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ABSTRACT: The Pleistocene deposits exposed in the Amapá 
Coastal Plain (onshore portion of the Foz do Amazonas Basin, 
northeastern South America) were previously interpreted as 
Miocene in age. In this work, they were named as “Itaubal For-
mation” and were included in the quaternary coastal history of 
Amazonia. The study, through facies and stratigraphic analyses 
in combination with optically stimulated luminescence (single 
and multiple aliquot regeneration), allowed interpreting this 
unit as Late Pleistocene tidal and fluvial deposits. The Itaubal 
Formation, which unconformably overlies strongly weathered 
basement rocks of the Guianas Shield, was subdivided into two 
progradational units, separated by an unconformity related to 
sea-level fall, here named as Lower and Upper Units. The Low-
er Unit yielded ages between 120,600 (±  12,000) and 70,850 
(± 6,700) years BP and consists of subtidal flat, tide-influenced 
meandering stream and floodplain deposits, during highstand 
conditions. The Upper Unit spans between 69,150 (±  7,200) 
and 58,150 (± 6,800) years BP and is characterized by braided 
fluvial deposits incised in the Lower Unit, related to base-level 
fall; lowstand conditions remained until 23,500 (± 3,000) years 
BP. The studied region was likely exposed during the Last Glacial 
Maximum and then during Holocene, covered by tidal deposits 
influenced by the Amazon River.
KEYWORDS: Amazonia; Pleistocene; sea-level changes; coastal 
deposits; Itaubal Formation.

RESUMO: Depósitos pleistocenos expostos na Planície Costeira do Ama-
pá (porção onshore da Bacia da Foz do Amazonas, nordeste da América 
do Sul) foram anteriormente interpretados como de idade miocena. Neste 
trabalho, esses depósitos foram chamados de “Formação Itaubal” e incluí-
dos na evolução costeira quaternária da Amazônia. O estudo, mediante o 
uso de análise de fácies e estratigrafia em combinação com luminescência 
opticamente estimulada (regeneração de alíquotas simples e múltiplas), per-
mitiu posicionar essa unidade no Pleistoceno Tardio, interpretada como de-
pósitos fluviais e influenciados por maré. A Formação Itaubal, que sobrepõe 
discordantemente rochas intensamente intemperizadas do embasamento do 
Escudo das Guianas, foi subdivida em Unidade Inferior e Superior, de 
caráter progradante, separadas por desconformidade relacionada à que-
da do nível do mar. A Unidade Inferior apresenta idades entre 120.600 
(± 12.000) e 70.850 (± 6.700) anos AP e consiste de depósitos de submaré, 
canal fluvial meandrante influenciado por maré e depósitos de planície de 
inundação, depositados durante condições de nível de mar alto. A Unidade 
Superior apresenta idades entre 69.150 (± 7.200) e 58.150 (± 6.800) 
anos AP e é caracterizada por depósitos de canal entrelaçado, que retraba-
lham a Unidade Inferior, depositada em condições relacionadas à queda do 
nível de base. Condições de nível de mar baixo permaneceram até 23.500 
(± 3.000) anos AP. A região estudada foi provavelmente exposta durante o 
Último Máximo Glacial e, posteriormente, durante o Holoceno, recoberta 
por depósitos influenciados por maré oriundos do Rio Amazonas. 
PALAVRAS-CHAVE: Amazônia; Pleistoceno; mudanças no nível 
do mar; depósitos costeiros; Formação Itaubal.
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INTRODUCTION

The Cenozoic siliciclastics deposits exposed in the 
Amapá Coastal Plain (ACP) have traditionally been 
interpreted as alluvial fans, fluvial and lacustrine depos-
its representative of the Miocene Barreiras Formation, 
a characteristic unit mainly exposed along the northern 
and northeastern Brazilian coast, and sand and muddy 
terraces deposits formed by sediments derived from the 
Amazon River, during Holocene (Lima et al. 1974, 1991; 
Mendes 1994; Silveira 1998; IBGE 2003; CPRM 2004; 
Santos 2006; Guimarães et al. 2013a, 2013b). However, 
Souza (2010) suggests tidal influence in Miocene deposits 
and, based on low-resolution optically stimulated lumi-
nescence — OSL (multiple aliquot regeneration), indi-
cates Late Pleistocene age for the older rocks.

