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ABSTRACT: The Serra Geral Formation belongs to the Paraná-Etendeka Magmatic Province (PEMP) and its geochemical and petrographic 
characteristics are not homogeneous. Many studies segment this group into six basaltic and two rhyolitic magma-types. It is believed that its extrusion 
occurred through crustal fissures in the Cretaceous, but some authors described the presence of conduits in the shape of basaltic ring structures (BRS) in 
the Água Vermelha region in the North of the province. The BRS rocks, based on textures and structures, were divided into four groups—central flow, 
basal flow, main ring dyke and lava flow—with a very similar petrography, composed of plagioclase (labradorite-bytownite), clinopyroxene (augite) and 
oxide (titanomagnetite) with intergranular texture. The whole-rock analyses of the basal and lava flows allow classifying them as tholeiitic basalts of the 
Paranapanema magma-type. Geochemical data interpretation suggests an enriched magma source, with low degree of partial melting, high depth of melt 
generation and without significant crustal contamination. The BRS experienced fractional crystallization on shallow magma chamber, influenced by 
successive new injections from different parental magmas which would be responsible for the pulses of effusion and explosion. Thus, the singularities of the 
BRS of Água Vermelha are important to comprehend the evolution of the PEMP.
KEYWORDS: Paraná-Etendeka Magmatic Province; Serra Geral Formation; lithochemistry; petrography; mineral chemistry.
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INTRODUCTION

The Serra Geral Formation represents thick sequence 
flows of mainly basaltic rocks (ca. 1,700 m of maxi-
mum thickness), and belongs to the continental-scale 
Paraná-Etendeka Magmatic Province (PEMP) (Almeida 
1986). Due to its extension, its characteristics are not 
homogeneous. Bimodal magmatism was responsible for 
predominantly basaltic and subordinate dacitic-rhyolitic 
rocks found at the province. 

It is widely thought that the main extrusion mecha-
nism for this rapid basaltic volcanism of the PEMP was 
through crustal fissures formed during the Cretaceous, 
due to the break-up of West Gondwana (Almeida 1986). 
Dyke swarms are commonly found oriented according to 
tens of km-long fractures, such as the Ponta Grossa, Serra 
do Mar and Florianópolis (Marques & Ernesto 2004). 
Except the ones of Florianópolis Swarm, whose ages are 
subject of some debate, the other dykes are slightly younger 
than the flows (e.g., Deckart et al. 1998, Renne et al. 
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1996). In other similar provinces, basaltic ring structures 
(BRS) are eventually found (e.g., Swanson et al. 1975, 
Jaeger et al. 2005, Webster et al. 2006), and in the Serra 
Geral Formation, 11 BRS were identified in the northern 
area of the province and were characterized as possible 
conduits of lava (Araújo et al. 1977, Araújo 1982, Araújo 
& Hasui, 1985). This descriptive term (BRS) refers to 
rimmed topographic depression within basaltic lava flow 
which appears in plain view as a circular or an elliptical 
structure with raised rims (Burr et al. 2009).

In this paper, we present detailed petrographic, 
lithochemical and mineral chemistry data from the basalts 
of one of those BRS situated in the Northern portion 
of the Serra Geral Formation, at the Triângulo Mineiro 
region, Brazil. This study contributes to a better char-
acterization of the BRS lava flows and to improve the 
understanding about the geochemical evolution of the 
Serra Geral Formation, since the BRS might represent 
a volcanic conduit and its analyses can point the mag-
matic source characteristics, as well as differentiation and 
crystallization processes that occurred on PEMP flows.

GEOLOGICAL CONTEXT

The development of the Paraná basin occurred during 
the Phanerozoic upon a crystalline and metasedimen-
tary basement in the southeastern region of the South 
American platform, which was profoundly affected by 
tectonic, magmatic and metamorphic events during the 
Neoproterozoic (ca. 900 – 530 Ma) (Zalán et al. 1991). 
Deposition of the sedimentary-magmatic sequence that 
filled the Paraná basin occurred from the Upper Ordovician 
to the Upper Cretaceous (Milani 2004).

The Serra Geral Formation represents more than 90% 
of the preserved part of the Paraná-Etendeka Magmatic 
Province (PEMP) and its origin is related to the break-up 
of Gondwana and the opening of the South Atlantic 
Ocean. The PEMP is composed by a thick volcanic suc-
cession which covers a great portion of southern Brazil 
and parts of Paraguay, Uruguay and Argentina (Marques 
& Ernesto 2004) and occupies an area of 9.17 × 105 km2 
with about 1.7 × 106 km3 of, predominantly, basaltic rocks 
(Frank et al. 2009), along with mafic sills and dyke swarms 
that crosscut the sedimentary basin (Milani et al. 2007).

The basic volcanic rocks of the Serra Geral Formation 
are divided into six magma-types: Urubici, Pitanga and 
Paranapanema, from the high titanium group (HTi; TiO2 
> 2 wt%); and Gramado, Esmeralda and Ribeira, from the 
low titanium group (LTi; TiO2 < 2 wt%). The rhyolitic 
magma were separated due to the amount of incompatible 

elements, being the Palmas and Chapecó types depleted 
and enriched in those elements respectively (e.g., Bellieni 
et al. 1984, Mantovani et al. 1985, Piccirillo & Melfi 
1988, Peate et al. 1992). 

The distribution of those magma-types is not ran-
dom through the PMPE. Although the Pitanga and 
Paranapanema types (HTi) occur through the entire 
province, in volume they are preferentially located at 
the northern area. The LTi and rhyolitic magmas occur 
on the south-central part of the province (Janasi et al. 
2011) (Fig. 1). The Southern Paraná Magmatic Province 
hosts the Urubici rocks (HTi) (Piccirillo & Melfi 1988, 
Peate 1997), although some scarce flows (Machado et al. 
2007) and dykes (Seer et al. 2011, Marques et al. 2016) 
are found in the northern area.

