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ABSTRACT

The one-dimensional flow routing inertial model, formulated as an explicit solution, has advantages over other explicit models used in 
hydrological models that simplify the Saint-Venant equations. The main advantage is a simple formulation with good results. However, 
the inertial model is restricted to a small time step to avoid numerical instability. This paper proposes six numerical schemes that modify 
the one-dimensional inertial model in order to increase the numerical stability of  the solution. The proposed numerical schemes were 
compared to the original scheme in four situations of  river’s slope (normal, low, high and very high) and in two situations where the 
river is subject to downstream effects (dam backwater and tides). The results are discussed in terms of  stability, peak flow, processing 
time, volume conservation error and RMSE (Root Mean Square Error). In general, the schemes showed improvement relative to each 
type of  application. In particular, the numerical scheme here called Prog Q(k+1)xQ(k+1) stood out presenting advantages with greater 
numerical stability in relation to the original scheme. However, this scheme was not successful in the tide simulation situation. In addition, 
it was observed that the inclusion of  the hydraulic radius calculation without simplification in the numerical schemes improved the 
results without increasing the computational time.

Keywords: Inertial model; Numerical stability; Computational time; HEC-RAS.

RESUMO

O modelo inercial unidimensional de propagação de vazão, formulado através de uma solução explícita, possui resultados comparáveis 
aos modelos que consideram as equações completas de Saint-Venant. A principal vantagem é a simplicidade na formulação com bons 
resultados. No entanto, o modelo inercial está restrito à um passo de tempo pequeno para evitar instabilidade numérica. Este trabalho 
propõe seis esquemas numéricos que modificam o modelo inercial unidimensional buscando aumentar a estabilidade numérica da 
solução. O desempenho dos esquemas numéricos propostos foi comparado em quatro situações de declividade do rio (normal, 
baixa, alta e muito alta) e em duas situações onde o rio está sujeito ao efeito de jusante (remanso e maré). O modelo hidrodinâmico 
HEC-RAS foi utilizado para validação das soluções. Os resultados são discutidos em termos de estabilidade, vazão de pico, tempo de 
processamento, erro de conservação de volume e raiz do erro médio quadrático da vazão (Root Mean Square Error – RMSE). De forma 
geral os esquemas mostraram melhora relativa a cada tipo de aplicação. Em particular, o esquema numérico aqui denominado Prog 
Q(k+1)xQ(k+1) se destacou apresentando vantagens com maior estabilidade numérica em relação ao esquema original. Porém este 
esquema não foi bem sucedido na situação de simulação com maré. Além disso, observou-se que a inclusão do cálculo do raio hidráulico 
sem simplificação nos esquemas numéricos melhorou os resultados sem aumentar o tempo computacional.

Palavras-chave: Modelo inercial; Estabilidade numérica; Tempo computacional; HEC-RAS.
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INTRODUCTION

River’s flow and the propagation of  flood waves can be 
represented by hydrodynamic models that solve numerically 
the Saint-Venant equations. These are formed by the continuity 
equation (Equation 1), which represents the mass conservation, 
and by the dynamic equation (Equation 2), which represents the 
forces acting on the flow (CUNGE; HOLLY; VERWEY, 1980; 
TUCCI, 2005). The two equations are presented considering a 
one-dimensional flow.
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where, Q  is the flow, h is the water depth, t is the time, B is 
the cross-section width, x is the longitudinal distance, g is the 
gravitational acceleration, A is the cross-section area, S0 is the 
bed slope, and Sf is the friction slope.

The left side of  the dynamic equation (Equation 2) refers 
to the local inertial (1) and advective inertial terms (2). The right 
side represents the external and internal forces acting on the fluid: 
pressure (3), weight (4) and friction (5).

The Saint-Venant equations can be simplified by eliminating 
some terms of  the dynamic equation, which result in benefits for the 
models such as simpler formulation, more accessible programming 
codes, and gain in computational efficiency. For example, Kinematic 
Wave, Muskingum and Muskingum-Cunge models (CUNGE, 1969; 
FREAD, 1993; CHANSON, 2004) consider only the terms of  
weight (4) and friction (5). These terms have a greater contribution 
to the flow acceleration than other (NÉELZ; PENDER, 2009). 
The Muskingum-Cunge model is often used as a flow propagation 
module in rainfall-runoff  models (TUCCI, 2005; BEVEN, 2011). 
However, the traditional linear Muskingum-Cunge method does not 
adequately represent the flow in some situations where the flood 
wave celerity is not constant, or in situations with the backwater 
effect (PONCE, 1989).

Another simplification, considered slightly more complete 
than Kinematic Wave, Muskingum and Muskingum-Cunge 
models, is the result of  using only the terms of  pressure (3), 
weight (4) and friction (5), called non-inertial (YEN; TSAI, 2001) 
and diffusion wave models (YEN; TSAI, 2001; CHANSON, 2004). 
The diffusion wave model has the advantage of  representing 
more adequately the attenuation of  a flood wave propagating 
downstream. However, it has limitations in comparison with 
the complete Saint-Venant equations, as in representation of  
downstream effects (MONTERO et al., 2013).

