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ABSTRACT

The one-dimensional flow routing inertial model, formulated as an explicit solution, has advantages over other explicit models used in
hydrological models that simplify the Saint-Venant equations. The main advantage is a simple formulation with good results. However,
the inertial model is restricted to a small time step to avoid numerical instability. This paper proposes six numerical schemes that modify
the one-dimensional inertial model in order to increase the numerical stability of the solution. The proposed numerical schemes were
compared to the original scheme in four situations of river’s slope (normal, low, high and very high) and in two situations where the
river is subject to downstream effects (dam backwater and tides). The results are discussed in terms of stability, peak flow, processing
time, volume conservation error and RMSE (Rooz Mean Square Error). In general, the schemes showed improvement relative to each
type of application. In particular, the numerical scheme here called Prog Q(k+1)xQ(k+1) stood out presenting advantages with greater
numerical stability in relation to the original scheme. However, this scheme was not successful in the tide simulation situation. In addition,
it was observed that the inclusion of the hydraulic radius calculation without simplification in the numerical schemes improved the
results without increasing the computational time.

Keywords: Inertial model; Numerical stability; Computational time; HEC-RAS.

RESUMO

O modelo inercial unidimensional de propagacao de vazao, formulado através de uma solugdo explicita, possui resultados comparaveis
aos modelos que consideram as equa¢oes completas de Saint-Venant. A principal vantagem ¢ a simplicidade na formulacao com bons
resultados. No entanto, o modelo inercial est4 restrito a um passo de tempo pequeno para evitar instabilidade numérica. Este trabalho
propde seis esquemas numéricos que modificam o modelo inercial unidimensional buscando aumentar a estabilidade numérica da
solucdo. O desempenho dos esquemas numéricos propostos foi comparado em quatro situacoes de declividade do rio (normal,
baixa, alta e muito alta) e em duas situacdes onde o rio esta sujeito ao efeito de jusante (remanso e maré). O modelo hidrodinamico
HEC-RAS foi utilizado para validagdao das solucées. Os resultados sdo discutidos em termos de estabilidade, vazao de pico, tempo de
processamento, erro de conservacio de volume e raiz do erro médio quadratico da vazao (Root Mean Square Error— RMSE). De forma
geral os esquemas mostraram melhora relativa a cada tipo de aplicacio. Em particular, o esquema numérico aqui denominado Prog
Q(k+1)xQ(k+1) se destacou apresentando vantagens com maior estabilidade numérica em relagio ao esquema original. Porém este
esquema nao foi bem sucedido na situacdo de simulagao com maré. Além disso, observou-se que a inclusio do calculo do raio hidraulico
sem simplificacdo nos esquemas numéricos melhorou os resultados sem aumentar o tempo computacional.
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INTRODUCTION

River’s flow and the propagation of flood waves can be
represented by hydrodynamic models that solve numerically
the Saint-Venant equations. These are formed by the continuity
equation (Equation 1), which represents the mass conservation,
and by the dynamic equation (Equation 2), which represents the
forces acting on the flow (CUNGE; HOLLY; VERWEY, 1980;
TUCCI, 2005). The two equations are presented considering a
one-dimensional flow.
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where, @ is the flow, / is the water depth, 7 is the time, B is
the cross-section width, x is the longitudinal distance, g is the
gravitational acceleration, A is the cross-section area, S, is the
bed slope, and S is the friction slope.

The left side of the dynamic equation (Equation 2) refers
to the local inertial (1) and advective inertial terms (2). The right
side represents the external and internal forces acting on the fluid:
pressure (3), weight (4) and friction (5).

The Saint-Venant equations can be simplified by eliminating
some terms of the dynamic equation, which result in benefits for the
models such as simpler formulation, more accessible programming
codes, and gain in computational efficiency. For example, Kinematic
Wave, Muskingum and Muskingum-Cunge models (CUNGE, 1969;
FREAD, 1993; CHANSON, 2004) consider only the terms of
weight (4) and friction (5). These terms have a greater contribution
to the flow acceleration than other NEELZ; PENDER, 2009).
The Muskingum-Cunge model is often used as a flow propagation
module in rainfall-runoff models (TUCCI, 2005; BEVEN; 2011).
However, the traditional linear Muskingum-Cunge method does not
adequately represent the flow in some situations where the flood
wave celerity is not constant, or in situations with the backwater
effect (PONCE, 1989).

Another simplification, considered slightly more complete
than Kinematic Wave, Muskingum and Muskingum-Cunge
models, is the result of using only the terms of pressure (3),
weight (4) and friction (5), called non-inertial (YEN; TSAI 2001)
and diffusion wave models (YEN; TSAIL, 2001; CHANSON, 2004).
The diffusion wave model has the advantage of representing
more adequately the attenuation of a flood wave propagating
downstream. However, it has limitations in comparison with
the complete Saint-Venant equations, as in representation of
downstream effects (MONTERO et al., 2013).