Água Vermelha Region
The Água Vermelha region is located between the cit-

ies of Iturama (Minas Gerais state) and Ouroeste (São 
Paulo state), where a hydroelectric dam was constructed 
over the Grande riverbed. The geological studies in the 
region date from the time of construction of the dam 
(e.g., Araújo et al. 1977, Araújo 1982, Araújo & Hasui 
1985). Basaltic rocks of the Serra Geral Formation in the 
area occur as both dykes and lava flows. The flows are dis-
tributed in conspicuous semi-circular structures, while 
the dykes are disposed in ring structures (Araújo 1982). 
Also, in the center of one BRS a lava lake structure is 

Figure 1. Map of the distribution of magma-types 
of the Serra Geral Formation throughout the Paraná 
Basin (adapted from Janasi et al. 2011). The study area 
is represented by the red dot.
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described, which is surrounded by lava flows and a ring 
dyke (Pacheco et al. 2018).

Three types  of  mafic  rocks character ize  the 
lava flows described in the region: basaltic breccias, 

vesicle-amygdaloidal basalts, and massive basalts. The basal-
tic breccias are restricted and divided into volcanic and 
pyroclastic types. The semi-circular structures are expressed 
in the region as depressions and numbered from 1 to 11 

Figure 2. Geological map of the Água Vermelha region (adapted from Araújo 1982). Coordinates are in Universal 
Transverse Mercator (UTM), World Geodetic System (WGS) 84 Datum.
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in the Figure 2. They are filled by vesicular-amygdaloi-
dal basalts, with pahoehoe structures, and show a sharp 
contact with neighboring lava flows or ring dyke. Ring 
fractures are common (Araújo & Hasui 1985).

MATERIALS AND METHODS

To characterize each flow of the BRS (Fig. 3), a 
petrographic study was made with samples of each level. 
Thirty thin sections to detail the texture and mineralogi-
cal aspects and five polished sections were made for min-
eral chemistry analyses. The samples used for chemical 
analyses (both mineral chemistry and lithochemistry) are 
represented on the stratigraphic sections (Fig. 4).

The microanalysis of plagioclase, pyroxene and titano-
magnetite were performed with an electron microprobe 
JEOL JXA-8900 RL at the Microscopy and Microanalysis 
Laboratory of the Centro de Desenvolvimento da 
Tecnologia Nuclear (CDTN), at the Federal University 
of Minas Gerais (Universidade Federal de Minas Gerais 
— UFMG). The electron beam was set at 15 kV, 20 nA, 
2–5 μm, and the common matrix ZAF — Z: atomic 
number, A: absorption; F: fluorescence — corrections 
were applied. Counting times on the peaks/background 
were 10/5 s for all elements (Si, Na, Mg, Mn, K, Al, Fe, 
Ca, Ti), except for Cr and P (20/10 s). Analytical errors 
are within 0.12 and 1.23%. Plagioclase and clinopyrox-
ene were analyzed along granular spots and from core 
and rims. Table 1 summarizes the main features of the 
analysis, as the examined elements and standards. The 
mineral formulas were calculated based on 6 oxygens for 
pyroxene and 8 for plagioclase crystals. The total iron 
content obtained by the microprobe was considered as 
FeO. The binary and ternary diagrams used to character-
ize the main minerals were obtained by Microsoft Excel 
and GCDKit version 2.3.

The whole rock chemical analyses preparation consisted 
of the crushing and pulverization of ca. 300 g of homo-
geneous and unweathered sample on a tungsten carbide 
shatterbox at the Sample Preparation Laboratory of the 
Centro de Pesquisas Professor Manoel Teixeira da Costa 
at Instituto de Ciências (CPMTC-IGC) of UFMG. The 
sample analyses followed the induced coupled plasma 
(ICP) routine at SGS Geosol Laboratories. The major 
elements were analyzed by induced coupled plasma with 
optical emission spectroscopy (ICP-OES), and the minor 
and trace elements by induced coupled plasma with mass 
spectrometry (ICP-MS). The accuracy and precision were 
better than 10% and the confidence level was 95%. 

The major element variation diagrams and the CIPW 
norm (Cross et al. 1903) were made after normalization 
on water-free basis (Gill 2010). The CIPW norm of the 
standard mineral components, from the whole-rock analy-
ses, was based on Johannsen (1931). Since the whole-rock 
chemical analyses considered only Fe2O3, the estimation 
of FeO and Fe2O3 was based on Gill (2010), who used 
the ratio 0.9, that is, FeO estimated = 0.9 × Fe2O3Total.

PETROGRAPHY

The rocks of the BRS were divided in flows due to 
the easily identifiable top and basal sharp contact of each 
flow and are represented in the geological map (Fig. 3, 
Pacheco et al. 2018) and stratigraphic columns (Fig. 4, 
Pacheco et al. 2018). The central flow occurs in the center 
of the BRS, with vesicle-amygdaloidal basalts, with spatter 
and degassing structures. The basal flow represents mas-
sive basalt, which shows no structure as columns and has 
quartz geodes. Seated on it massive lava flows occur, with 
vertical columnar disjunction structures. The nomencla-
ture of each lava flow follows the numeric order of super-
position and lateral continuity. In case in which it was 
not possible to determine the lateral correlation of each 
flow, a new sequence was adopted, resulting in two dif-
ferent numberings: 0 to 8 and 1A to 3A; both occurring 
above the basal flow. The main ring dykes show massive 
basalt with horizontal to sub-horizontal columnar dis-
junction structures and crosscut the basal and lava flows.

Central flow
The central flow is composed of grayish vesicle-amyg-

daloidal basalt, which is orange when weathered (Fig. 5A). 
In thin sections, the sample has a predominant intergran-
ular texture with a smaller amount of glass between the 
crystals. The plagioclase laths are euhedral to subhedral 
with size of 0.2–0.8 mm showing Carlsbad twinning, 
and the clinopyroxene crystals are granular and smaller 
than 0.5 mm. The amygdala is filled with tabular zeo-
lite crystals (0.1–0.5 mm) and calcite matrix (Fig. 5B).