The inertial model, or local inertial, disregards only the 
advective inertial term (2). This model, popularized by Bates, Horritt 
and Fewtrell (2010), was widely applied to represent two-dimensional 
flow in flood areas (NEAL et al., 2011; ALMEIDA et al., 2012; 
ALMEIDA; BATES, 2013). Montero et al. (2013) demonstrated 
that the inertial model has advantages over the diffusion wave 
model when compared to complete solutions of  the Saint-Venant 

equation. Fan  et  al. (2014) tested the inertial formulation for 
representing one-dimensional flow in rivers. The authors showed 
their applicability in scenarios with high and low rivers’ slope and 
subjected to downstream effects, such as backwater and tide. 
The results were comparable to the complete Saint-Venant equations. 
However, it was also observed that the model presents numerical 
instability for values of  the Courant number much smaller than 1 
(the stability condition requires that  tgh

x
∆
∆

 must be smaller than 1). 
Furthermore, Monteiro et al. (2015) tested the inertial solution 
for the simulation of  waves caused by the closure of  floodgates, 
and also obtaining results comparable to the complete solutions 
of  the Saint-Venant equations.

The main advantage of  the inertial model is the easy 
implementation with simple code and good results in relation to 
the solution of  the Saint-Venant equations. As a result, the model 
has been used in hydrological models and flood models by several 
authors (DOTTORI; TODINI, 2011; NEAL; SCHUMANN; 
BATES, 2012; ALMEIDA; BATES, 2013; COULTHARD et al., 2013; 
YAMAZAKI; ALMEIDA; BATES, 2013; SAMPSON et al., 2015). 
In Brazil, the authors Pontes et al. (2015, 2017) presented coupling 
of  the one-dimensional inertial model in a large-scale hydrological 
model (MGB-IPH). The authors pointed out that with this model 
it is possible to perform site simulations, as in floodplains, more 
adequately than when using other simplified methods. They showed 
that the scheme has robustness in coupling with hydrological 
models and, in addition, the parallel processing is easy.

As commented, several studies point to the inertial model 
as an alternative to the complete solution of  the Saint-Venant 
equations and to other simplified models representing the 
one-dimensional flow. However, alternatives to improve the 
model’s numerical stability may still be explored. Therefore, 
this paper proposes and tests some changes in the inertial 
formulation in order to improve the numerical stability. 
The numerical scheme of  the one-dimensional inertial model, 
as applied by Fan et al. (2014), was altered in relation to the 
approximation of  the numerical derivative, in relation to the 
numerical method and also in relation to the dynamic equation’s 
friction term (term 5 in Equation 2). Six new schemes were 
proposed and tested considering the hydraulic radius without 
simplification ( ( )/ .R hB 2 h B≈ + ) and six numerical schemes with 
hydraulic radius simplification ( R h≈ ).

The performance of  the schemes was compared with 
original scheme, presented by Bates, Horritt and Fewtrell (2010), 
and with the complete solution of  the Saint Venant equations 
(HEC-RAS hydrodynamic model - USACE, 2016), i.e. the 
HEC-RAS model was considered the “true solution” in tests. 
This model solves the equations by an implicit finite difference 
scheme described in USACE (2016). For the sake of  isonomy 
with the knowledge already generated and published on the 
one-dimensional inertial model application, scenarios identical 
to those used by Fan et al. (2014) were considered. The scenarios 
were: four situations of  river’s slope (normal, low, high and very 
high) and two situations where the river is subject to downstream 
effect (backwater and tide).
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ONE-DIMENSIONAL INERTIAL MODEL

The dynamic equation (Equation 2) in the one-dimensional 
inertial model is rewritten (Equation 3) considering a rectangular 
river cross-section, representing the pressure and weight forces in 
terms of  water surface level (y) and estimating the friction force 
using the Manning equation,
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where y is the water surface level, n is the Manning roughness 
coefficient, R is the hydraulic radius.

The hydraulic radius is approximated by the depth ( R h≈ ), 
considering that the rivers cross sections have a width much 
larger than the depth. The derivatives of  the dynamic equation 
are approximated by a numerical scheme of  progressive finite 
differences in space and time, which results in Equation 4, as 
presented in Fan et al. (2014).
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Where i  and k  are the indices in space and time, respectively. 
x∆  is the length of  the channel section (m).

The 
k

1i
2

h
+  term is the depth in the contour of  the channel 

stretch ( x∆ ) and can be estimated by the difference of  the 
maximum value of  the water level ( y ) and the maximum value 
of  the bottom level ( z ) in the center of  the channel stretch, 
according to Equation 5.

[ ]; ;k k k
1 i i 1 i i 1i
2

h max y y max z z+ +
+

 = −  	 (5)

From the explicit solution of  Equation 4, the flow is 
estimated at each time step according to Equation 6. Bates, 
Horritt and Fewtrell (2010) considered the multiplication of  the 
flow in time step k  by the flow in time step k 1+  in friction term 
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 to increase the stability of  the numerical scheme.
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Based on the flow values (
k 1

1i
2

Q +

+ ), the continuity equation 

(Equation 1), discretized by a spatial and time progressive scheme 
(Equation 7), is applied to estimate the depth at all reaches i  at 

the end of  the time interval ( k 1+ ). From this value, the water 
level at the end of  the time interval is computed by Equation 8.
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Equation 6 requires the initial values of  the depth ( 0h ) and 

the water level ( 0y ) in all reaches. For this, the same initial flow is 
assumed in all reaches and the depth is calculated by considering 
the continuous and uniform flow, that is, the Manning equation 
with simplification of  the hydraulic radius ( R h≈ ). In addition, 
boundary conditions are required in the first and last channel 
stretch. The typical upstream condition is a flow hydrograph and 
the downstream condition can be a rating curve or a normal depth.