In this work, we reviewed the older rocks using 
facies and stratigraphic analyses in combination with 
high-resolution OSL (single and multiple aliquot regen-
eration). Our data confirm the Late Pleistocene age 
and the influence of sea-level changes in these deposits, 
named here as “Itaubal Formation”. Two progradational 
units can be differentiated: a Lower Unit, consisting of 
tide-influenced deposits, and an Upper Unit, compris-
ing mainly fluvial sediments. Until now, the Pleistocene 
deposits have been described only in the coast of French 
Guiana (Coswine Formation; Boye and Cruys 1961) 
and Suriname (Coropina Formation; Roeleveld and Van 
Loon 1979; Krook 1979; Wong et al. 2009), 200 km 
to the north of the ACP. The Itaubal Formation can be 
correlated with Pós-Barreiras sediments, exposed in the 
Marajó Graben and Bragantina Platform, northern coast 
of Brazil; (Rossetti et al. 1989; Rossetti 2004; Rossetti 
and Valeriano 2007). Pleistocene deposits exposed in the 
ACP, onshore portion of the Foz do Amazonas Basin, 
northeastern South America, are included now in the 
Quaternary coastal history of Amazonia.

REGIONAL SETTING

The siliciclastics Pleistocene deposits of the eastern por-
tion of the ACP overlie the Archean to Mesoproterozoic 
basement of the Guianas Shield, composed of crystalline 
and metasedimentary rocks (Fig. 1; Lima et al. 1974, 
1991; Souza 2010).

The study area is located in the onshore portion of the 
Foz do Amazonas Basin, comprising the Amapá Platform 
(Fig. 1A), while the offshore portion of this region is rep-
resented in the Amazon Fan that also includes the Marajó 

Basin (Grossmann 2002; Soares Júnior et al. 2008). 
The northwestern and southeastern limits of the basin are 
the Demerara Plateau and the Santana Island of the Pará-
Maranhão Basin, respectively (Brandão and Feijó 1994).

The Foz do Amazonas Basin is linked to the Marajó 
Graben System evolution related to several episodes of 
extensional tectonics succeeded by Gondwana break 
up and opening of the Equatorial Atlantic from the 
Triassic to the Cretaceous (Galvão 1991; Rodarte and 
Brandão 1988; Soares Júnior et al. 2008). The Neogene-
Quaternary sedimentation in the Foz do Amazonas basin 
was influenced by climatic and global sea-level changes, 
associated with the establishment of the paleo-Amazon 
River during the Late Miocene (Miller et al. 1987; Haq 
et al. 1988; Lopez 2001; Uba et al. 2007; Garzione et al. 
2008; Souza 2010). The onset of the Amazon Fan was 
characterized by deposition of the Tucunaré, Pirarucu 
and Orange Formations constituting the Pará Group 
(Brandão and Feijó 1994; Figueiredo et al. 2009). During 
the Pleistocene to Holocene, sea-level changes caused 
subaerial exposure succeeded by flooding of the Amapá 
Platform (Lopez 2001; Souza 2010).

METHODS

The deposits of the Itaubal Formation were studied 
on the roadcuts of BR-156 highway, near the town of 
Tartarugalzinho, State of Amapá, Brazil, about 100 km 
inland from the coastline and 15 to 20 m above sea-level 
(Fig. 1B). There, they form a 10 m thick interval of sand 
and clays with subordinate gravels. 

Stratigraphic logs and panoramic sections were described 
and photographed, and paleocurrent data were measured. 
The obtained information was used in making facies analy-
sis and stratigraphic correlation (Walker 1992; Miall 1991, 
1994). Grain size analyses using classic sieving methods of 
Folk (1974) completed the facies data.

Ten samples of medium to coarse sand were collected 
for high-resolution OSL dating (single and multiple aliquot 
regeneration — OSL/SAR-MAR), following the procedures 
of Murray and Wintle (2000). The samples were analyzed 
in the Faculdade de Tecnologia do Estado de São Paulo 
(FATEC) with a Photomultiplicator Thorn EMI Electron 
Tubes, Type 9235QA, for accumulated doses and with a 
Canberra Inspector Portable Spectroscopy Workstation 
(NaI - Tl) for annual doses. More details about the appli-
cation of OSL/SAR-MAR protocols in Pleistocene depos-
its of the northern Brazilian coast can be found in Tatumi 
et al. (2008) and Rossetti et al. (2013).
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RESULTS

Optically stimulated luminescence dating
Considering the OSL/SAR dating, the sediment 

samples in log TR2 yielded ages of 120,600 (± 12,000), 
99,800 (± 12,200) and 70,850 (± 6,700) years BP, while 
ages of 100,000 (± 11,500), 96,800 (± 8,250) and 75,300 
(± 8,500) years BP were obtained in log TR1, TR4 and 

TR5, respectively (Fig. 2; Tab. 1). The youngest ages 
were detected in log TR5, with 69,150 (± 7,200) years 
BP, and in log TR3, with 58,150 (± 6,800) years BP 
(Fig. 2; Tab. 1).