The inertial model, or local inertial, disregards only the
advective inertial term (2). This model, popularized by Bates, Horritt
and Fewtrell (2010), was widely applied to represent two-dimensional
flow in flood areas (NEAL et al., 2011; ALMEIDA et al., 2012;
ALMEIDA; BATES, 2013). Montero et al. (2013) demonstrated
that the inertial model has advantages over the diffusion wave
model when compared to complete solutions of the Saint-Venant

equation. Fan et al. (2014) tested the inertial formulation for
representing one-dimensional flow in rivers. The authors showed
their applicability in scenarios with high and low rivers’ slope and
subjected to downstream effects, such as backwater and tide.
The results were comparable to the complete Saint-Venant equations.
However, it was also observed that the model presents numerical
instability for values of the Courant number much smaller than 1

the stability condition requires that \/g—h A must be smaller than 1).

Furthermore, Monteiro et al. (2015) tested the inertial solution
for the simulation of waves caused by the closure of floodgates,
and also obtaining results comparable to the complete solutions
of the Saint-Venant equations.

The main advantage of the inertial model is the easy
implementation with simple code and good results in relation to
the solution of the Saint-Venant equations. As a result, the model
has been used in hydrological models and flood models by several
authors (DOTTORI; TODINI, 2011; NEAL; SCHUMANN;
BATES, 2012; ALMEIDA; BATES, 2013; COULTHARD etal., 2013;
YAMAZAKI; ALMEIDA; BATES, 2013; SAMPSON et al., 2015).
In Brazil, the authors Pontes et al. (2015, 2017) presented coupling
of the one-dimensional inertial model in a large-scale hydrological
model (MGB-IPH). The authors pointed out that with this model
it is possible to perform site simulations, as in floodplains, more
adequately than when using other simplified methods. They showed
that the scheme has robustness in coupling with hydrological
models and, in addition, the parallel processing is easy.

As commented, several studies point to the inertial model
as an alternative to the complete solution of the Saint-Venant
equations and to other simplified models representing the
one-dimensional flow. However, alternatives to improve the
model’s numerical stability may still be explored. Therefore,
this paper proposes and tests some changes in the inertial
formulation in order to improve the numerical stability.
The numerical scheme of the one-dimensional inertial model,
as applied by Fan et al. (2014), was altered in relation to the
approximation of the numerical derivative, in relation to the
numerical method and also in relation to the dynamic equation’s
friction term (term 5 in Equation 2). Six new schemes were
proposed and tested considering the hydraulic radius without
simplification (g ~ hB/(2.h+ B)) and six numerical schemes with
hydraulic radius simplification (R~#).

The performance of the schemes was compared with
original scheme, presented by Bates, Horritt and Fewtrell (2010),
and with the complete solution of the Saint Venant equations
(HEC-RAS hydrodynamic model - USACE, 2016), i.e. the
HEC-RAS model was considered the “true solution” in tests.
This model solves the equations by an implicit finite difference
scheme described in USACE (2016). For the sake of isonomy
with the knowledge already generated and published on the
one-dimensional inertial model application, scenarios identical
to those used by Fan et al. (2014) were considered. The scenarios
were: four situations of river’s slope (normal, low, high and very
high) and two situations where the river is subject to downstream
effect (backwater and tide).
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ONE-DIMENSIONAL INERTIAL MODEL

The dynamic equation (Equation 2) in the one-dimensional
inertial model is rewritten (Equation 3) considering a rectangular
river cross-section, representing the pressure and weight forces in
terms of water surface level (y) and estimating the friction force
using the Manning equation,
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where y is the water surface level, 7 is the Manning roughness
coefficient, R is the hydraulic radius.

The hydraulic radius is approximated by the depth (g ~ 1),
considering that the rivers cross sections have a width much
larger than the depth. The derivatives of the dynamic equation
are approximated by a numerical scheme of progressive finite
differences in space and time, which results in Equation 4, as
presented in Fan et al. (2014).
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Where i and f are the indices in space and time, respectively.

Ax is the length of the channel section (m).

The hi]i 1 term is the depth in the contour of the channel
stretch (Ax ) and can be estimated by the difference of the
maximum value of the water level (¥ ) and the maximum value
of the bottom level (z) in the center of the channel stretch,
according to Equation 5.
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From the explicit solution of Equation 4, the flow is
estimated at each time step according to Equation 6. Bates,
Horritt and Fewtrell (2010) considered the multiplication of the
flow in time step f by the flow in time step k+ 7 in friction term
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Based on the flow values (QI, . 1), the continuity equation
2

(Equation 1), discretized by a spatial and time progtessive scheme
(Equation 7), is applied to estimate the depth at all reaches i at
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the end of the time interval (k+1). From this value, the water
level at the end of the time interval is computed by Equation 8.

At
h_k+1 _ h_k _ k+1 _ Ak+1 7
i LB Ax Qi+i Qi—i ( )
2 2
y =g ®)

Equation 6 requires the initial values of the depth (4, ) and

the water level ( y, ) in all reaches. For this, the same initial flow is
assumed in all reaches and the depth is calculated by considering
the continuous and uniform flow, that is, the Manning equation
with simplification of the hydraulic radius (g ~ ). In addition,
boundary conditions are required in the first and last channel
stretch. The typical upstream condition is a flow hydrograph and
the downstream condition can be a rating curve or a normal depth.
The numerical scheme is restricted to the size of time
step (At) and channel stretch (Ax) to avoid numerical instability.
Thus, the choice of Atand Ax must respect the Courant-Friedrichs-Levy
condition (Courant number — C), given by Equation 9.