The numerical scheme is restricted to the size of  time 
step (Δt) and channel stretch (Δx) to avoid numerical instability. 
Thus, the choice of  Δt and Δx must respect the Courant-Friedrichs-Levy 
condition (Courant number – C), given by Equation 9.
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The depth (h) used in this calculation corresponds to the 
largest depth found in the river reach. Although this condition 
requires a value less than 1, Bates, Horritt and Fewtrell (2010) 
observed that the value must be less than 0.7 to ensure the numerical 
scheme stability in two-dimensional simulations.

After the initial development of  the model, Almeida et al. 
(2012) proposed a modification in the numerical scheme to improve 
stability in low friction situations, such as in urban areas. In the 
new scheme, a weighting (θ) was introduced in the flow derivative 
in relation to the time. Thus, the flow value at time k and reach 
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The weighting (θ) varies from 0 to 1. Using Equation 10 to 
approximate the numerical derivative, the flow in each time step 
in the new scheme is estimated according to Equation 11.
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According to Almeida et al. (2012), the inclusion of  the 
weighting allowed more stability in simulations performed by 
the authors.

MODIFICATIONS PROPOSED TO THE 
NUMERICAL SCHEME OF THE INERTIAL 
MODEL

In the inertial model formulation proposed by Bates, Horritt 
and Fewtrell (2010), the flow at time step k 1+  (Equation 6) is 
solved by the Euler method, i.e. a first order method where the first 
derivative provides a direct estimate of  the slope for entire interval 
(Δt). In this method, the global truncation error is proportional to 
the time step size (CHAPRA; CANALE, 2012). The second-order 
Runge-Kutta method (RK2), equivalent to the Heun method without 
iteration, and the fourth-order Runge-Kutta method (RK4) are 
more accurate because the errors are of  the order of  2t∆  and 4t∆ , 
respectively (CHAPRA; CANALE, 2012). Thus, the reduction of  
the step size decreases the error at a faster rate than in the Euler 
method (CHAPRA; CANALE, 2012). Another way to improve 
the accuracy is to use a centered derivative (Cent) instead of  the 
progressive derivative (Prog). This derivative allows a second-order 
approximation, with an error of  the order of  2t∆ .

In this paper, the modifications of  the numerical schemes 
were done in the derivative approximation (Prog and Cent), in the 
numerical method (Euler, RK2 ou RK4) and also in the friction 
term (Equation 2), specifically in the time index ( k ) of  the flow 
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The properties of  the proposed numerical schemes, such 
as convergence, consistency and stability, were not evaluated. 
These analyzes indicate how close the numerical scheme is 
to the analytical solution, and if  the errors are not amplified 
(POPESCU, 2014). Thus, the numerical schemes were only 
tested and evaluated in different numerical applications. In each 
test, 16 simulations were run, each one with the methods listed 
in Table  1 and described in detail below (“R” means that the 
hydraulic radius was not simplified).

Scheme Q(k+1) x Q(k-1):

The first modification made in the original numerical 
scheme was to approximate the flow by a time-centered derivative, 
which considers the flow in the time steps k+1 and k-1. Thus, the 
proposed scheme also considered the flow in these time steps 
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estimated directly by Equation 12. This scheme will be identified 
by the abbreviation: Cent Q(k+1) x Q(k-1).
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Scheme Q(k+1) x Q(k+1):

In this numerical scheme, the friction term was calculated by 

the flow at time step k+1,  k 1 k 1
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2 2
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+ +

 
 
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. Equation 13 shows the scheme 

for a progressive derivative, identified as Prog Q(k+1) x Q(k+1), 
and Equation 14 for a centered derivative, identified as 
Cent Q(k+1) x Q(k+1).

Table 1. Summary of  proposed methods and characteristics.
Method Characteristics

Almeida et al. (2012) Prog Euler k k 1
1 1i i
2 2

Q Q +

+ +
R h≈

Bates, Horritt and 
Fewtrell (2010) Prog Euler k k 1

1 1i i
2 2

Q Q +

+ +
R h≈

Bates, Horritt and 
Fewtrell (2010) - R Prog Euler k k 1

1 1i i
2 2

Q Q +

+ +
( )/ .R hB 2 h B≈ +

Cent Q(k+1)xQ(k-1) Cent Euler k 1 k 1
1 1i i
2 2

Q Q− +

+ +
R h≈

Cent Q(k+1)xQ(k-1) - R Cent Euler k 1 k 1
1 1i i
2 2

Q Q− +

+ +
( )/ .R hB 2 h B≈ +

Prog Q(k+1)xQ(k+1) Prog Euler k 1 k 1
1 1i i
2 2

Q Q+ +

+ +
R h≈

Prog Q(k+1)xQ(k+1) - R Prog Euler k 1 k 1
1 1i i
2 2

Q Q+ +

+ +
( )/ .R hB 2 h B≈ +

Cent Q(k+1)xQ(k+1) Cent Euler k 1 k 1
1 1i i
2 2

Q Q+ +

+ +
R h≈

Cent Q(k+1)xQ(k+1) - R Cent Euler k 1 k 1
1 1i i
2 2

Q Q+ +

+ +
( )/ .R hB 2 h B≈ +

Prog Q(k)xQ(k) Prog Euler k k
1 1i i
2 2

Q Q
+ +

R h≈

Prog Q(k)xQ(k) - R Prog Euler k k
1 1i i
2 2

Q Q
+ +

( )/ .R hB 2 h B≈ +

Prog RK2 Q(k)xQ(k) Prog RK2 k k
1 1i i
2 2

Q Q
+ +

R h≈

Prog RK2 Q(k)xQ(k) - R Prog RK2 k k
1 1i i
2 2

Q Q
+ +

( )/ .R hB 2 h B≈ +

Prog RK4 Q(k)xQ(k) Prog RK4 k k
1 1i i
2 2

Q Q
+ +

R h≈

Prog RK4 Q(k)xQ(k) - R Prog RK4 k k
1 1i i
2 2

Q Q
+ +

( )/ .R hB 2 h B≈ +
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Note that both equations are second-degree polynomial 
equations:  2ax bx c 0+ + = . Therefore, the flow can be calculated 
directly by the Bhaskara’s formula, without the need for an iterative 
method for resolution. The desired estimate is always the largest 