Considering the OSL/MAR dating, the sediment sam-
ples in log TR2 yielded an age of 78,000 (± 12,000) years 
BP. The youngest age was detected in log TR6, with 23,000 
(± 3,000) years BP (Fig. 2; Tab. 1).

Figure 1. (A) Geological settings of Norteastern South America and location of study area. (B) Geological map 
of the onshore portion of the Foz do Amazonas Basin, with the location of the studied sections of the Itaubal 
Formation (Souza 2010).
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Figure 2. Stratigraphic logs of the Itaubal Formation.
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Table 1. Radioactive data, annual dose values and OSL/SAR-MAR ages of the sediment samples.

Sample
name Protocol Th

(ppm)
U

(ppm)
K

(%)
Annual dose

(µG/yr)
Accumulated 

dose
Mean Age

(yr BP)

TR6-1 MAR 6,234 ± 0,224 1,852 ± 0,161 0,520 ± 0,075 1.730 ± 130 40,78 23,500 ± 3,000

TR5-2 SAR 16,514 ± 0,595 4,578 ± 0,280 0,242 ± 0,035 2830 ± 155 195,4 69,150 ± 7,200

TR5-1 SAR 4,892 ± 0,176 1,693 ± 0,038 0,466 ± 0,068 1470 ± 90 110,8 75,300 ± 8,500

TR4-1 SAR 9,523 ± 0,343 2,507 ± 0,080 0,070 ± 0,010 1610 ± 60 156,1 96,800 ± 8,250

TR3-1 SAR 13,500 ± 0,486 4,666 ± 0,030 1,375 ± 0,199 3690 ± 250 214,6 58,150 ± 6,800

TR2-4 SAR 16,706 ± 0,601 4,678 ± 0,154 0,290 ± 0,042 2880 ± 130 204,2 70,850 ± 6,700

TR2-3 MAR 8,221 ± 0,296 1,719 ± 0,421 0,154 ± 0,022 1470 ± 150 114,50 78,000 ± 12,000

TR2-2 SAR 7,597 ± 0,273 2,421 ± 0,140 0,128 ± 0,019 1500 ± 75 180,4 120,600 ± 12,000

TR2-1 SAR 6,444 ± 0,232 2,615 ± 0,140 0,545 ± 0,079 1890 ± 135 188,0 99,800 ± 12,200

TR1-1 SAR 9,025 ± 0,325 2,902 ± 0,282 0,083 ± 0,012 1680 ± 110 167,9 100,000 ± 11,500

Facies analysis
The succession of the Itaubal Formation consists pre-

dominantly of very fine to coarse sands and clay, locally 
gravel (with rare boulders), organized in centimeter-scale 
coarsening-upward cycles. This formation overlying an 
unconformity developed on strongly weathered basement 
crystalline rocks. Pleistocene deposits are also weathered 
and, many times, their distinction of the weathered base-
ment rocks is difficult. The Itaubal Formation was subdi-
vided into two units, separated by an unconformity, and 
comprises four facies associations (FA). The Lower Unit is 
represented by subtidal flat deposits (FA1), tide-influenced 

meandering- stream deposits (FA2) and floodplain depos-
its, while the Upper Unit is characterized by braided 
stream deposits (FA3) (Fig. 2; Tab. 2). In the following 
paragraphs, facies associations are discussed. For a more 
detailed description of facies, see Tab. 2.

Lower unit 
The 6-m-thick succession of the Lower Unit is mainly 

composed of granules with boulders (> 25.6 cm), very fine 
sand and silt, showing brownish to reddish and subordinately 
whitish to yellowish colors, related to strong weathering and 
ferruginization. The sandy deposits form tabular beds up to 
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Table 2. Summary of facies descriptions and sedimentary processes in the Itaubal Formation. 

Facies Description Process FA

Upper Unit

Coarse sand with trough 
cross-stratification 
(Facies St)

Medium to coarse sands with trough cross-stratification 
with set thickness up to 2.5 m; quartz and brownish, 

deformed mud granules scattered at the base. Grains are 
poorly- to moderately sorted. 

Migration of 3D bedforms with sinuous crests 
under lower flow regime. Reworking of mud beds in 

hydroplastic condition. 