C=\@%whereC£1 )

The depth (h) used in this calculation corresponds to the
largest depth found in the river reach. Although this condition
requites a value less than 1, Bates, Horritt and Fewtrell (2010)
observed that the value must be less than 0.7 to ensure the numerical
scheme stability in two-dimensional simulations.

After the initial development of the model, Almeida et al.
(2012) proposed a modification in the numerical scheme to improve
stability in low friction situations, such as in utban areas. In the
new scheme, a weighting (0) was introduced in the flow derivative
in relation to the time. Thus, the low value at time k and reach

i+§ is weighted considering the flow at time k and in the reach

5

1 1 . .
i+E ifz , and i+§ , according to Equation 10.
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The weighting (0) varies from 0 to 1. Using Equation 10 to
approximate the numerical derivative, the flow in each time step
in the new scheme is estimated according to Equation 11.
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According to Almeida et al. (2012), the inclusion of the
weighting allowed more stability in simulations performed by
the authors.

MODIFICATIONS PROPOSED TO THE
NUMERICAL SCHEME OF THE INERTIAL
MODEL

In the inertial model formulation proposed by Bates, Horritt
and Fewtrell (2010), the flow at time step k47 (Equation 6) is
solved by the Euler method, i.e. a first order method where the first
derivative provides a direct estimate of the slope for entire interval
(At). In this method, the global truncation error is proportional to
the time step size (CHAPRA; CANALE, 2012). The second-order
Runge-Kutta method (RK2), equivalent to the Heun method without
iteration, and the fourth-order Runge-Kutta method (RK4) are
more accurate because the errors are of the order of As2 and A? |
respectively (CHAPRA; CANALE, 2012). Thus, the reduction of
the step size decreases the error at a faster rate than in the Euler
method (CHAPRA; CANALE, 2012). Another way to improve
the accuracy is to use a centered derivative (Cen?) instead of the
progressive derivative (Prgg). This derivative allows a second-order
approximation, with an error of the order of As?.

In this paper, the modifications of the numerical schemes
were done in the derivative approximation (Prog and Cen?), in the
numerical method (Euler, RK2 ou RK4) and also in the friction
term (Equation 2), specifically in the time index (&) of the flow

[ JQ_’”/]
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as convergence, consistency and stability, were not evaluated.

Qk

I+

The properties of the proposed numerical schemes, such

These analyzes indicate how close the numerical scheme is
to the analytical solution, and if the errors are not amplified
(POPESCU, 2014). Thus, the numerical schemes were only
tested and evaluated in different numerical applications. In each
test, 16 simulations were run, each one with the methods listed
in Table 1 and described in detail below (“R” means that the
hydraulic radius was not simplified).

Scheme Q(k+1) x Q(k-1):

The first modification made in the original numerical
scheme was to approximate the flow by a time-centered derivative,
which considers the flow in the time steps £+7 and £-7. Thus, the
proposed scheme also considered the flow in these time steps

o*|o* ] Rearranging, the flow Q l i

2l 72
estimated directly by Equation 12. This scheme will be 1dent1ﬁed

by the abbreviation: Cent Q(k+1) x Q(k-1).

in the friction term [

k
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Scheme Q(k+1) x Q(k+1):
In this numerical scheme, the friction term was calculated by

the flow at time step £+7, [

k+1
o
i+—
2

Qk ¥i ] Equation 13 shows the scheme
2

for a progressive derivative, identified as Prog Q(k+1) x Q(k+1),
and Equation 14 for a centered derivative, identified as

Cent Q(k+1) x Q(k+1).

Table 1. Summary of proposed methods and characteristics.

Method Characteristics
Almeida et al. (2012) Prog Euter (0" 110" R~h
B Horti

ates, Horritt and Prog  Enler Qk , Qk+11 Reh

Fewtrell (2010) |

Bates, Horritt and Proc Euler Qk , Q]H]I R~hB/(24+B)

Fewtrell (2010) - R ° 3| i
Cent Q(k+1)xQ(k-1) Cent  Enler Qf‘+‘j Qi*f Rxh
2

Cent Q(k+1)xQ(k-1) - R Cent  Euler (070" R~hB/(2.h+B)
2

Prog Q(k+1)xQ(k+1)  Prog Euler |0*7|0"]

Prog Qk+1)xQ(k+1)- R Prog Euler |0°*/|0*] R=~hB/(2.h+B)

Cent Q(k+1)x0(k+1)  Cent Euler |00/

Cent Qe+ 1)xQ(k+1)-R  Cent  Euler |0*|0"*] R~hB/(2.h+B)