root given by:   2

1
b b 4acx

2a
− + −

= . The reasoning is based on the 

observation that the root  2x  (   2b b 4ac
2a

− − − ) is always negative, 
as shown below.

It is known that the roots sum is given by 1 2
bx x a
−+ = . 

Since b 1=  and a 0>  ( , , ,  g n B h t∆  are always positive), we have 

1 2x x 0+ < . Moreover, since 
2b 4ac
2a
−  is always positive, so  1 2x x> . 

Hence 2x 0< , otherwise the sum of  the two roots would be positive. 
Thus, the root 2x  does not have physical importance as an always 
negative flow. On the other hand, the root 1x  can be positive or 
negative depending on the term c. As .1 2

cx x a=  and 2x 0< , then 
the root 1x  is positive if  c 0< , and negative if  c 0> . In fact, if  

the flow k
1i
2

Q
+  (or k 1

1i
2

Q −

+
) is negative, as occurs when the river is 

subject to the downstream effect, the term c  will be positive and 
the flow at time step k+1, k 1

1i
2

Q +

+
, is negative.

The scheme is restricted to a new stability condition, in 
addition to the Courant-Friedrichs-Levy condition, where the 
discriminant of  the Bhaskara’s formula must be positive ( 2b 4ac 0− > ) 
so that the root is not complex. Thus, the condition is given by 

1ac 4< . When the flow is positive ( 1x 0> ) it was shown that a 0>  
and c 0< , satisfying the condition. However, when the flow is 
negative ( 1x 0< ), the term c  is also negative and this condition is 
mainly dependent on the time step size ( t∆ ), the channel stretch 
size ( x∆ ) and the level variation between reaches ( k k

i 1 iy y+ − ).

Scheme Q(k) x Q(k):

Finally, the original numerical scheme was modified by 

considering the flow at time step k  k k
1 1i i
2 2

Q Q
+ +

 
 
 
 

. This scheme 

allows to calculate the flow directly (Euler) and by the second- and 
fourth-order Runge-Kutta methods. The flow in time step k+1, 
calculated by the Euler method, is given by Equation 15 and it is 
identified as Prog Q(k)xQ(k).
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In the second-order Runge-Kutta method, the flow 
determined by the Euler method is an intermediate result, where 
the slope estimate is calculated at the initial point (predictor 
equation). In the next step, a new estimate is calculated with the 
predictor result, i.e., the slope estimate is made at the end point. 
Then, the mean of  the two derivatives is calculated to obtain an 
improved estimate of  the slope over the whole range (broker 
equation). Therefore, Equation 15 is rearranged to define the 
derivative function (  )k

1i
2

f Q
+

 (Equation 16), the predictor step is 

given by Equation 17 (equivalent to Equation 15) and the corrector 
step by Equation 18. This numerical scheme is identified by the 
abbreviation Prog RK2 Q(k) x Q(k).
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Multiple slope estimates are developed in the fourth-order 
Runge-Kutta method to obtain an improved mean slope 
(Equations 19 to 22). Each K value represents a slope and the 
final equation is a weighted average (Equation 23). This scheme 
is identified by the abbreviation Prog RK4 Q(k)xQ(k). Note that 
K1 is the slope at the interval beginning and K2 is the slope at the 
interval final, equivalent to the second-order Runge-Kutta method.
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EXPERIMENTS

The described numerical schemes were evaluated in 
different applications to compare the performance in relation to 
the same schemes adapted by Fan et al. (2014) of  the formulation 
proposed by Bates, Horritt and Fewtrell (2010) and the formulation 
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proposed by Almeida et al. (2012). The schemes were implemented 
in MATLAB and the simulations were run on eight cores of  four 
Quad-core 3.4 GHz Intel Xeon processors with 8 MB cache 
memory. The schemes were evaluated for stability (maximum 
Courant number for which the method remains stable), peak 
flow at the river’s last reach (Qpeak), volume conservation error 
(VolErr), and the flow’s mean square error (RSME), calculated 
based on the results of  simulations performed in the HEC-RAS 
hydrodynamic model. In addition, each proposed scheme was 
solved with and without the hydraulic radius simplification, that 
is, R h≈  and ( ). / .R h B 2 h B= + .

The applications were equivalent to the scenarios tested by 
Fan et al. (2014). The first test considered a real reach of  the São 
Francisco River, located between Três Marias UHE and the Pirapora 
city (MG), without lateral contributions. Tests 2, 3 and 4 considered 
the same reach but with low, high and very high slopes, respectively. 
In tests 5 and 6, downstream effects were considered: backwater 
and tide. The hydrograph input was the same as used by Fan et al. 
(2014). The simulated period in all tests was 150 hours. Table 2 
presents a summary of  the data used in the six tests.