B
raided stream

  
channel (FA

4)

Sand with tabular  
cross-stratification  
(Facies Sp)

Brownish, medium sands with tabular  
cross-stratification. Beds are lenticular, up to 1 m thick, 

and interbedded with Facies St. 

Migration of 2D bedforms with straight crests under 
lower flow regime. 

Sand with sigmoidal 
cross-stratification  
(Facies Ssg)

Brownish medium sands with sigmoidal  
cross-stratification with sets covered by clay laminae, 

and interbedded with Facies Mml of the FA3.The grains 
are poorly-sorted, displaying positive asymmetry and 

kurtosis with leptokurtic distribution.

Bedform migration under unidirectional and lower 
flow regime, with rapid deceleration when it reaches 
a floodplain lake or pound. Clay laminae can also be 

formed by gradual deposition in this process.

Massive muds  
(Facies Mm)

Whitish to reddish, centimetric beds of massive clay 
with lenticular geometry, filling curved base of beds. Deposition of mud under slack water conditions

Lower Unit

Intraformational  
massive mud clast (Gi)

Yellowish to reddish, massive laminae of gravels, formed 
by intraformational mud pebbles and cobbles.

Reworking of laminated mud beds by energetic flood 
fluvial process.

Floodplain 
(FA

3)Massive to laminated  
mud (Facies Mml)

Reddish-whitish, laminated mud beds of up to 50 cm, 
interbedded with sigmoidal cross-stratification that, in 

general, fills channelized bedforms. 

Alternation between traction and mainly gravitational 
settling from suspension.

Gravel with incipient, 
even parallel stratification 
(Facies Gp)

Brownish to whitish, channelized beds with gravel of lag 
deposits from basement rocks and ferruginous sandstone 

boulders (up to 82 cm).

High to moderate flows generating scours in talweg 
portions of channels. Lateral migration produces intense 
reworking of ferruginized ancient siliciclastics deposits 

and basement rocks. 

Tide-influenced m
eandering  

stream
 channel(FA

2)

Medium- to coarse-grained 
sands with trough cross-
stratification (Facies St)

Whitish coarse-sand beds with trough cross-stratification 
(sets up to 35 cm thick). Scattered quartz pebbles in the 

base of sets. The grains moderately-sorted. 

Migration of 3D bedforms with sinuous crests in 
longitudinal bedforms, under high to moderate flow regime.

Medium-grained  
sand with tangential 
cross-stratification 
(Facies Stg)

Reddish medium sands forming tabular sets of tabular to 
tangential planar cross-bedding. They are truncated by 

sets of facies Sth.

Migration of 2D bedforms on the channel complex bar, 
under moderate flow regime.

Hetherolitic cross-bedding 
sets with alternating sand 
and mud laminae
(Facies SMi)

Dark brown to whitish, inclined medium to  
coarse sand beds alternating with mud laminae.  

They can be interbedded with Facies Mml. The grains are 
moderately-to poorly-sorted. The upper portion of the 

strata is marked by ripple marks.

Lateral accretion in concave marginal portions with sand 
and mud deposited during moderate- and low-energy flows, 

respectively, of large to medium-scale point bars.  
Small-scale bedforms can also migrate onto these bedforms.

Wavy-bedded rhythmites 
(Facies Rw)

Centimetric to metric yellowish to brownish wavy mud 
laminae alternated with ripple-bedded fine sand layers 

that can be interbedded with Facies SMi. 

Alternating periods of mud and sand deposition from
suspension and bedload transport, respectively.

Fine-grained sands with 
trough cross-stratification 
(Facies St)

Reddish, fine to medium sand with trough  
cross-stratification with sets up 30 cm thick. Bedding 

planes and foresets are covered by clay laminae. 
Intraformational granules with rounded to tabular clay 

granules occur scattered along the bottom set.

Migration of 3D bedforms with sinuous crest under high 
to moderate energy and tidal influence, with alternation 

between traction and suspension processes. Bedform 
migration during flood tidal current, reworking clay 
laminae deposited during slack-water conditions.

Subtidal  
flat (FA

1)

Fine-grained sand with 
tabular cross-stratification 
(Facies Sp)

Reddish, fine to medium sand beds with thickness varying 
from 20 to 50 cm, with tabular cross-stratification, and 

cyclic variations of foreset thickness. Bedding planes and 
foresets, are locally covered by clay laminae. 

Migration of 2D subaqueous bedforms with straight 
crests. This process alternates with slack-water conditions 

forming mud drapes on the foresets. Variations in the 
foreset thickness are related with neap-spring cycles. 