It is possible to identify spatter structures of variable 
size, milimetric to centimetric, reaching up to 15 cm 
long (Fig. 5C). The spatter structure has a vitreous matrix 
and shows larger plagioclase laths (0.5–1.5 mm) than the 
intergranular vesicle-amygdaloidal matrix (0.2–0.8 mm). 
The plagioclase shows “swallow-tail” endings (Fig. 5D).

The degassing pipes structures reach 15 cm of diam-
eter (Fig. 5E). In thin sections, they show a vitreous 
matrix with plagioclase laths smaller than 1 mm, granular 
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Figure 3. Geological map of basalt ring structure E6 in Água Vermelha region, Minas Gerais / São Paulo, Brazil, 
showing the different basalt flows, structures and location of the studied stratigraphic sections (Pacheco et al. 2018).
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Figure 4. Stratigraphic section with the representation of basalt flows in ring structure E6 and the location of 
the lithochemical and microprobe samples analyzed. The location of each column is represented in the geological 
map of Fig. 3 by a dashed line. Column number 1 is in the Northern part of the area, and the following columns 
were made clockwise direction until number 13 (adapted from Pacheco et al. 2018).

Elements Energetic line Crystal Standard

Si Kα TAP Quartz

Na Kα TAP Anortoclase

Cr Kα LIF Cr2O3

P Kα PET Apatite

Mg Kα TAP MgO

Mn Kα LIF Mn-Hortonolite

K Kα PET Anortoclase

Al Kα TAP Corindon

Fe Kα LIF Magnetite

Ca Kα PET Apatite

Ti Kα PET Rutile

Table 1. Overview of the major element set-up for 
clinopyroxene, plagioclase and titanomagnetite analysis.

TAP: thallium acid phthalate crystal; LIF: lithium fluoride crystal; 
PET: pentaerythritol crystal.

clinopyroxene crystals smaller than 0.4 mm and amyg-
dala filled with zeolite (Fig. 5F).

Basal flow
The basal flow is composed of homogeneous and 

massive dark grey basalt, with fine-grained plagioclase 
and pyroxene. It may rarely show some microamygdales 
(1–2 mm) filled by celadonite, and towards the top of 
the flow centimetric to decametric quartz geodes occur, 
reaching up to 60 cm in diameter (Fig. 6A). In thin sec-
tion, it has a predominantly intergranular texture with 
a smaller amount of glass between the crystals. The pla-
gioclase laths are euhedral to subhedral, smaller than 
0.3 mm, showing Carlsbad twinning, and the clinopy-
roxene crystals are granular and smaller than 0.1 mm. 
Microphenocrysts of plagioclase forming glomeroporphy-
ritic aggregates are occasionally observed, with 0.5–1.0 
mm in size, showing Carlsbad twinning and concentric 
zoning (Fig. 6B). Iddingsite can be found as an olivine 
pseudomorph and opaque minerals (oxides) occur, with 
cubic, prismatic and skeletal habit and smaller than 0.1 
mm (Figs. 6C and 6D).

Main ring dyke
It is composed of black basalt with thickness from 2 

to 5 m, showing inclined to horizontal columnar disjunc-
tions and it is discontinuous throughout the structure (Fig 
6E). In thin section, it has a predominantly intergranular 

texture with a smaller amount of glass between the crys-
tals. The plagioclase laths are euhedral to subhedral, with 
size of 0.1 to 0.8 mm, showing Carlsbad twinning and 
“swallow-tail” endings. The pyroxene crystals are granular 
and smaller than 0.1 mm. Microamygdales (smaller than 
1 mm) are filled with clay mineral (Fig. 6F).
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Pl: plagioclase; Px: pyroxene; Zeo: zeolite; Cal: calcite. 

Figure 5. (A) Central flow vesicle-amygdaloidal basalt; (B) photomicrography of the central lava flow, with 
intergranular texture and amygdala filled by zeolite and calcite; (C) spatter structure; (D) photomicrography 
of spatter structure well-marked by glass and laths; (E) degassing pipe structure; (F) photomicrography of the 
degassing pipe structure with plagioclase and clinopyroxene laths wrapped by glass and amygdales filled by 
zeolites. All photomicrographs under crossed polarizers.

A

C

E

B

D

F

Lava flows
The lava flows are composed of massive dark grey 

basalts, with fine phaneritic to aphanitic texture, with rare 
microphenocrysts. They are separated by sharp top and 
base contacts and show columnar disjunctions (Fig. 7A).

In thin section, the rock has a subophitic texture 
with a small amount of glass between the crystals. The 
matrix has plagioclase laths smaller than 0.5 mm, with 
Carlsbad twinning and “swallow-tail” endings and gran-
ular pyroxene smaller than 0.2 mm. The rock presents 
microphenocrysts of plagioclase (1–2 mm), which can 
show Carlsbad twinning, concentric and hourglass zoning 
(Figs. 7B, 7C and 7D). Microphenocrysts of plagioclase 
and pyroxene forming glomeroporphyritic aggregates are 
occasionally observed, with 0.5–1.2 mm in size (Fig. 7E). 
Iddingsite can be found as an olivine pseudomorph and 

opaque minerals (oxide) occur, with cubic and prismatic 
habits and smaller than 0.1 mm.

LITHOCHEMISTRY

The major, minor and trace element analysis and 
the CIPW norm of 14 samples are presented in Table 
2. Those data were used to elaborate diagrams which 
assisted the lithochemistry interpretation of the studied 
rocks, being 11 samples from the lava flow (LF) and three 
samples from the basal flow (BF).