RESULTS

Test 1

This test considered a real reach of  the São Francisco River 
between the Três Marias UHE and the Pirapora city (MG) with 
approximate values of  135 km in length, 300 m in width (rectangular 
cross-section), river’s slope of  29.5 cm/km and Manning’s roughness 
coefficient of  0.030. The spatial discretization (Δx) was 2 km 
and time discretization (Δt) was varied between 1 and 4 minutes, 
assuming C values equal to 0.26, 0.51, 0.77 and 1.03 at the time of  
greater depth. A constant slope was considered as a downstream 
contour condition.

The six formulations of  the numerical models described 
(Equations 12, 13, 14, 15, 18 and 23), the formulation proposed by 
Bates,  Horritt and Fewtrell (2010) (Equation 6) and the formulation 
proposed by Almeida et al. (2012) with a weighting factor equal 
to θ = 0.9 (Equation 11), adopted based on the authors’ results, 
were tested with and without the hydraulic radius simplification.

All stable schemes presented values similar to the 
HEC-RAS model since the highest RMSE was 51.48 m3.s-1 for the 
Prog Q(k+1)xQ(k+1) scheme. Figure 1 shows only the region of  
the hydrograph peak flow in the river’s last reach for the original 
scheme, the Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1), Prog RK2 
Q(k)xQ(k) schemes and the HEC-RAS model, with and without 
the hydraulic radius simplification. Figure 2 shows the results of  
the parameters evaluated by varying the time step. In the first 
column, the results correspond to simulations with the hydraulic 
radius simplification, and in the second column without. All values 
are shown in Table A1 of  Appendix A.

The Prog Q(k+1)xQ(k+1) and Prog RK2 Q(k)xQ(k) schemes 
were the most stable, without instability until C = 1.03. However, in 
comparison to the Bates, Horritt and Fewtrell (2010) model, the 
processing time was on average 33% higher for the Prog Q(k+1)xQ(k+1) 
scheme and twice for the Prog RK2 Q(k)xQ(k) scheme.

The hydraulic radius calculation without simplification did 
not increase the processing time of  the schemes and their use 
reduced RMSE. As an example, the scheme of  Bates, Horritt and 
Fewtrell (2010) presented a 60% lower RMSE when the hydraulic 
radius was calculated. Despite this, the volume conservation 
error increased from 0% to 0.05%, but still remained negligible. 
This parameter (ErrVol) did not vary with the time step nor with 
the numerical scheme. It was also observed that the calculation of  
hydraulic radius did not influence the numerical schemes’ stability.

The Almeida et al. (2012) scheme presented no advantages 
compared to the Bates, Horritt and Fewtrell (2010) scheme in 
terms of  stability (see Table A1 of   Appendix A). These schemes 
were unstable with a time step of  3 min (C = 0.77). All schemes 
with centered derivative presented instability, with stable results 

Table 2. Summary of  the parameters used in tests.
Test 1

Real reach
Test 2

Low slope
Test 3 

High slope
Length 135 km 135 km 135 km
Width 300 m 300 m 300 m
Declivity 29.5 cm/km 5 cm/km 300 cm/km
Initial flow velocity* 0.89 m/s 0.52 m/s 1.76 m/s
Manning coef. 0.03 0.03 0.03
∆x 2 km 2 km 2 km
∆t 1, 2, 3 and 4 min 1, 2, 3 and 3,5 min 1, 2, 3 and 4 min
Downstream effects Constant slope Constant slope Constant slope

Test 4
Very high slope

Test 5
Backwater

Test 6 
Tide

Length 135 km 135 km 135 km
Width 300 m 300 m 300 m
Declivity 10 m/km 29,5 cm/km 5 cm/km
Initial flow velocity* 2.53 m/s 0.89 m/s 0.52 m/s
Manning coef. 0.03 0.03 0.03
∆x 2 km 2 km 2 km
∆t 80, 120, 160 and 200 seg 80, 120, 150 and 180 seg 1, 2, 3 and 4 min
Downstream effects Constant slope Backwater Tide
*Flow velocity calculated by the initial flow, width and initial depth (Manning’s Eq. with simplification of  the hydraulic radius).
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only for the time step of  1 minute (C = 0.26). In addition, these 
schemes did not improve the RMSE and the volume conservation 
error, as was expected for a second-order approximation scheme 
with respect to a first-order scheme.

Test 2

This test considered the same conditions of  the river 
reach used in test 1 but it used a river’s low slope of  5 cm/km. 
The time step was varied in 1, 2, 3 and 3.5 minutes, corresponding 

to C values of  0.29, 0.60, 1.90 and 1.04, respectively, at the time of  
greater depth. As in test 1, the numerical schemes’ performance 
was compared. Figure  3 shows the peak flow region in the 
last reach for the original scheme, the Prog Q(k+1)xQ(k+1), 
Prog RK2 Q(k)xQ(k) schemes and the HEC-RAS model. Figure 4 
shows the performance of  all schemes evaluated and Table A2 
( Appendix A) shows the values of  Figure 4.

The Prog Q(k+1)xQ(k+1) scheme was the most stable, with 
stability up to the time step of  3.5 min (C = 1.04), and with an 
increase in processing time of  20% relative to the original scheme. 
In addition, it was the scheme that presented the highest RMSE values.

Schemes with centered derivative presented instability at 
all time steps adopted. The other schemes, such as Bates, Horritt 
and Fewtrell (2010) and Almeida et al. (2012), presented equal 
stability up to a time step of  3 min (C = 0.90).

