 and 10 display the water front behavior at# = 180,360, 540,720 and 900 days for Cases
1 and 2, respectively. We notice that the viscous fingering process is more pronounced in Case 1,
where the permeability is heterogeneous, which provides an early breakthrough when compared
to Case 2 (homogeneous permeability and heterogeneous porosity) as it can be seen in Figure
11 where it is shown the oil production curves for both cases. These results explain, in part, the
reason why many studies on stochastic porous media flows consider heterogeneities only in the
permeability fields (see [8, 14, 16, 17,20]).
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Table 1: Fluid Properties.

Property Value

Residual saturation of water (S;,)
Residual saturation of oil (S,,) 0.0

Saturation of conata water (S,,;)

Oil viscosity (i) 3.47 x 1078(Pa.d)
Water viscosity (i) 3.47 x 107°(Pa.d)
density of water (p,,) 1,025.18(kg/m?)

density of crude oil (p,) 848.98 (kg /m?)
Porosity (¢) 0.125

Table 2: Five-spot parameters.

Parameter Value

Water flow in injector well g;,  198.7341 (m?/d)

Producer well pressure (P) 0.0(Pa)

Saturation in injection (S) 1.0

The water saturation at t = 180,360,540,720 and 900 days for Case 3 (k and ¢ heterogeneous,
without any relation) is exbihited in Figure 12. These results are very similar to those obtained
for Case 1 (Figure 9), where the porosity field is homogeneous. The porosity heterogeneities
have a small impact on the viscous fingering process when the porosity and permeability fields
are not related. This fact is confirmed by the similarity of the production curves from Cases
1 and 3 (Figure 13). Once again, these behaviors support the hypothesis assumed in the most
of stochastic porous media flows studies, that only the permeability field is usually considered
heterogeneous.

In Figure 14 the water saturation at t = 180,360,540,720 and 900 days is showed to Case 4
(KC relation), where the porosity and permeability fields strongly related. Unlike the previous
cases, we can observe a strong influence of the porosity heterogeneities on the viscous fingering
process.
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Figure 8: Water saturation at different times for Case 0.

To better compare Cases 1, 2, 3 and 4 the water saturation plots at 720 days are displayed in
Figure 15. It is possible to observe that the variation (variance) in the porosity fields is typically
smaller than that in the permeability fields. Therefore, when there is no relationship between the
permeability and porosity fields, the porosity heterogeneities yield little influence on the viscous
fingering process, if compared to the effects produced by the heterogeneities in the permeabil-
ity field. These observations justify the hypothesis that the porosity field is homogeneous, taken
into account by many works in the literature. On the other hand, if there is a strong relation-
ship between permeability and porosity fields (Figure 15-c) the porosity heterogeneities play an
important role in the formation and development of the viscous fingering process. In this case,
high permeability zones with higher local velocities are associated to high porosity zones, i.e.,
zones with larger capacitance. This scenario promotes a desirable delay in the water front and,
consequently, in the breakthrough time. After the breakthrough time, part of the injected water
displaces the oil while the other part starts to be produced, generating a decline in the production
of the reservoir. [41]. To illustrate this issue, Figure 16 displays the oil production as a function
of time (days) for all simulated scenarios. The constant part of the graph shows the period before
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Figure 9: Water saturation at different times for Case 1.

the breakthrough time, that is, a period in which all the injected water remains in the porous
medium producing the same amount of oil. Although the same permeability field is considered
in Cases 1, 3 and 4, when the KC relation (Case 4) is applied, it is observed a delay of about 395
days in the breakthrough time if compared with homogeneous and uncorrelated porosity fields
(Cases 1 and 3, respectively).

4 CONCLUSION

The Numerical simulations of the secondary oil recovery process from a highly heterogeneous
reservoir presented in this work showed that not only the existence of heterogeneities in the per-
meability and porosity fields are important in the flow pattener, but also the possible relations
between these fields can play a relevant role in the development of the viscous fingering phe-
nomenon with pronounced impact on the oil production. For example, when the well known
Kozeny-Carman relation was applied in the experiments, a delay in the advance of the water
front, causing a larger oil recovery, was observed compared to the case in which the porosity
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Figure 10: Water saturation at different times for Case 2.
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Figure 11: Comparison of oil production for Cases 1 and 2 as a function of time.
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Figure 12: Water saturation at different times for Case 3.
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Figure 13: Comparison of oil production for Cases 1 and 3 as a function of time.
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Figure 15: Water saturation at ¢ = 7204 for the four cases.
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Figure 16: Comparison of oil production for the four cases as a function of time.

field is considered constant or it is not related to permeability. Finally, we comment that these
observations suggest that the simplifying hypothesis, widely used in stochastic studies, that only
the permeability field is heterogeneous should be applied only in specific cases.
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RESUMO. Neste trabalho apresentamos simulagdes numéricas tridimensionais do es-
coamento bifdsico (dgua-6leo) em meios porosos com o objetivo de analisar a influéncia
das heterogeneidades nos campos de porosidade e permeabilidade e, principalmente, suas
relagdes, sobre o fendmeno conhecido na literatura como dedos viscosos (viscous finger-
ing). Para isso, sdo considerados cendrios tipicos de reservatdrios heterogéneos submeti-
dos a injecdo de dgua (método de recuperagdo secunddria). Os resultados mostram que as
heterogeneidades da porosidade tém uma influéncia marcante no comportamento do fluxo
quando a permeabilidade estd intimamente relacionada a porosidade, por exemplo, pela
relagdo Kozeny-Carman (KC). Esse tipo de relacdo positiva leva a uma maior recupera¢ao
de dleo, pois as areas de alta permeabilidade (velocidades de fluxo mais altas) estdo asso-
ciadas a dreas de alta porosidade (maior volume de poros), causando um atraso no tempo
de avango (breakthrough time). Por outro lado, quando ambos os campos (porosidade e
permeabilidade) sao heterogéneos, mas independentes um do outro, a influéncia das hetero-
geneidades da porosidade € menor, podendo até ser desprezada nos resultados do avango da
frente.

Palavras-chave: métodos de volumes finitos, meios porosos heterogéneos, recuperacio
secunddria de reservatérios
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