Prog Q(k)xQ(k) Prog Euler |0 ;|0F,
2 2

Prog Q(k)x0(k) - R Prog Euler 0" ;|0
2

Prog RK2 Q(k)xO(k) Prog RK2 |0F,|0F,

2 2

Prog RK2 O()x0(k) -R  Prog RK2  |0* ;|0%
2

Prog RK4 Q(k)x0 (k) Prog RK4 |0 ;|0", R~h

2l ™3
Prgg RK4 |0F |0,

Prog RK4 O (k)xQ(k) - R R~hB/(241+B)
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Note that both equations are second-degree polynomial
equations: ax’ +bx +¢=0. Therefore, the flow can be calculated
directly by the Bhaskara’s formula, without the need for an iterative
method for resolution. The desired estimate is always the largest
_=b ++/b% —4ac

2a

. [2 . .
observation that the root x, (Zb=Vb~ —4ac ) is always negative,
2a

root given by: y, . The reasoning is based on the

as shown below.
It is known that the roots sum is given by x, +x, =—%.
Since b=1 and a>0 (g,n,B,hAt are always positive), we have

: Vb? —dac . s
x; +x, <0.Moreover, since X2 —*% is always positive, so x; >x;.
2

Hence x, <0, otherwise the sum oaf the two roots would be positive.
Thus, the root x, does not have physical importance as an always
negative flow. On the other hand, the root x; can be positive or
negative depending on the term c. As x;.x, = A and x, <0, then
the root , is positive if ¢<0, and negative if ¢>0. In fact, if

k k-1 - . . .
the flow Ql_+ 1 (or Ql,+ 1) 1s negative, as occurs when the river is
2 2
subject to the downstream effect, the term ¢ will be positive and
. k+1 . .
the flow at time step k+1, €7, is negative.
2

The scheme is restricted to a new stability condition, in
addition to the Courant-Friedrichs-Levy condition, where the
discriminant of the Bhaskara’s formula must be positive (57 - 4ac > 0)
so that the root is not complex. Thus, the condition is given by
ac< % . When the flow is positive (x; >0 ) it was shown that a >0
and ¢ <, satisfying the condition. However, when the flow is
negative (x, <0), the term ¢ is also negative and this condition is
mainly dependent on the time step size (At ), the channel stretch
size (Ax) and the level variation between reaches ( y¥,, - y¥).

Scheme Q(k) x Q(k):
Finally, the original numerical scheme was modified by

considering the flow at time step £ [

k
Qi
i+—
2

of, ] . This scheme
i+—
2
allows to calculate the flow directly (Euler) and by the second- and

fourth-order Runge-Kutta methods. The flow in time step &+7,
calculated by the Euler method, is given by Equation 15 and it is
identified as Prog Q(k)xQ(k).
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In the second-order Runge-Kutta method, the flow
determined by the Euler method is an intermediate result, where
the slope estimate is calculated at the initial point (predictor
equation). In the next step, a new estimate is calculated with the
predictor result, i.e., the slope estimate is made at the end point.
Then, the mean of the two derivatives is calculated to obtain an
improved estimate of the slope over the whole range (broker
equation). Therefore, Equation 15 is rearranged to define the

derivative function f (Q_k 1 ) (Equation 10), the predictor step is
2

given by Equation 17 (equivalent to Equation 15) and the corrector
step by Equation 18. This numerical scheme is identified by the
abbreviation Prog RK2 Q(k) x QO().
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07 =0 ;) +Ar-
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Multiple slope estimates are developed in the fourth-order
Runge-Kutta method to obtain an improved mean slope
(Equations 19 to 22). Each K value represents a slope and the
final equation is a weighted average (Equation 23). This scheme
is identified by the abbreviation Prog RK4 Q(k)xQ(k). Note that
K, is the slope at the interval beginning and K, is the slope at the
interval final, equivalent to the second-order Runge-Kutta method.

Ki=f@" 1) (19)
2
K, :f(Qi;é-K] -Af) (20)
K;=/(@" . +§K2 A) @1
K, =f(Qi"+é +K;-Ap) (22)
Q:’z:Qi’;i +%~(K1+2-K2+2~K3+K4) (23)
2 2
EXPERIMENTS

The described numerical schemes were evaluated in
different applications to compare the performance in relation to
the same schemes adapted by Fan et al. (2014) of the formulation
proposed by Bates, Horritt and Fewtrell (2010) and the formulation
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proposed by Almeida etal. (2012). The schemes were implemented
in MATLAB and the simulations were run on eight cores of four
Quad-core 3.4 GHz Intel Xeon processors with 8 MB cache
memory. The schemes were evaluated for stability (maximum
Courant number for which the method remains stable), peak
flow at the river’s last reach (Qpeak), volume conservation error
(VolErr), and the flow’s mean square error (RSME), calculated
based on the results of simulations performed in the HEC-RAS
hydrodynamic model. In addition, each proposed scheme was
solved with and without the hydraulic radius simplification, that
is, R~h and R=hB/(2.h+B).

The applications were equivalent to the scenarios tested by
Fan et al. (2014). The first test considered a real reach of the Sdo
Francisco River, located between Trés Marias UHE and the Pirapora
city (MG), without lateral contributions. Tests 2, 3 and 4 considered
the same reach but with low, high and very high slopes, respectively.
In tests 5 and 6, downstream effects were considered: backwater
and tide. The hydrograph input was the same as used by Fan et al.
(2014). The simulated period in all tests was 150 hours. Table 2
presents a summary of the data used in the six tests.