The Prog Q(k)xQ(k) scheme presented the lowest RMSE 
with practically the same processing time as the original model. 
The Prog RK2 Q(k)xQ(k) and Prog RK4 Q(k)xQ(k) schemes presented 
RMSE values closer to the ones in Bates, Horritt and Fewtrell 
(2010), but the processing time was, on average, almost twice.

The volume conservation error did not changed with the 
time step but increased from 0.57% to 0.75% when the calculation 
of  the hydraulic radius was included in the numerical scheme. 
This inclusion of  this calculation did not increase the processing 
time, as observed in Figure 4, and led to the results closer to that 
of  the HEC-RAS model, reducing RMSE by 64% compared to 
the Bates,  Horritt and Fewtrell (2010) scheme.

Test 3

In this test, a high slope of  300 cm/km was considered. 
The time step was varied between 1 and 4 minutes corresponding 
to C values of  0.18, 0.37, 0.55, 0.74 at the time of  greatest depth. 
Figure 5 shows a section of  the hydrograph at the river’s last reach 
for the original scheme, the Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1) 

Figure 1. Region of  the hydrograph peak flow in the 
river’s last reach for the Bates, Horritt and Fewtrell (2010), 
Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1) and Prog RK2 Q(k)xQ(k) 
schemes with and without the hydraulic radius simplification 
considering a river’s slope equal to 29.5 cm/km.

Figure 2. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations of  
numerical schemes considering a river’s slope equal to 29.5 cm/km.

Figure 3. Region of  the hydrograph peak flow in the river’s last 
reach for the Bates, Horritt and Fewtrell (2010), Prog Q(k+1)xQ(k+1) 
and Prog RK2 Q(k)xQ(k) schemes with and without the hydraulic 
radius simplification considering a river’s slope equal to 5 cm/km 
(the red line is subscribed by the green line).
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schemes and HEC-RAS. Figures 6 shows the main results and 
Table A3 (Appendix A) the detailed results.

As in the previous tests, the Prog Q(k+1)xQ(k+1) scheme 
was the most stable, reaching the value of  C equal to 0.74 compared 
to 0.37 in the Bates, Horritt and Fewtrell (2010) and Almeida et al. 
(2012) schemes. The increase in processing time compared to the 
original scheme was 20%.

The Cent Q(k+1)xQ(k+1) scheme also presented better 
performance than the original model, with stability up to the 

time step of  3 minutes (C = 0.55). However, the Prog Q(k)xQ(k), 
Prog RK2 Q(k)xQ(k) and Prog RK4 Q(k)xQ(k) schemes did not 
show any improvement over the original scheme.

The inclusion of  the hydraulic radius calculation in numerical 
schemes reduced the RMSE by 20% in the original scheme and by 
30% in the Prog Q(k+1)xQ(k+1) scheme. Moreover, the increase 
in the volume conservation error from 0 to 0.01% is negligible 
considering this calculation.

Test 4

The same river’s reach of  test 1 with a very high slope of  
10 m/km was considered in this test. This slope changes the flow 
regime to the supercritical regime, where the original inertial model 
does not show good stability results (FAN et al., 2014). The time 
step was varied with values of  80, 120, 160 and 200 seconds, 
corresponding to the values of  C at the time of  greatest depth 
of  0.20, 0.31, 0.41, and 0.51, respectively. Figures 7 and 8 present 
the main results and Table A4 (Appendix A) the detailed results.

Only the numerical schemes Prog Q(k+1)xQ(k+1), 
Cent Q(k+1)xQ(k+1), Bates, Horritt and Fewtrell (2010) and 
Almeida et al. (2012) presented stable results. The last two were 
stable only in the time step adopted in the simulation of  80 sec, 
corresponding to C = 0.20. The other two schemes were stable 
up to 160 sec (C = 0.41). Despite the improvement, where the 
Courant number increased from 0.20 to 0.41, the value is still 
small compared to other models of  flood propagation where 
C can reach 1.

The Prog Q(k+1)xQ(k+1) and Cent Q(k+1)xQ(k+1) schemes 
showed practically identical performances with near peak flow, volume 

Figure 5. Region of  the hydrograph peak flow in the river’s last 
reach for the Bates, Horritt and Fewtrell (2010), Cent Q(k+1)xQ(k-1) 
and Prog Q(k+1)xQ(k+1) schemes with and without the hydraulic 
radius simplification considering a river’s slope equal to 300 cm/km.

Figure 6. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations of  
numerical schemes considering a river’s slope equal to 300 cm/km.

Figure 4. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations 
of  numerical schemes considering a river’s slope equal to 5 cm/km.
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conservation error, processing time and RMSE. In addition, the 
processing time of  these schemes was the same as the original scheme 
with a slightly higher RMSE, 31.24 m3/s compared to 30.19 m3/s.

As in the other tests, the inclusion of  the hydraulic radius 
calculation in the numerical schemes did not increase the processing 
time, reduced the RMSE from 30.19 to 25.75 in the model of  Bates, 
Horritt and Fewtrell (2010) while the volume conservation error 
increased from 0 to 0.01% in all stable numerical schemes, but 
may be considered negligible.

Figure 7. Region of  the hydrograph peak flow in the river’s last reach 
for the Bates, Horritt and Fewtrell (2010) and Prog Q(k+1)xQ(k+1) 
schemes with and without the hydraulic radius simplification 
considering a river’s slope equal to 10 cm/km.

Figure 8. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations of  
numerical schemes considering a river’s slope equal to 10 m/km.