The samples did not suffer any significant post-mag-
matic alteration as indicated by their loss on ignition 
(LOI) contents (< 1 wt%) and are classified as basic rocks 
(SiO2 = 48.02–50.65 wt%). The content of alkali elements 
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Pl: plagioclase; Px: pyroxene; Idn: iddingsita; Ox: oxide. 

Figure 6. (A) Basal flow general aspect, with quartz geode. Photomicrographs of the basal flow basalt, showing 
glomeroporphyritic aggregate of plagioclase (B), iddingsite and oxides (C and D). (E) Main ring dyke basalt with 
inclined columnar disjunction; (F) main ring dyke photomicrography with plagioclase and pyroxene laths, glass 
and microamygdales filled with clay. Photomicrographs B and F under crossed polarizers, and C and D under 
parallel polarizers. A and E from Pacheco et al. (2018).

A

C

E

B

D

F

(Na2O + K2O = 3.06–3.28 wt%), Al2O3 (12.62–13.62 
wt%), Fe2O3T (13.83–15.04 wt%), MgO (5.56–6.28 
wt%) and CaO (9.76–10.58 wt%) are within the range 
for basaltic rocks. Those values were calculated on anhy-
drous basis.

All samples plot on the subalkaline basalt field in 
the total alkalis/silica (TAS) diagram (Le Maitre 2002), 
within the field of tholeiitic basalts (MacDonald & 
Katsura 1964) (Fig. 8A). The basalts of Água Vermelha 
belong to the high titanium group (1.96 wt% < TiO2 < 
2.14 wt%) according to the magma-type classification 
of Peate et al. (1992). The Sr vs. TiO2 and Ti/Y vs. Sr 
diagrams (Peate et al. 1992, Machado et al. 2007) show 

that all of the samples plot within the Paranapanema 
field (Figs. 8B and 8C). It is possible to identify a clus-
ter of samples between the primordial mantle following 
the path to garnet in residue based on the  (Th/ Nb)PM 
vs. (Sm/Yb)PM ratios (Wang et al. 2007). Although two 
samples follow the path of crustal contamination, the 
behavior of other incompatible trace elements, such as 
Rb, Ba and K, does not confirm this petrogenetic pro-
cess (Fig. 8D).

The covariation of major and trace incompatible ele-
ments can be seen through bivariate diagrams using MgO 
as an index for differentiation. The determination coef-
ficients of major elements (R2, adjustment measure of a 
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Pl: plagioclase; Px: pyroxene; Idn: iddingsita; Ox: oxide.

Figure 7. (A) Lava flows of the southwestern edge of the mapped ring structure. Universal Transverse Mercator 
(UTM) coordinates: 7803986 N/567020 E/Zone 22K/ facing southwest (Pacheco et al. 2018). (B-E) Photomicrographs 
of the lava flow, showing phenocrysts of plagioclase and pyroxene (B), plagioclase with concentric (C) and 
hourglass zoning (D), and glomeroporphyritic aggregates of plagioclase and pyroxene. All photomicrographs 
under crossed polarizers.

A

B

D

C

E

general statistical model) show moderate (31%, FeOT; 
49%, TiO2; 51%, SiO2) and high (72% to Al) values, and, 
when analyzing trace incompatible elements, they show 
low (< 20%, Rb, Ba, La, U, Th) and moderate (54%, Sr) 
values (Fig. 9). It suggests the occurrence of complex dif-
ferentiation processes during magma evolution.

Both large-ion lithophile elements (LILE) and high 
field strength elements (HFSE) are enriched when nor-
malized to the primitive mantle (Fig. 10A). Among the 
LILE, there is a negative Sr anomaly common to all sam-
ples, and among the HFSE there is a negative Nb anom-
aly. Other elements show very similar pattern. The (Rb/
Ba)PM ratio have a strong negative anomaly (0.54–0.8), 

pointing that the crustal contamination did not take place 
on the lava ascension (Marques et al. 2017). 

The rare earth elements (REE), when normalized to 
the chondrite (Sun & McDonough 1989), show enrich-
ment on the total elemental concentration, higher on the 
light rare earth elements (LREE) and lower on the heavy 
rare earth elements (HREE) — (La/Yb)N = 4.34–6.14 
and  (La/ Sm) N = 2.31–3.02 — (Fig. 10B), and a negative 
Eu anomaly  (Eu/ Eu* = 0.85–0.94). When those analyses 
are compared to Pinto & Hartmann (2011) data for the 
Paranapanema type (gray field on Fig. 10B), the patterns 
are very similar. This enrichment could be enabled by the 
fractional crystallization of the magma.
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Table 2. Whole-rock analyses of basalts from the ring structure E6 and CIPW norm data.

Continue...

Sample 001 002 003b 004 005 006 007

Level LF 1 LF 3 LF 4 LF 5 LF 6 BF LF 2

North 7,803,907 7,803,933 7,803,933 7,803,884 7,803,881 7,803,986 7,803,986

East 566,934 566,906 566,906 566,898 566,933 567,020 567,020

Major elements (wt %)

SiO2 50.35 48.49 49.25 48.79 49.53 48.58 49.87

TiO2 2.01 1.99 1.97 2.01 2.13 2.02 2.02

Al2O3 13.46 13.08 13.12 13.41 13.37 13.22 13.46

Fe2O3(t) 14.23 14.13 13.99 14.08 14.96 14.55 14.28

MnO 0.21 0.20 0.20 0.20 0.20 0.21 0.22

MgO 6.03 5.86 5.87 5.96 6.01 6.22 6.00

CaO 10.49 10.13 10.29 10.2 10.27 10.33 10.51

Na2O 2.67 2.68 2.66 2.67 2.78 2.48 2.68

K2O 0.57 0.48 0.52 0.49 0.48 0.55 0.54

P2O5 0.21 0.21 0.22 0.22 0.22 0.21 0.22

Cr2O3 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LOI 0.60 0.55 0.68 0.74 0.53 0.94 0.64