RESULTS

Test 1

This test considered a real reach of the Sao Francisco River
between the Trés Marias UHE and the Pirapora city (MG) with
approximate values of 135 km in length, 300 m in width (rectangular
cross-section), tivet’s slope of 29.5 cm/km and Manning’s roughness
coefficient of 0.030. The spatial discretization (Ax) was 2 km
and time discretization (At) was vatied between 1 and 4 minutes,
assuming C values equal to 0.26, 0.51, 0.77 and 1.03 at the time of
greater depth. A constant slope was considered as a downstream
contour condition.

Table 2. Summary of the parameters used in tests.

The six formulations of the numerical models described
(Equations 12,13, 14, 15, 18 and 23), the formulation proposed by
Bates, Horritt and Fewtrell (2010) (Equation 6) and the formulation
proposed by Almeida et al. (2012) with a weighting factor equal
to 0 = 0.9 (Equation 11), adopted based on the authors’ results,
were tested with and without the hydraulic radius simplification.

All stable schemes presented values similar to the
HEC-RAS model since the highest RMSE was 51.48 m’.s" for the
Prog Q(k+1)xQ(k+1) scheme. Figure 1 shows only the region of
the hydrograph peak flow in the river’s last reach for the original
scheme, the Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1), Prog RK2
O(k)xQ(k) schemes and the HEC-RAS model, with and without
the hydraulic radius simplification. Figure 2 shows the results of
the parameters evaluated by varying the time step. In the first
column, the results correspond to simulations with the hydraulic
radius simplification, and in the second column without. All values
are shown in Table Al of Appendix A.

The Prog Q(k+1)xQ(k+1)and Prog RK2 Q(k)x(Q(k) schemes
were the most stable, without instability until C = 1.03. However, in
comparison to the Bates, Horritt and Fewtrell (2010) model, the
processing time was on average 33% higher for the Prog O(k+1)xQ(k+1)
scheme and twice for the Prog RK2 Q(k)xQ(k) scheme.

The hydraulic radius calculation without simplification did
not increase the processing time of the schemes and their use
reduced RMSE. As an example, the scheme of Bates, Horritt and
Fewtrell (2010) presented a 60% lower RMSE when the hydraulic
radius was calculated. Despite this, the volume conservation
error increased from 0% to 0.05%, but still remained negligible.
This parameter (ErrVol) did not vary with the time step nor with
the numerical scheme. It was also observed that the calculation of
hydraulic radius did not influence the numerical schemes’ stability.

The Almeida et al. (2012) scheme presented no advantages
compared to the Bates, Horritt and Fewtrell (2010) scheme in
terms of stability (see Table A1 of Appendix A). These schemes
were unstable with a time step of 3 min (C = 0.77). All schemes
with centered derivative presented instability, with stable results

Test 1 Test 2 Test 3
Real reach Low slope High slope
Length 135 km 135 km 135 km
Width 300 m 300 m 300 m
Declivity 29.5 cm/km 5 cm/km 300 cm/km
Initial flow velocity” 0.89 m/s 0.52m/s 1.76 m/s
Manning coef. 0.03 0.03 0.03
Ax 2 km 2 km 2 km
At 1, 2,3 and 4 min 1,2, 3 and 3,5 min 1,2, 3 and 4 min
Downstream effects Constant slope Constant slope Constant slope
Test 4 Test 5 Test 6
Very high slope Backwater Tide
Length 135 km 135 km 135 km
Width 300 m 300 m 300 m
Declivity 10 m/km 29,5 cm/km 5 cm/km
Initial flow velocity” 2.53 m/s 0.89 m/s 0.52m/s
Manning coef. 0.03 0.03 0.03
Ax 2 km 2 km 2 km
At 80, 120, 160 and 200 seg 80, 120, 150 and 180 seg 1,2, 3 and 4 min
Downstream effects Constant slope Backwater Tide

*Flow velocity calculated by the initial flow; width and initial depth (Manning’s Eq. with simplification of the hydraulic radius).

RBRH, Porto Alegte, v. 23, €10, 2018



Fassoni-Andrade et al.

only for the time step of 1 minute (C = 0.26). In addition, these
schemes did not improve the RMSE and the volume conservation
error, as was expected for a second-order approximation scheme
with respect to a first-order scheme.

Test 2

This test considered the same conditions of the river
reach used in test 1 but it used a river’s low slope of 5 cm/km.
The time step was varied in 1, 2, 3 and 3.5 minutes, corresponding
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Figure 1. Region of the hydrograph peak flow in the
river’s last reach for the Bates, Horritt and Fewtrell (2010),
Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1) and Prog RK2 Q(k)xQ(k)
schemes with and without the hydraulic radius simplification
considering a tivet’s slope equal to 29.5 cm/km.
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Figure 2. Peak flow, volume conservation error, processing time
and RMSE in relation to the time step for different formulations of
numerical schemes considering a rivet’s slope equal to 29.5 cm/km.
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to Cvalues of 0.29,0.60, 1.90 and 1.04, respectively, at the time of
greater depth. As in test 1, the numerical schemes’ performance
was compared. Figure 3 shows the peak flow region in the
last reach for the original scheme, the Prog QO(k+1)xQ(k+1),
Prog RK2 Q(k)xQ(k) schemes and the HEC-RAS model. Figure 4
shows the performance of all schemes evaluated and Table A2
( Appendix A) shows the values of Figure 4.