Fine-grained sand  
with tangential  
cross-stratification 
(Facies Stg)

Reddish fine to medium sands with tangential  
to quasi-tabular planar cross-stratification  

interbedded with Facies Sth. Mud drapes occur  
in the foresets and bedding planes.

Migration of 2D bedforms in subtidal conditions, with 
alternations between traction and suspension processes.

Sand with climbing  
ripple cross-lamination 
(Facies Scc)

Reddish-pinkish, centimetric, fine to medium sand with 
subcritical climbing cross-lamination. Locally slight 

reworking of the top set of the Facies St and Sp.

Migration of 2D ripples with straight crests, with 
predominance of traction in detriment of settling from 
suspension processes. Oscillations of dominant energy 
flow can be indicated reworking of Facies St and Sp.

Bioturbated sand  
(Facies Sb)

Sand beds with intense bioturbation, interbedded with 
Facies Sth and St.

Intense mixture of fine-grained  
sand sediments by bioturbation.

Sand with sigmoidal  
cross-stratification  
(Facies Ssg)

Sands with sigmoidal cross-stratification, about 15 cm thick. 
Reworked mud clasts can also be observed in the foresets.

Bedform migration with rapid decceleration of the water 
flow. Dominant current reworks clay laminae deposited 

during slack water.

Sand with even parallel 
stratification (Facies Sh)

Centimetric to metric, coarse to medium sand with 
planar stratification, locally bioturbated.

Plane-bed flow under upper flow regime. After this 
conditions, some organism can be mixture this sediments.

Wavy to flaser  
tidal rhythmites 
(Facies Hwf) 

Centimetric to metric, yellowish to brownish beds with 
alternation between massive or laminated sands and 

mud forming wavy to flaser structures.

Alternation between traction currents that deposited 
laminated sands (2-D ripples) and slack-water conditions, 

with deposition of massive mud, during tidal currents 
and slack-water, respectively.

Massive mud (Facies Mm) Massive mud beds. Deposition of mud under slack-water conditions.

FA: facies association.
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2.5-m thick, extending laterally hundreds of meters and locally 
show channelized geometry (Fig. 3). Bedforms and foresets 
of cross-bedding sets are commonly covered by mud drapes. 
Paleocurrent trends of cross-bedding are towards NW, N 
and NE, while a NE-SW bidirectional pattern was obtained 
from herringbone-cross stratified sands.

Subtidal flat (FA1)
This facies association forms the lower portion of the 

Lower Unit, which onlaps the weathered rocks of the base-
ment (Figs. 4A and 4B) and consists of sandy and muddy 
deposits. The sandy deposits are generally fine-grained and 
display tabular cross-stratification (Facies Sp), climbing ripple 
cross-lamination (Facies Scc), sigmoidal cross-stratification 
(Facies Ssg), tangential cross-stratification (Facies Stg), trough 
cross-stratification (Facies St) and even-parallel stratification 
(Facies Sh) or are homogenized by bioturbation (Facies Sb). 

Additionally, wavy to flaser tidal rhythmites (Facies Hwf) 
and massive mud (Facies Mm) were observed. The Facies Ssg, 
Stg and Sp are interpreted as tidal bundle (cf. Boersma 1969) 
(Figs. 4C to 4F). Sand and mud intercalations with wavy 
bedding grading vertically into flaser bedding are interpreted 
as tidal rhythmites (Figs. 4G and 4H). Cross lamination is 
rare and generally the lenses are internally homogeneous. 
Some portions of the sandy facies are heavily bioturbated 
with no primary structures preserved (Facies Sb; Fig. 4I). 
Herringbone cross-stratification with mud drapes occurs 
locally and record flood-ebb tidal currents. 

Tide-influenced meandering stream channel (FA2)
This facies assocation is characterized mainly by tabular geom-

etry with rare and isolated channels interbedded with tidal deposits 
of FA1 (Figs. 5A to 5C). The very coarse-grained sands and gravel 
deposits of FA2 onlap basement rocks along an angular erosive 

Figure 3. Photomosaic of TR2 in the Itaubal Formation exposed along BR-156 highway, near the town of 
Tartarugalzinho (Amapá State). The main characteristic of the Lower Unit is its tabular beds extending laterally 
over hundreds of meters, covered by mud drapes. The base of the Upper Unit is an undulating erosional 
unconformity.
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Figure 4. Field photographs and interpreted sketches of subtidal flat (FA1) deposits. (A and B) Sand and mud deposits 
onlapping the weathered basement. (C and D) facies Stg with tidal bundle made of spring-tide (S) and neap-tide (N) 
lamina sets. The bedform of the cross-bedding sets is preserved by mud layer (facies Mm). (E and F) the set of facies 
St is truncated by facies Ssg and Sh, with the same dip direction of the beds. Mud clast occurs in foreset of facies 
Ssg. (G and H) wavy bedding grading vertically into flaser bedding (facies Hwf). (I) bioturbated sand (facies Sb).