Total 100.86 97.81 98.79 98.79 100.5 99.34 100.46

Minor and trace elements (ppm)

Zn 90 97 90 87 93 90 90

Cu 234 237 233 232 238 226 229

Ni 69 72 68 64 64 66 67

Ba 286 263 265 265 266 283 258

Cs 0.36 0.35 0.24 0.17 0.3 0.45 0.22

Ga 20.5 20.7 20.5 20.7 20.9 20.1 20.4

Hf 4.73 9.13 12.5 3.94 4.04 3.74 3.9

Nb 20.34 17.25 21.18 12.1 12.91 16.31 11.93

Rb 20.3 16.3 14.8 14.7 15.5 15.3 17.1

Sn 3.1 5.1 8.2 <0.3 2.7 0.5 0.5

Sr 312 299 306 303 300 309 308

Th 4.5 9.7 14.7 2.7 2.9 3.4 2.6

U 0.61 1.03 2 0.56 0.57 1.05 0.53

V 426 415 427 413 412 400 412

Zr 128 194 230 114 128 114 126

Y 29.74 30.02 31.45 29.16 29.93 28.17 28.82

La 23.6 21.7 22.2 25.7 20.9 20.1 22

Ce 43.9 43.5 43.5 43.8 43.1 41.3 42.4
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Table 2. Continuation.

Continue...

Sample 001 002 003b 004 005 006 007

Level LF 1 LF 3 LF 4 LF 5 LF 6 BF LF 2

Pr 5.68 5.57 5.62 5.52 5.59 5.35 5.48

Nd 22.5 22.7 23 22.7 22.8 21.9 22.2

Sm 5.5 5.6 5.6 5.5 5.6 5.4 5.3

Eu 1.71 1.71 1.67 1.69 1.72 1.62 1.7

Gd 5.73 6.06 5.91 5.82 5.81 5.62 5.63

Tb 0.94 0.96 1 0.9 0.92 0.88 0.89

Dy 5.88 5.96 6.4 5.73 5.77 5.59 5.69

Ho 1.16 1.21 1.35 1.15 1.15 1.12 1.12

Er 3.28 3.47 4.06 3.12 3.26 3.05 3.12

Tm 0.46 0.52 0.63 0.46 0.46 0.46 0.45

Yb 3.1 3.5 4.4 3 3 3 3

Lu 0.44 0.5 0.62 0.43 0.43 0.43 0.42

CIPW Norm (%)

An 23.01 22.87 22.76 23.62 22.60 23.70 23.15

Ab 22.54 23.32 22.95 23.05 23.54 21.33 22.72

Or 3.36 2.92 3.13 2.95 2.84 3.30 3.20

Di 11.81 11.64 11.90 11.44 11.31 11.63 11.84

Hd 12.25 12.35 12.48 11.86 12.35 12.00 12.38

Ens 8.27 7.09 7.94 7.21 6.55 7.37 7.48

Fs 9.84 8.62 9.54 8.58 8.21 8.72 8.98

Il 3.81 3.89 3.81 3.89 4.05 3.90 3.84

Mag 2.68 2.75 2.70 2.72 2.83 2.80 2.71

Fo 0.87 1.77 1.01 1.84 2.23 2.10 1.40

Fy 1.14 2.37 1.34 2.41 3.08 2.73 1.85

Total 99.58 99.58 99.57 99.57 99.58 99.57 99.56

Sample 008 010 015 016 023 024 026

Level LF 5-S LF 7 LF 1A LF 2A BF-NO LF 8 BF-N

North 7,803,888 7,804,008 7,804,013 7,803,894 7,803,905 7,803,881 7,804,032

East 566,945 566,915 566,926 566,958 566,968 567,050 566,976

Major elements (wt %)

SiO2 49.58 48.15 47.63 47.29 47.64 48.1 48.66

TiO2 2.05 1.96 1.98 1.95 1.94 1.97 1.97

Al2O3 13.54 13.09 13.20 12.67 12.52 13.05 13.19

Fe2O3(t) 14.45 13.9 14.03 13.94 14.06 13.74 14.06

MnO 0.21 0.20 0.21 0.19 0.18 0.20 0.20
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Sample 008 010 015 016 023 024 026

Level LF 5-S LF 7 LF 1A LF 2A BF-NO LF 8 BF-N

MgO 6.10 5.87 5.78 5.55 5.52 5.87 5.95

CaO 10.32 9.97 9.91 9.69 9.83 10.08 10.16

Na2O 2.73 2.54 2.68 2.56 2.61 2.61 2.66

K2O 0.53 0.59 0.50 0.55 0.52 0.50 0.53

P2O5 0.21 0.22 0.21 0.21 0.21 0.21 0.22

Cr2O3 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LOI 0.56 0.55 0.49 0.64 0.75 0.66 0.64

Total 100.3 97.05 96.63 95.25 95.79 96.99 98.24

Minor and trace elements (ppm)

Zn 89 90 82 83 82 86 87

Cu 237 229 224 226 220 230 226

Ni 68 64 64 63 62 63 66

Ba 273 295 270 261 310 286 269

Cs 0.2 0.33 0.29 0.39 0.31 0.17 0.36

Ga 20.8 20.3 20 19.7 19.9 20.5 20

Hf 3.94 3.85 5.51 3.77 4.29 3.97 3.78

Nb - 12.16 17.38 11.78 15.15 12.2 12.1

Rb 15.2 17.3 15.1 21.1 19.3 14 19.6

Sn 2.3 2.3 3.3 2.3 0.9 <0.3 0.8

Sr 307 298 309 289 296 304 303

Th 2.5 2.8 5.6 2.6 3.3 2.8 3

U 0.68 0.59 0.95 0.51 0.66 0.55 0.57

V 436 414 411 397 411 404 421

Zr 118 113 132 112 115 114 116

Y 29.31 28.65 28.53 28.14 28.49 28.93 29.23

La 23.1 20.2 22.2 19.3 21.4 20.2 23.1

Ce 43.3 41.7 41.4 40.7 41.5 41 42.2

Pr 5.6 5.43 5.3 5.29 5.42 5.37 5.51

Nd 22.7 22.5 21.7 21.8 22.1 21.7 22.3

Sm 5.5 5.3 5.3 5.4 5.3 5.1 5.3

Eu 1.72 1.66 1.6 1.65 1.66 1.61 1.59

Gd 5.75 5.68 5.59 5.52 5.58 5.52 5.5

Tb 0.9 0.89 0.89 0.86 0.88 0.89 0.89

Dy 5.72 5.61 5.58 5.42 5.47 5.48 5.5

Ho 1.13 1.12 1.11 1.09 1.11 1.12 1.08

Table 2. Continuation.