The Prog Q(k+1)xQ(k+1) scheme was the most stable, with
stability up to the time step of 3.5 min (C = 1.04), and with an
increase in processing time of 20% relative to the original scheme.
In addition, it was the scheme that presented the highest RMSE values.

Schemes with centered derivative presented instability at
all time steps adopted. The other schemes, such as Bates, Horritt
and Fewtrell (2010) and Almeida et al. (2012), presented equal
stability up to a time step of 3 min (C = 0.90).

The Prog O(k)x(Q(%) scheme presented the lowest RMSE
with practically the same processing time as the original model.
The Prog RK2 Q(k)xQ(k) and Prog RK4 O (k)xQ(k) schemes presented
RMSE wvalues closer to the ones in Bates, Horritt and Fewtrell
(2010), but the processing time was, on average, almost twice.

The volume conservation error did not changed with the
time step but increased from 0.57% to 0.75% when the calculation
of the hydraulic radius was included in the numerical scheme.
This inclusion of this calculation did not increase the processing
time, as observed in Figure 4, and led to the results closer to that
of the HEC-RAS model, reducing RMSE by 64% compared to
the Bates, Horritt and Fewtrell (2010) scheme.

Test 3

In this test, a high slope of 300 cm/km was considered.
The time step was varied between 1 and 4 minutes corresponding
to Cvalues of 0.18,0.37, 0.55, 0.74 at the time of greatest depth.
Figure 5 shows a section of the hydrograph at the river’s last reach
for the original scheme, the Cent Q(k+1)xQ(k-1), Prog Q(k+1)xQ(k+1)
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Figure 3. Region of the hydrograph peak flow in the river’s last
reach for the Bates, Horritt and Fewtrell (2010), Prog Q(k+1)xQ(k+1)
and Prog RK2 Q(&)xQ(k) schemes with and without the hydraulic
radius simplification considering a river’s slope equal to 5 cm/km
(the red line is subscribed by the green line).
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radius simplification considering a tivet’s slope equal to 300 cm/km.

schemes and HEC-RAS. Figures 6 shows the main results and
Table A3 (Appendix A) the detailed results.

As in the previous tests, the Prog Q(k+1)xQ(k+1) scheme
was the most stable, reaching the value of C equal to 0.74 compared
to 0.37 in the Bates, Horritt and Fewtrell (2010) and Almeida et al.
(2012) schemes. The increase in processing time compared to the
original scheme was 20%.

The Cent Q(k+1)xQ(k+1) scheme also presented better
performance than the original model, with stability up to the
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Figure 6. Peak flow, volume conservation error, processing time
and RMSE in relation to the time step for different formulations of
numerical schemes considering a tiver’s slope equal to 300 cm/km.

time step of 3 minutes (C = 0.55). However, the Prog O(k)xQ(k),
Prog RK2 Q(k)xQ(k) and Prog RK4 Q(k)xQ(k) schemes did not
show any improvement over the original scheme.

The inclusion of the hydraulic radius calculation in numerical
schemes reduced the RMSE by 20% in the original scheme and by
30% in the Prog Q(k+1)xQ(k+1) scheme. Moreover, the increase
in the volume conservation error from 0 to 0.01% is negligible
considering this calculation.

Test 4

The same river’s reach of test 1 with a very high slope of
10 m/km was consideted in this test. This slope changes the flow
regime to the supercritical regime, where the original inertial model
does not show good stability results (FAN et al., 2014). The time
step was varied with values of 80, 120, 160 and 200 seconds,
corresponding to the values of C at the time of greatest depth
of 0.20,0.31, 0.41, and 0.51, respectively. Figures 7 and 8 present
the main results and Table A4 (Appendix A) the detailed results.

Only the numerical schemes Prog Q(k+1)xQ(k+1),
Cent Q(k+1)xQ(k+1), Bates, Horritt and Fewtrell (2010) and
Almeida et al. (2012) presented stable results. The last two were
stable only in the time step adopted in the simulation of 80 sec,
corresponding to C = 0.20. The other two schemes were stable
up to 160 sec (C = 0.41). Despite the improvement, where the
Courant number increased from 0.20 to 0.41, the value is still
small compared to other models of flood propagation where
C can reach 1.

The Prog Q(k+1)xQ(k+1) and Cent Q(k+1)xQ(k+1) schemes

showed practically identical performances with near peak flow, volume
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conservation error, processing time and RMSE. In addition, the
processing time of these schemes was the same as the original scheme
with a slightly higher RMSE, 31.24 m?®/s compated to 30.19 m?/s.