Test 5

This application was identical to test 1 but considered a 
constant water level downstream and a constant initial level from 
the half  of  the reach as boundary conditions. These conditions 
represent a dam operating at constant water level in simplified 
form. Other models of  flood propagation, such as Muskingum-
Cunge, are invalidated in the presence of  dam and backwater 
(FAN et al., 2014). The time step was varied with values of  1, 
2, 2.2 and 2.5 minutes, corresponding to the maximum C values 
of  0.44, 0.88, 0.97 and > 1 at the moment of  greatest depth 
(higher values computed during the simulation). Figure 9 shows a 
hydrograph of  the last reach for the original, Prog Q(k+1)xQ(k+1) 
and Prog RK2 Q(k)xQ(k) schemes. Figure 10 shows the main 
results and Table A5 (Appendix A) the detailed results.

All numerical schemes, with the exception of  the centered 
derivative schemes, showed stable results until the adopted 
time step of  132 sec (C = 0.97). The processing times of  the 
Prog Q(k+1)xQ(k+1) and Prog Q(k)xQ(k) schemes presented an 
average increase of  25% in comparison to the original scheme. 
On the other hand, the Prog RK2 Q(k)xQ(k) and Prog RK4 Q(k)xQ(k) 
schemes took twice as long as the original scheme.

In this application, the volume conservation error did 
not change with the inclusion of  the hydraulic radius calculation. 
In addition, the peak flow approached the HEC-RAS model’s 
peak flow and the RMSE decreases.

Test 6

In this test, we considered a situation equal to test 2, low 
slope, but with different contour conditions. A constant flow of  
500 m3/s was adopted as the upstream condition and a variable 

Figure 9. Region of  the hydrograph peak flow in the 
river’s last reach for the Bates, Horritt and Fewtrell (2010), 
Prog Q(k+1)xQ(k+1) and Prog RK2 Q(k)xQ(k) schemes with 
and without the hydraulic radius simplification considering a 
boundary condition downstream of  dam and backwater (the red 
line is subscribed by the green line).
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CONCLUSIONS

This paper compared the performance of  new numerical 
schemes with inertial approximation of  the Saint-Venant equations. 
The differences between the numerical schemes in terms of  

level as the downstream condition. The water level downstream 

(y) was given by the equation   ( )Ty 6 2sen
6
π

= + , which represents 

a periodic level variation between 4m and 8m with a period of  
12 hours. This downstream condition - tidal variation - causes a 
wave that propagates upstream and which can reverse the flow 
direction in the river’s last reach during some moments along 
the tide cycle.

The time step was varied between 1, 2, 3.5 and 4 minutes with 
maximum values of  C equal to 0.27, 0.54, 0.94 and 1.07 (highest 
values computed during the simulation), respectively. Figure 11 
shows a region of  the hydrograph peak in the last reach for 
the original scheme and for the Prog RK2 Q(k)xQ(k) scheme. 
Figure 12 shows the main results and Table A6 (Appendix A) 
the detailed results.

Unlike the other applications, in this test the 
Prog Q(k+1)xQ(k+1) scheme was not stable in any adopted time 
step. As shown, the scheme requires that the discriminant of  
the Bhaskara’s formula be positive and this criterion was not 
fulfilled even with a very small time step.

The most stable scheme was Prog RK2 Q(k)xQ(k) with 
C equal to 1.07 (time step of  4 minutes), followed by the other 
schemes, with C = 0.94 (3.5 min). Despite the improvement in 
stability, the Prog RK2 Q(k)xQ(k) scheme took, on average, twice 
the original scheme time and presented higher RMSE.

The volume conservation error and RMSE were equal in 
all stable schemes, approximately 0.97%, and had a slight increase 
when the calculation of  the hydraulic radius was considered.

Figure 11. Region of  the hydrograph peak flow in the river’s last reach 
for the Bates, Horritt and Fewtrell (2010) and Prog RK2 Q(k)xQ(k) 
schemes with and without the hydraulic radius simplification 
considering a boundary condition with tide variation (the red line 
is subscribed by the green line).

Figure 12. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations 
of  numerical schemes considering a boundary condition with 
tide variation.

Figure 10. Peak flow, volume conservation error, processing time 
and RMSE in relation to the time step for different formulations of  
numerical schemes considering a boundary condition downstream 
of  dam and backwater.
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Prog RK2 Q(k)xQ(k), did not show stability in these tests (3 and 4). 
For this scheme, the stability was equivalent to original model in 
tests 2 and 5 and greater in tests 1 and 6. The disadvantage of  
the schemes with second and fourth order approximations is the 
longer processing time.

The parabola scheme, whose solution is a second 
degree equation (Prog Q(k+1)xQ(k+1)), presented advantages 
in relation to the Bates,  Horritt and Fewtrell (2010) scheme 
in most applications. In tests 1, 2, 3 and 4 the proposed model 
was the most stable, presenting good results with C values of  
1.03, 1.04, 0.74 and 0.41, respectively, compared to the maximum 
values of  0.77, 0.90, 0.37 and 0.20 for the original scheme. In test 
5 (dam and backwater), the stability was equal in both schemes 
(C = 0.97). However, in test 6 (tide), the parabola scheme was not 
stable at any time step. The proposed scheme is more unstable in 
negative flow situations.

The parabola scheme’s processing time was equal to or 
slightly higher than the original model. This difference is in 
the tenths of  a second scale and may be considered negligible. 
Moreover, in applications that do not occur negative flow, the 
greater stability makes this scheme faster because it allows to 
adopt a greater time step. As an example, in the supercritical 
regime application (test 4) the proposed scheme spent 0.58 sec 
(time step 160 sec) and the original scheme spent 1.12 sec 
(time step 80 sec). Regarding RMSE, despite the higher values 
in the parabola scheme in tests 2 (low slope) and 5 (dam and 
backwater), the difference with the original model is very small. 
The largest difference found was 2.3 m3/s (RMSE of  22.52 m3/s 
compared to 24.82 m3/s) in test 5.