Continue...
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Sample 008 010 015 016 023 024 026

Level LF 5-S LF 7 LF 1A LF 2A BF-NO LF 8 BF-N

Er 3.23 3.16 3.08 3.03 3.09 3.13 3.12

Tm 0.45 0.45 0.46 0.42 0.44 0.44 0.44

Yb 3 2.9 3 2.9 2.9 2.9 2.9

Lu 0.44 0.44 0.44 0.41 0.44 0.42 0.42

CIPW Norm (%)

An 23.19 23.39 23.42 22.68 22.00 23.27 23.50

Ab 23.17 22.27 23.59 22.9 23.24 22.93 22.74

Or 3.14 3.61 3.07 3.44 3.23 3.07 3.32

Di 11.48 11.36 11.17 11.14 11.52 11.76 11.70

Hd 11.95 11.83 11.92 12.32 12.95 12.07 11.75

Ens 6.87 7.81 6.21 7.68 7.56 7.49 7.85

Fs 8.20 9.33 7.60 9.75 9.75 8.81 9.04

Il 3.90 3.86 3.91 3.91 3.88 3.88 3.77

Mag 2.74 2.72 2.76 2.79 2.80 2.70 2.66

Fo 2.13 1.45 2.51 1.24 1.10 1.57 1.44

Fy 2.80 1.91 3.39 1.73 1.56 2.03 1.82

Total 99.58 99.56 99.56 99.58 99.59 99.57 99.58

LF: lava flow; BF: basal flow; An: anorthite; Ab: albite; Or: orthoclase; Di: diopside; Hd: hedenbergite; Ens: enstatita; Fs: ferrossilite; Il: ilmenita; 
Mag: magnetite; Fo: forsterite; Fy: fayalite.

Table 2. Continuation.

The HFSE and REE arrangement (Thompson et al. 
1984) normalized to the mid-ocean ridge basalt (MORB) 
(Sun & McDonough 1989) can demonstrate features of 
the original magma (Pearce 2008). The significant nega-
tive Nb anomaly (Fig. 10C) is a characteristic chemical 
signature for some continental flood basalt (e.g., Arndt & 
Christensen 1992, Pik et al. 1999), reflecting the source 
composition and melt conditions (Turner & Hawkesworth 
1995). The PEMP model for melt generation suggests the 
partial fusion of peridotite on the subcontinental litho-
spheric mantle (SCLM), chemically modified due to pre-
vious subduction processes which generated the negative 
Nb anomaly (Turner et al. 1996, Reichow et al. 2005, 
Wang et al. 2008). 

The additional normalization of the incompatible 
elements to Ti = 1, showed in Figure 10D, assists the 
visualization of the effects of crustal contamination (seg-
ment A), source composition and degree of partial melt-
ing (segment B) and depth of melt generation (segment 
C) (Pearce 2008). Although the ThN shows high values, 

as aforementioned, the other proxies do not show crustal 
contamination. The anomalous high Th, U, Zr and Hf 
concentrations draw our attention and should be observed 
in future works on rocks in that area. Although some labo-
ratory contamination cannot be completely ruled out, the 
rigor with which the samples preparation was made does 
not allow us to impute the anomalies before the analysis 
process. The segments B and C reveal the magma origin 
in an enriched source with low degree of partial melting 
and at high depths. The behavior of average composition 
of Paranapanema samples that did not suffer crustal con-
tamination (based on initial Sr isotope ratios < 0.7060) 
(Marques et al. 2017) is very similar to this work samples. 

However, the average composition of the Água Vermelha 
basalts shows some differences from the average compo-
sition of other Paranapanema rocks, with slightly lower 
contents of SiO2, TiO2, Fe2O3, K2O and P2O5 and higher 
contents of MgO, CaO and Na2O compared to the samples 
from Rocha-Júnior et al. (2013), Machado et al. (2007) 
and Pinto & Hartmann (2011) (Fig. 11).
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Figure 8. (A) Total alkalis/silica (TAS) diagram (Le Maitre 2002) with the line that divides the alkaline and tholeiitic 
rocks fields (MacDonald & Katsura 1964); (B and C) diagrams for discrimination of high titanium magma-types 
of the Paraná-Etendeka Province (Peate et al. 1992, Machado et al. 2007); (D) (Th/Nb)PM vs. (Sm/Yb)PM diagram for 
crustal contamination (Wang et al. 2007).

A

C

B

D

MINERAL CHEMISTRY

The composition and variation of each mineral phase 
were obtained for the samples 003b and 022 (lava flows), 
and the samples 006, 023 and 027 (basal flows) are shown 
and discussed in this topic. The core and rim of the crys-
tals of plagioclase and clinopyroxene and microlites of 
plagioclase, pyroxene and titanomagnetite were analyzed. 