Sp: sand with tabular cross-stratification; Mm: massive mud; Scc: sand with climbing ripple cross-lamination; Stg: sand with tangential cross-
stratification; Sh: sand with even parallel stratification; Ssg: sand with sigmoidal cross-stratification; St: sands with trough cross-stratification; 
Sb: bioturbated sand.
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Figure 5. Geometry and contacts of the FA 2: tide-influenced meandering stream channel. (A) Onlap of facies 
Rw over basement. (B and C) angular erosive and channelized contact of the facies Gp with basement rocks. (D) 
gravels (10 cm) from facies Gp. (E) sandstone boulders of Facies Gp (80 cm).
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Rw: wavy-bedded rhythmites; Gp: Gravel with incipient even-parallel stratification
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contact (Tab. 2). Gravel with incipient even-parallel stratification 
contains pebbles and boulders of iron oxide/hydroxide cemented 
sandstones and volcanic rocks (Facies Gp) (Figs. 5D and 5E). 
Medium- to coarse-grained sand with trough cross-stratification 
(Facies St), medium-grained sand with tangential cross-stratifica-
tion (Facies Stg), and wavy-bedded rhythmites (Facies Rw) are 
interbedded with Facies Gp. Inclined heterolithic cross-bedded 
sand and mud (Facies SMi) eventually marked by quartz pebbly 
lag and massive to laminated mud (Facies Mml) are commonly 
found in this association (Figs. 6A to 6D).

Floodplain (FA3)
This facies association comprise the upper portion of the 

Lower Unit and fill an erosional surface with an irregular 
relief developed on FA1 and FA2 (Figs. 3 and 7). This asso-
ciation has a maximum thickness of about 1 m and is later-
ally continuous over hundreds of meters. FA3 is organized in 
small-scale fining-upward cycles, composed of gravel depos-
its of intraformational mud clast (Facies Gi) and massive to 
laminated muds (Facies Mml) (Tab. 2). Mud deposits are 
generally mottled, showing red and white colors.

Figure 6. General appearance of Facies SMi. (A and B) Facies SMi interbedded with facies Rw. (C and D) facies SMi 
interbedded with facies Mml.

SMi: hetherolitic cross-bedding sets with alternating sand and mud laminae; Rw: wavy-bedded rhythmites; Mml: massive to laminated mud.

0 0,5 1 m

A

B

C

D

Brazilian Journal of Geology, 45(Suppl 1): 63-78, August 2015
71

Isaac Salém Alves Azevedo Bezerra et al.



Upper unit
This 4-m-thick unit consists of brownish to whitish grav-

els, medium-to coarse-grained sand and mud and overlies an 
erosional unconformity (Fig. 2). The sandy deposits are char-
acterized by tabular and rarely undulated beds, laterally con-
tinuous for hundreds of meters (Fig. 3). A bed of ferruginized 
sand at the base of this unit marks the contact with the Lower 
Unit. Cross bedding in the Upper Unit shows paleocurrent 
direction preferentially to NE. White sands are found along 
the studied area and are related to pedogenetic horizons or 
spodosols. The ferruginous soils are in part removed and frag-
mented, forming stone lines and stone layers on hillsides.

The Upper Unit is composed of six sedimentary facies 
grouped into the facies association FA4 and interpreted 

as braided stream channel deposits (Tab. 2). FA4 is char-
acterized by ferruginous reddish lithified soil in the upper 
part (Figs. 7A and 7B). FA4 lies on an erosive contact with 
FA3 and locally forms channelized geometry. The braided 
stream channel deposits consist of moderately- to poor-
ly-sorted and mostly medium- to coarse-grained sand 
with trough (Facies St), tabular (Facies Sp) and sigmoidal 
cross-stratifications (Facies Ssg) (Tab. 2). Massive mud 
deposits (Facies Mm) are common and are locally covered 
with Facies Ssg. Facies St is predominant in this associa-
tion and generally exhibits gravelly lags composed of mud 
clasts and wood fragments, fossilized by iron oxide-hydrox-
ides. Massive sandy beds with rare iron oxide concretions 
overlie quartzite and weathered volcanic basement rocks.