Therefore, among all tests performed, we believe that 
the important information raised in the research is that the 
greater stability of  the parabola scheme makes this scheme more 
attractive than the original model for use as flow propagation 
modulus in hydrological models. However this use is limited 

Table 3. The best numerical scheme(s) in each test in relation to metrics.
Test 1

Real reach
Test 2

Low slope
Test 3 

High slope

C*
Prog Q(k+1)xQ(k+1)

and Prog RK2 Q(k)xQ(k) Prog Q(k+1)xQ(k+1) Prog Q(k+1)xQ(k+1)

Qpeak Negligible Negligible Negligible
VolErr Negligible Negligible Negligible

Processing Time Bates, Horritt and Fewtrell (2010)**  Bates, Horritt and Fewtrell (2010)**  Bates, Horritt and Fewtrell (2010)**

RSME Prog Q(k+1)xQ(k+1) Prog Q(k)xQ(k) Prog Q(k+1)xQ(k+1)
and Cent Q(k+1)xQ(k+1)

Test 4
Very high slope

Test 5
Backwater

Test 6 
Tide

C*
Prog Q(k+1)xQ(k+1)

and Cent Q(k+1)xQ(k+1)
*** Prog RK2 Q(k)xQ(k)

Qpeak Negligible Negligible Negligible
VolErr Negligible Negligible Negligible

Processing
Time Negligible Bates, Horritt and Fewtrell (2010)**  Bates, Horritt and Fewtrell (2010)**

RSME Negligible Prog Q(k)xQ(k) Prog Q(k)xQ(k)
*Maximum Courant number for which the method remains stable; **Difference is very small in relation to Prog Q(k)xQ(k) and Prog Q(k+1)xQ(k+1); ***Same for all 
schemes, with exception of  schemes with centered derivative.

stability, peak flow, volume conservation error and RMSE were 
investigated. All stable schemes presented similar results to the 
hydrodynamic model HEC-RAS, and can be used with good 
accuracy in comparion to the model that considers the complete 
equations of  Sant-Venant. The advantages of  the proposed 
schemes are ease of  implementation, robustness in the coupling 
with hydrodynamic models and the possibility of  parallelization. 
However, more comparison of  the inertial model with implicit 
and explicit numerical schemes is recommended for future studies.

With respect to performance measures, Table 3 presents the 
best scheme(s) in each metric and in each test. The difference of  
the peak flow and the volume conservation error between schemes 
can be considered negligible. Furthermore, although the original 
scheme is faster, the difference in processing time is very small in 
relation to the Prog Q(k)xQ(k) and the Prog Q(k+1)xQ(k+1) schemes.

It was observed for all stable numerical schemes that the 
peak flow approaches the HEC-RAS model’s peak flow and that 
the RMSE decreases when the hydraulic radius calculation is 
considered without simplification. In this way, the inertial model 
formulation is more similar to what is done in the HEC-RAS, which 
does not simplify the hydraulic radius calculation. In addition, 
the processing time did not increase with this calculation and the 
volume conservation error showed a negligible increase.

In general, the scheme proposed by Almeida et al. (2012) 
presented no advantages in relation to the Bates, Horritt and 
Fewtrell (2010) scheme. In all tests, both models presented 
instability at the same time step and both RMSE and peak flow 
were equivalent. The processing time was equal or greater in the 
Almeida et al. (2012) scheme.

Schemes with centered numerical derivatives showed 
instability for low C values in tests 1, 2, 5 and 6. Only in the 
applications of  test 3 (high slope) and test 4 (very high slope) 
the Cent Q(k+1)xQ(k+1) scheme showed an advantage over the 
others. On the other hand, the second order approximation scheme, 
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http://dx.doi.org/10.1080/23249676.2013.827897. 
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M.; BATES, P. D.; MASON, D. Evaluating a new LISFLOOD-FP 
formulation using data for the summer 2007 floods in Tewkesbury, 
UK. Journal of  Flood Risk Management, v. 4, n. 2, p. 88-95, 2011. 
http://dx.doi.org/10.1111/j.1753-318X.2011.01093.x. 

NEAL, J.; SCHUMANN, G.; BATES, P. A subgrid channel model 
for simulating river hydraulics and floodplain inundation over large 
and data sparse areas. Water Resources Research, v. 48, n. 11, 2012. 
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grande escala com propagação inercial de vazões. Revista Brasileira 
de Recursos Hídricos, vol. 20, n. 4, p. 888-904, 2015. http://dx.doi.
org/10.21168/rbrh.v20n4.p888-904.

in some cases where there are negative flows, which reduces 
one of  the main applications of  models using the inertial 
model. This disadvantage could easily be overcome by using 
an adaptive mixed method which recognizes the possibility of  
a flow reversal and adapts temporarily to another scheme and 
then returns to the parabola scheme as soon as the negative 
flow disappears.

Finally, it is important to emphasize that, according to the 
results, the inclusion of  the hydraulic radius calculation without 
simplification in the numerical schemes improved the results 
without increasing the computational time. That is, the inclusion 
of  this consideration approximates the results of  physical reality 
without additional performance costs.
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Comparison of  numerical schemes of  river flood routing with an inertial approximation of  the Saint Venant equations
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