Plagioclase
The plagioclases were classified according to the 

Or-Ab-An diagram (Deer et  al .  2003) (Fig. 12). 
Plagioclase microlites from both lava and basal flows are 
composed of labradorite, with anorthite (An), albite (Ab) 
and orthoclase (Or) contents between An59Ab39Or2 and 

An67Ab32Or1. The phenocrysts from the lava and basal 
flows show a very weak compositional zoning (Tab. 3). 
The chemical formula for the phenocrysts of the lava flow 
can be summarized as An80Ab19Or1 and it is characterized 
as bytownite. There are two distinct groups of phenocrysts 
on the basal flow, with a slightly different composition 
from rim to core, being the first group characterized as 
bytownite (An81Ab18Or1 to An70Ab29Or1) and the second 
one as labradorite (An69Ab30Or1 to An64Ab34Or2). Table 3 
summarizes the data of plagioclases analysis.

Pyroxene
The clinopyroxene found in the samples is classified as aug-

ite in the Wo-En-Fs diagram of Morimoto (1988) (Fig. 13). 
The main features of the crystals are presented in Table 4. 
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Figure 9. Bivariant diagrams of major (SiO2, FeOT, Al2O3 and TiO2) and trace (Rb, Ba, Sr, La, U and Th) elements vs. MgO.
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Figure 10. (A) Minor and trace elements normalized to the primitive mantle (Sun & McDonough 1989); (B) rare 
earth elements (REE) normalized to chondrite (Sun & McDonough 1989). Gray field represents the Paranapanema 
type basalts, with data from Pinto & Hartmann (2011). (C and D) Incompatible elements normalized to mid-
ocean ridge basalt (MORB) (Sun & McDonough 1989) and to Ti = 1. (Pearce 2008) The red line represents the 
average sample composition of Paranapanema samples (Rocha-Júnior et al. 2013) that did not suffer crustal 
contamination (based on initial Sr isotope ratios < 0.7060).
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C

B
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Figure 11. Comparative chart between Paranapanema 
average compositions normalized to the average 
composition samples from this work (*). (A) Rocha-
Júnior et al. (2013), 10 samples; (B) Machado et al. (2007), 
two samples; (C) Pinto & Hartmann (2011), 14 samples. 

Titanomagnetite (ulvöspinel)
The oxide analyses were plotted on the ternary FeO 

vs. TiO2 vs. Fe2O3 diagram (Akimoto & Katsura 1959). 
Since the microanalysis considered only FeO, the estimates 
of FeO and Fe2O3 were made as described in the Materials 
and Methods section. This diagram shows the major solid 
solution series magnetite-ulvöspinel, hematite-ilmenite and 
ferropseudobrookite-pseudobrookite (Fig. 14A). The skele-
tal oxides (Fig. 14B) analyzed for both lava and basal flows 
plot on the solid solution series of magnetite-ulvöspinel (tita-
nomagnetite), and are close to the ulvöspinel end-member. 
Table 5 summarizes the data for the titanomagnetite analysis. 

DISCUSSION

The petrography and whole-rock analyses show that 
the basalts of Água Vermelha have a subalkaline and 

tholeiitic signature due to the alkali and silica contents, 
as well as the presence of normative olivine and enstatite 
(Machado et al. 2007). The MgO content of BRS samples 
increases with the enrichment of silica, different from the 
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Circle: core; triangle: rim; square: microlite.

Figure 12. Ternary diagram plot (Or-Ab-An) (Deer et al. 2003) for plagioclases from samples of the ring structure E6.

Table 3. Summary of plagioclase data from samples of 
the ring structure E6.

Sample Cristal %Or %Ab %An Mineral

Lava flow

003b

Microlite 1 31 67 Labradorite

Phenocryst (core) 1 20 80 Bytownite

Phenocryst (rim) 1 20 80 Bytownite

22 Microlite 1 33 66 Labradorite

Basal flow

6

Microlite 2 39 59 Labradorite

Phenocryst (core) 1 30 69 Labradorite

Phenocryst (rim) 1 34 64 Labradorite

Phenocryst (core) 1 30 69 Bytownite

Phenocryst (rim) 1 29 70 Bytownite

27

Microlite 1 32 67 Labradorite

Phenocryst (core) 1 18 81 Bytownite

Phenocryst (rim) 1 19 80 Bytownite

Phenocryst (core) 1 33 66 Labradorite

Phenocryst (rim) 1 31 68 Labradorite

23 Microlite 1 32 67 Labradorite

Or: orthoclase; Ab: albite; An: anorthite.

Circle: core; triangle: rim; square: microcrystal.

Figure 13. Ternary diagram plot (Wo-En-Fs) (Morimoto 
1988) for clynopyroxenes from ring structure E6.

other samples of Paranapanema-type basalts, while the 
content of TiO2, K2O and P2O5 stay constant with the 
increase of silica and it is significantly lower than typical 
Paranapanema. Also, they present enrichment of Al2O3 
MgO, CaO and Na2O related to other Paranapanema 
samples (Rocha-Júnior et al. 2013, Machado et al. 2007, 
Pinto & Hartmann 2011) (Fig. 15).

The mineral chemistry allows determining that the 
plagioclase of both lava and basal flows has a composi-
tion ranging between bytownite and labradorite. The 
plagioclase with slightly Ca-richer rim than the core 
suggests the possibility of new magma injections on the 
chambers. The pyroxenes of the basal and lava flow are 
classified as augite. 

Brazilian Journal of Geology, 48(2): 283-304, June 2018
299

Fernando Estevao Rodrigues Crincoli Pacheco et al.