Figure 7. General appearance of the contact between Lower Unit and the Upper Unit. (A and B) Contact marked by 
an irregular relief filled by facies Mml, FA3 and FA4 interbedded with facies Ssg. (C) FA4 overlying FA3. (D) basal 
part of the FA3 marked by facies Gi reworking facies St of the Lower Unit. 

St: sands with trough cross-stratification; Ssg: sand with sigmoidal cross-stratification; Mml: massive to laminated mud; Gi: intraformational 
massive mud clast.
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DISCUSSION

Paleoenvironment evolution  
of the Itaubal Formation

The Itaubal Formation, which unconformably overlies 
a weathered Precambrian basement, consists of two pro-
gradational units, the Lower and Upper Units, separated 
by an unconformity, related to a sea-level fall. The pres-
ence of the Pleistocene Itaubal Formation just above the 
underlying strong weathering basement rocks suggests 
the absence of the Barreiras Formation in the ACP, and 
probably western border of the Marajó Graben being an 
uplifted area during the Miocene-Pliocene. 

After the drowning of the putatively incised valleys, 
fine-grained deposits form an extensive tidal flat system in 
the ACP (Lower Unit), in highstand conditions (Fig. 8 and 
HSST 1 in Fig. 9 — stages 1 and 2). The Lower Unit rep-
resents tide-influenced deposits of the outer portion of the 
ACP between 120,600 (± 12,000) and 70,850 (± 6,700) 
years BP (Fig. 9 — stage 2). This event is correlated with 
the Last Interglacial and Marine Isotope Stage 5 and 4/5 
(Lisiecki and Raymo 2005). Subaqueous dunes were the 
main bedforms in the tidal flat induced by tidal currents, 
alternating with slack water conditions (e.g. Visser 1980; 
Tessier 1993; Dalrymple and Choi 2007). Tide-influenced 

meandering fluvial channels were incised in the tidal flat and 
partially on the weathered basement. Point bars were depos-
ited under moderate to lower energy flows in the concave 
up margin of channels (e.g. Thomas et al. 1987). Erosion 
of cut bank was accompanied of gravitational failures and 
generated intraformational deposits.

The event of falling-stage (FSST 1) promoted a renewal 
of fluvial incision between 69,150 (± 7,200) and 58,150 
(± 6,800) years BP with the establishment of a high-en-
ergy braided stream environment, with ephemeral flood-
plains, prograding over tide deposits of the Lower Unit 
(Fig. 9 — stage 3). The lowstand conditions (LSST 2) 
remained until 23,500 (± 3,000) years BP, coinciding with 
the Last Glacial Maximum of the Wisconsin (Fig. 9 — 
stage 4) (Maslin and Burns 2000; Maslin et al. 2006; 
Miller et al. 2005). The Upper Unit is also correlated 
with Marine Isotope Stage 4, 3 and 2/3.

During the Last Glacial Maximum, the Itaubal Formation 
was entirely exposed, undergoing ferruginization and 
reworking. As a result, it was partially eroded and its rem-
nants form currently residual terraces discontinuously 
distributed along the coast (Fig. 9 — stage 4). After this 
period, Holocene sands and muds from the Amazon River 
were deposited, forming the modern tidal flats of the ACP 
(Fig. 9 — stage 6; Guimarães et al. 2012, 2013b). 

Figure 8. Depositional model of the Itaubal Formation.
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Figure 9. (A) Proposal for the system tract of the Foz do Amazonas Basin. The Itaubal Formation occurs in onshore 
portion. (B) Paleoenvironmental evolution and sea-level changes during the Itaubal Formation times and relation 
with sea-level curve from Maslin et al. (2006).
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Correlation with Pleistocene  
units of northern South America

The evolution of the ACP is comparable with the 
Suriname Coastal Plain (SCP) (Fig. 10), located 200 
km to the north of studied area. The Suriname Coast 
Plain has been traditionally being subdivided into two 
geomorphological domains: the older domain was 
developed mainly in Pleistocene deposits (Coropina 
Formation) and the younger domain under Holocene 
sediments (Mara and Coronie Formation) (Veen 1970; 
Wong 1992; Wong et al. 2009).