As in the other tests, the inclusion of the hydraulic radius
calculation in the numerical schemes did not increase the processing
time, reduced the RMSE from 30.19 to 25.75 in the model of Bates,
Horritt and Fewtrell (2010) while the volume conservation error
increased from 0 to 0.01% in all stable numerical schemes, but
may be considered negligible.
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Figure 7. Region of the hydrograph peak flow in the river’s last reach
for the Bates, Horritt and Fewtrell (2010) and Prog O(k+1)xQ(k+1)
schemes with and without the hydraulic radius simplification
consideting a tivet’s slope equal to 10 cm/km.
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Test 5

This application was identical to test 1 but considered a
constant water level downstream and a constant initial level from
the half of the reach as boundary conditions. These conditions
represent a dam operating at constant water level in simplified
form. Other models of flood propagation, such as Muskingum-
Cunge, are invalidated in the presence of dam and backwater
(FAN et al., 2014). The time step was varied with values of 1,
2, 2.2 and 2.5 minutes, corresponding to the maximum C values
of 0.44, 0.88, 0.97 and > 1 at the moment of greatest depth
(higher values computed during the simulation). Figure 9 shows a
hydrograph of the last reach for the original, Prog Q(k+1)xQ(k+1)
and Prog RK2 Q(k)x(Q(&) schemes. Figure 10 shows the main
results and Table A5 (Appendix A) the detailed results.

All numerical schemes, with the exception of the centered
derivative schemes, showed stable results until the adopted
time step of 132 sec (C = 0.97). The processing times of the
Prog Q(k+1)xQ(k+1) and Prog Q(k)x(Q(&) schemes presented an
average increase of 25% in comparison to the original scheme.
On the other hand, the Prog RK2 O (k)xQ(k) and Prog RK4 Q(k)xQ(k)
schemes took twice as long as the original scheme.

In this application, the volume conservation error did
not change with the inclusion of the hydraulic radius calculation.
In addition, the peak flow approached the HEC-RAS model’s
peak flow and the RMSE decreases.

Test 6

In this test, we considered a situation equal to test 2, low
slope, but with different contour conditions. A constant flow of
500 m?*/s was adopted as the upstream condition and a vatiable
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Figure 9. Region of the hydrograph peak flow in the
river’s last reach for the Bates, Horritt and Fewtrell (2010),
Prog Q(k+1)xQ(k+1) and Prog RK2 Q(k)xQ(k) schemes with
and without the hydraulic radius simplification considering a
boundary condition downstream of dam and backwater (the red
line is subscribed by the green line).
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Figure 10. Peak flow, volume conservation error, processing time
and RMSE in relation to the time step for different formulations of
numerical schemes considering a boundary condition downstream
of dam and backwater.

level as the downstream condition. The water level downstream
(y) was given by the equation y=6+ 2sen(¥) , which represents

a periodic level variation between 4m and 8m with a period of
12 hours. This downstream condition - tidal variation - causes a
wave that propagates upstream and which can reverse the flow
direction in the river’s last reach during some moments along
the tide cycle.

The time step was vatied between 1, 2, 3.5 and 4 minutes with
maximum values of C equal to 0.27,0.54, 0.94 and 1.07 (highest
values computed during the simulation), respectively. Figure 11
shows a region of the hydrograph peak in the last reach for
the original scheme and for the Prog RK2 Q(k)x(Q(k) scheme.
Figure 12 shows the main results and Table A6 (Appendix A)
the detailed results.

Unlike the other applications, in this test the
Prog Q(k+1)xQ(k+1) scheme was not stable in any adopted time
step. As shown, the scheme requires that the discriminant of
the Bhaskara’s formula be positive and this criterion was not
fulfilled even with a very small time step.

The most stable scheme was Prog RK2 Q(k)xQ(k) with
Cequal to 1.07 (time step of 4 minutes), followed by the other
schemes, with C'= 0.94 (3.5 min). Despite the improvement in
stability, the Prog RK2 Q(&)xQ(k) scheme took, on average, twice
the original scheme time and presented higher RMSE.

The volume conservation error and RMSE were equal in
all stable schemes, approximately 0.97%, and had a slight increase
when the calculation of the hydraulic radius was considered.
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Figure 11. Region of the hydrograph peak flow in the river’s last reach
for the Bates, Horritt and Fewtrell (2010) and Prog RK2 Q(k)xQ(k)
schemes with and without the hydraulic radius simplification
considering a boundary condition with tide variation (the red line
is subscribed by the green line).
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and RMSE in relation to the time step for different formulations
of numerical schemes considering a boundary condition with

tide variation.

CONCLUSIONS

This paper compared the performance of new numerical
schemes with inertial approximation of the Saint-Venant equations.
The differences between the numerical schemes in terms of
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stability, peak flow, volume conservation error and RMSE were
investigated. All stable schemes presented similar results to the
hydrodynamic model HEC-RAS, and can be used with good
accuracy in comparion to the model that considers the complete
equations of Sant-Venant. The advantages of the proposed
schemes are ease of implementation, robustness in the coupling
with hydrodynamic models and the possibility of parallelization.
However, more comparison of the inertial model with implicit
and explicit numerical schemes is recommended for future studies.