Sample Crystal type Chemical formula %Fs %En %Wo

Lava flow

003b

Microlite (Ca0,76Na0,01)(Mg0,90Fe0,28Ti0,02Al0,02)(Si1,93Al0,07)O6 14,34 46,59 39,07

Phenocryst (core) (Ca0,70Na0,01)(Mg0,94Fe0,29Ti0,02Al0,01)(Si1,89Al0,11)O6 15,23 48,81 35,96

Phenocryst (rim) (Ca0,69Na0,01)(Mg0,93Fe0,32Ti0,02Al0,08)(Si1,93Al0,07)O6 16,47 47,68 35,85

022 Microlite (Ca0,70Na0,01)(Mg0,87Fe0,38Ti0,03Al0,02)(Si1,92Al0,08)O6 19,34 44,80 35,86

Basal flow

006

Microlite (Ca0,70Na0,01)(Mg0,86Fe0,41Ti0,02Al0,01)(Si1,92Al0,08)O6 20,76 43,75 35,49

Phenocryst (core) (Ca0,77Na0,01)(Mg0,93Fe0,29Ti0,02)(Si 1,9Al0,1)O6 14,53 46,34 39,14

Phenocryst (rim) (Ca0,75Na0,01)(Mg0,85Fe0,37Ti0,02)(Si1,91Al0,09)O6 19,03 42,96 38,01

027

Microlite (Ca0,70Na0,01)(Mg0,82Fe0,41Ti0,03Al0,03)(Si1,92Al0,08)O6 21,10 42,48 36,42

Phenocryst (core) (Ca0,69Na0,01)(Mg0,91Fe0,30Ti0,02Al0,04)(Si1,92Al0,08)O6 15,74 47,91 36,35

Phenocryst (rim) (Ca0,75Na0,02)(Mg0,88Fe0,28Ti0,02Al0,03)(Si1,92Al0,08)O6 15,65 47,37 36,98

023 Microlite (Ca0,68Na0,01)(Mg0,93Fe0,33Ti0,02Al0,03)(Si1,91Al0,09)O6 17,30 48,00 34,70

Table 4. Summary of pyroxene data from samples of the ring structure E6.

Fs: ferrossilite; En: enstatite; Wo: wollastonite.

Figure 14. (A) Ternary FeO vs. TiO2 vs. Fe2O3 diagram (Akimoto & Katsura 1959); (B) backscattering electron image, 
showing titanomagnetite (Ti), plagioclase (Pl) and pyroxene (Px) from a basalt samples of the ring structure E6.

BA

Samples % FeO % Fe2O3 % TiO2

Lava Flow 003b 67,56 7,52 24,91

Basal Flow
006 64,49 7,18 28,33

023 67,01 7,46 25,53

Table 5. Summary for titanomagnetite data from 
samples of the ring structure E6.

The Eu anomaly is absent when the samples are nor-
malized to the primitive mantle and it is negative and 
subtle when normalized to the chondrite. This slight 
anomaly probably represents minor plagioclase fraction-
ation. On the other hand, the Sr anomaly can be related 
to plagioclase fractionation, which is consistent with the 
presence of plagioclase phenocrysts and a glomeropor-
phyritic texture (Pinto & Hartmann 2011). 

The increase of CaO and MgO related to the SiO2 
content cannot be explained by the fractional crystalliza-
tion alone. Instead, the presence of the lava lake on the 
Água Vermelha BRS, with events of effusion and episodes 
of explosion (e.g., spatters), indicates new magma pulses 
on the shallow chambers, modifying the oxide contents. 
The CaO and MgO distinct trend behavior between the 

BRS samples and other Paranapanema types could be 
explained by the refilling of these chambers by more than 
one parental magma. O’Hara (1977) describes a model 
in which the magma in a high-level chamber suffers con-
tinuous fractional crystallization and it is periodically fed 

Brazilian Journal of Geology, 48(2): 283-304, June 2018
300

Geochemistry of a basaltic ring structure, Serra Geral Fm.



Figure 15. Harker diagram of SiO2 vs. major elements for samples of the ring structure E6 (basaltic ring structure—BRS) 
as compared to other Paranapanema-types samples.

with new batch from the deep parental magma and, in its 
model, this influx displaces a portion of the residual liquid 
from the chamber as a lava flow. The rest of the previous 
magma mixes with the new batch, and the fractionation 
process continues to occur. Also, a system that undergoes 
episodic recharge and eruption can develop distinctly dif-
ferent geochemical characteristics (Spera & Bohrson 2004). 

The analysis of the diagram proposed by Pearce 
(2008) suggests that the magma was originated in a high 
depth enriched source, with a low degree of melting. 
Marques et al. (1999) describe a garnet peridotite as a 

likely source for the basalts of the Paraná basin, as well 
as low partial melting of the HTi basalt sources, which 
is corroborated by the interpretations of the BRS evo-
lution so far. The higher enrichment of LREE related to 
HREE, the LILE enrichment and the strong negative Nb 
anomalies are the main evidences of the involvement of 
metasomatized components (Rocha-Júnior et al. 2013). 
According to those authors, the mantle was enriched in 
fluids  and/ or magma related to subduction processes 
during the Neoproterozoic, which hybridize the mantle 
peridotite with recycled components.
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CONCLUSION

The rocks of the basaltic ring structure from Água 
Vermelha belong to the Paranapanema magma-type of 
the high titanium group of basalts from the Serra Geral 
Formation, but they show some slight differences from other 
samples of the same magma-type in other places. The whole 
rock analyses show a subalkaline and tholeiitic signature.

Using the mineral chemistry, it was possible to characterize the 
plagioclase, pyroxene and oxides of the samples analyzed. The pla-
gioclase has a composition between bytownite and labradorite for 
both lava and basal flows. The clinopyroxenes are strictly augite. 
The oxides are characterized as titanomagnetite (ulvöspinel).

Through the whole rock analyses of the lava and basal 
flows, we could determine that the magma source has a 
high depth and low degree of partial melting. The magma 
on the shallow magmatic chamber suffered fractional crys-
tallization and new magma injections, which were respon-
sible for the effusion of samples of the already differentiated 
magma. The remaining differentiated liquid mixed with the 
new batches during the evolution of the structure.

The singularities present in Água Vermelha — such as the 
presence of basaltic ring structures, unusual in PEMP — show 

the necessity of deeper studies at the region. Thus, geochem-
ical analyses, as well as geological mapping and stratigraphic 
study, are important to progress on the geological compre-
hension of the PEMP.
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