The sedimentary history of the Pleistocene Coropina 
Formation was influenced by global sea-level changes 
recorded in the Para and Lelydorp members. Braided 
stream deposits of the Para Member onlapped the bauxitic 
hardcaps, upper part of the Paleocene-Eocene Onverdacht 
Formation, called “Bauxite Hiatus” (Wong 1992; Wong 
et al. 2009). The development of this unconformity was 
related to a long period of non-deposition, during Late 
Eocene to Oligocene (Fig. 10). The meandering channel, 
chenier and lagoon deposits of the Lelydorp Member over-
lap weathered upper part of the Para Member and represent 
transgressive to highstand phase conditions (Veen 1970; 
Wong 1992; Wong et al. 2009). The Coropina Formation 

was entirely exposed due to sea-level fall, submitted to 
strongly weathering process and reworked by fluvial inci-
sion. Afterwards, a transgressive event occurred during the 
Holocene concomitant with deposition of the Coronie and 
Mara Formations (Brinkman and Pons 1968; Wong 1992; 
Wong et al. 2009).

The fluvial incision of the Para Member probably 
correlates with stage 1 (Fig. 9 — stage 1) in lowstand 
to transgressive conditions (LSST 1-TSST 1), while the 
upper portion of the Lelydorp Member, formed during 
transgressive to highstand conditions (HSST 1), may 
be related to the Lower Unit of the Itaubal Formation 
(Fig. 9 — stage 2).

The studied deposits are also correlated partially 
with the Pós-Barreiras sediments of the Marajó Graben 
system that overlies the Pliocene-Pleistocene lateritic 
paleosol (Góes 1981; Rossetti 2004) (Fig. 1). In con-
trast, Pleistocene deposits in the SCP overlie baux-
itic surfaces formed during the Miocene-Pliocene and 
Eocene-Oligocene (Wong 1992; Wong et al. 2009). The 
Pós-Barreiras sediments initiated as fluvial deposits filling 
incised paleovalleys during a lowstand, probably correlates 
with stage 1 (Fig. 9 — stage 1), occurred before 120,000 
years BP (Tatumi et al. 2008; Rosseti and Valeriano 2007). 

Figure 10. Chart showing the time equivalence of the Pleistocene units of northern South America (Bardossy & 
Aleva 1990; Rossetti 2004; Wong et al. 2009; Guimarães et al. 2012).
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Around the 120,000 years BP, transgressive to highstand 
channel infill is found for the Lower Unit of the Itaubal 
Formation in the ACP and the upper portion of the 
Coropina Formation in the SCP.

CONCLUSION

Detailed facies and stratigraphic analyses in combina-
tion with high-resolution OSL data (single and multiple 
aliquot regeneration) from Pleistocene deposits, previously 
related to the Miocene Barreiras Formation, confirmed 
their Late Pleistocene age. Additionally, we name here these 
Pleistocene deposits “Itaubal Formation”. This formation, 
exposed in the Amapá Coastal Plain, onshore portion of 
the Foz do Amazonas Basin, northeastern South America, 
unconformably overlies the weathered Precambrian base-
ment. The formation was partially eroded and the current 
morphological configurations are residual terraces discon-
tinuously exposed along the Amapá coast. Afterwards, 
Holocene tidal deposits partially covered the Itaubal 
deposits influenced by the fluvial processes related to the 
Amazon River discharges.

The Itaubal Formation was subdivided into two pro-
gradational units, separated by an erosional unconformity. 
The Lower Unit consists of subtidal and tide-influenced 
meandering stream and floodplain deposits distributed in 
the outer portion of the ACP. It reflects a highstand (stage 
phase) condition occurred between 120,600 (± 12,000) 
and 70,850 (± 6,700) years BP. This Lower Unit can 
be correlated with the upper portion of the Coropina 
Formation in the Suriname coastal plain and part of the 
Pós-Barreiras sediments of the Marajó Graben system. 

The Upper Unit was interpreted as braided stream depos-
its related to a base-level fall and falling-stage condi-
tions, with yielded ages of 69,150 (± 7,200) and 58,150 
(± 6,800). Lowstand conditions remained until 23,500 
(± 3,000) years BP, during the Last Glacial Maximum, 
when the Itaubal Formation was exposed and submitted 
to ferruginization processes, which led to confusion with 
the iron-rich Miocene Barreiras deposits.

The absence of the Barreiras Formation in the ACP 
and the intensely weathered Precambrian basement rocks 
suggest the western border of the Marajó Graben being 
an uplifted area during Miocene-Pliocene that, as a geo-
graphic barrier, restricted the Miocene deposition in the 
Bragantina Plataform, northern State of Pará and Suriname 
Coastal Plain. 
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Late Pleistocene Itaubal Formation, onshore Foz do Amazonas Basin