With respect to performance measures, Table 3 presents the
best scheme(s) in each metric and in each test. The difference of
the peak flow and the volume conservation error between schemes
can be considered negligible. Furthermore, although the original
scheme is faster, the difference in processing time is very small in
relation to the Prog Q(k)xQ(&) and the Prog O(k+1)xQ(k+1) schemes.

It was observed for all stable numerical schemes that the
peak flow approaches the HEC-RAS model’s peak flow and that
the RMSE decreases when the hydraulic radius calculation is
considered without simplification. In this way, the inertial model
formulation is more similar to what is done in the HEC-RAS, which
does not simplify the hydraulic radius calculation. In addition,
the processing time did not increase with this calculation and the
volume conservation error showed a negligible increase.

In general, the scheme proposed by Almeida et al. (2012)
presented no advantages in relation to the Bates, Horritt and
Fewtrell (2010) scheme. In all tests, both models presented
instability at the same time step and both RMSE and peak flow
were equivalent. The processing time was equal or greater in the
Almeida et al. (2012) scheme.

Schemes with centered numerical derivatives showed
instability for low C values in tests 1, 2, 5 and 6. Only in the
applications of test 3 (high slope) and test 4 (very high slope)
the Cent Q(k+1)xQ(k+1) scheme showed an advantage over the
others. On the other hand, the second order approximation scheme,

Prog RK2 Q(k)xQ(%k), did not show stability in these tests (3 and 4).
For this scheme, the stability was equivalent to original model in
tests 2 and 5 and greater in tests 1 and 6. The disadvantage of
the schemes with second and fourth order approximations is the
longer processing time.

The parabola scheme, whose solution is a second
degree equation (Prog Q(k+1)xQ(k+1)), presented advantages
in relation to the Bates, Horritt and Fewtrell (2010) scheme
in most applications. In tests 1, 2, 3 and 4 the proposed model
was the most stable, presenting good results with C values of
1.03,1.04, 0.74 and 0.41, respectively, compared to the maximum
values of 0.77,0.90, 0.37 and 0.20 for the original scheme. In test
5 (dam and backwater), the stability was equal in both schemes
(C=0.97). However, in test 6 (tide), the parabola scheme was not
stable at any time step. The proposed scheme is more unstable in
negative flow situations.

The parabola scheme’s processing time was equal to or
slightly higher than the original model. This difference is in
the tenths of a second scale and may be considered negligible.
Moreover, in applications that do not occur negative flow, the
greater stability makes this scheme faster because it allows to
adopt a greater time step. As an example, in the supercritical
regime application (test 4) the proposed scheme spent 0.58 sec
(time step 160 sec) and the original scheme spent 1.12 sec
(time step 80 sec). Regarding RMSE, despite the higher values
in the parabola scheme in tests 2 (low slope) and 5 (dam and
backwater), the difference with the original model is very small.
The largest difference found was 2.3 m*/s (RMSE of 22.52 m*/s
compared to 24.82 m*/s) in test 5.

Therefore, among all tests performed, we believe that
the important information raised in the research is that the
greater stability of the parabola scheme makes this scheme more
attractive than the original model for use as flow propagation
modulus in hydrological models. However this use is limited

Table 3. The best numerical scheme(s) in each test in relation to metrics.

Test1 Test 2 Test 3
Real reach Low slope High slope
Prog Q(k+1)xQ(k+1) >
+ + D + +
C* and Prog RK2 O()x0/(k) Prog Q(k+1)xQ(k+1) Prog Q(k+1)xQ(k+1)
Qpeak Negligible Negligible Negligible
VolErr Negligible Negligible Negligible
Processing Time Bates, Horritt and Fewtrell (2010)”  Bates, Horritt and Fewtrell (2010)™ Bates, Horritt and Fewtrell (2010)”
Prog O(k+1)xQ(k+1)
RSME Prog Q(k+1)xQ(k+1) Prog QO(k)xQ(k) and Cont Ok +1)x0(k+1)
Test 4 Test 5 Test 6
Very high slope Backwater Tide
Prog QO+ 10k +1)
= and Cont Q(k+1)xQ(k+1) Prog RK2 Q(k)~0(k)
Qpeak Negligible Negligible Negligible
VolErr Negligible Negligible Negligible
P“’Tcie:emg Negligible Bates, Horritt and Fewtrell (2010) Bates, Horritt and Fewtrell (2010)
RSME Negligible Prog O(k)xQ(k) Prog O(k)xQ(k)

*Maximum Courant number for which the method remains stable; **Difference is very small in relation to Prog O(k)xQ(k) and Prog Q(k+1)xO(k+1); ***Same for all

schemes, with exception of schemes with centered derivative.
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in some cases where there are negative flows, which reduces
one of the main applications of models using the inertial
model. This disadvantage could easily be overcome by using
an adaptive mixed method which recognizes the possibility of
a flow reversal and adapts temporarily to another scheme and
then returns to the parabola scheme as soon as the negative
flow disappears.

Finally, it is important to emphasize that, according to the
results, the inclusion of the hydraulic radius calculation without
simplification in the numerical schemes improved the results
without increasing the computational time. That is, the inclusion
of this consideration approximates the results of physical reality
without additional performance costs.
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