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ABSTRACT

Historical rainfall records are relevant in hydrometeorological studies because they provide information on the spatial features, frequency, 
and amount of  precipitated water in a specific place, therefore, it is essential to make an adequate estimation of  missing data. This 
study evaluated four methods for estimating missing monthly rainfall data at 46-gauge stations in southwestern Colombia covering 
1983-2019. The performance of  the Normal Ratio (NR), Principal Components Regression (PCR), Principal Least Square Regression 
(PLSR), and Artificial Neural Networks (ANN) methods were compared using three standardized error metrics: Root Mean Square 
Error (RMSE), Percent BIAS (PBIAS), and Mean Absolute Error (MAE). The results generally showed a better performance of  the 
nonlinear ANN method. Regarding the linear methods, the best performance was registered by the PLSR, followed by the PCR. The 
results suggest the applicability of  the ANN method in regions with a low density of  stations and a high percentage of  missing data, 
such as southwestern Colombia.
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RESUMO

Os registros históricos de precipitação são relevantes para os estudos hidrometeorológicos porque fornecem informações sobre as 
características espaciais, frequência e volume de precipitação de água em um local específico, portanto, é essencial realizar uma estimativa 
adequada dos dados faltantes. Esta pesquisa avaliou quatro métodos para estimativa de dados de precipitação faltantes mensalmente 
em 46 estações de medição no sudoeste da Colômbia, abrangendo os anos de 1983 à 2019. O desempenho dos métodos de Razão 
Normal (NR), Regressão de Componentes Principais (PCR), Regressão por Mínimos Quadrados Principais (RMQP) e Redes Neurais 
Artificiais (RNA) foram comparados usando três métricas padronizadas para os erros: Raiz do Erro Médio Quadrático (REMQ), 
Percentagem BIAS (PBIAS) e Erro Absoluto Médio (EMA). Os resultados com frequência mostraram um melhor desempenho do 
método ANN não-linear. Com relação aos métodos lineares, o melhor desempenho foi registrado pelo PLSR, seguido pelo PCR. Os 
resultados sugerem a aplicabilidade do método ANN em regiões com baixa densidade de estações de medição e alta porcentagem de 
dados faltantes, como o sudoeste da Colômbia.

Palavras-chave: Séries cronológicas de chuvas; Reconstrução de dados; Métodos de comparação; Redes Neurais Artificiais (ANN).
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INTRODUCTION

Proper water management depends mainly on the quantity 
and quality of  hydroclimatological information. Knowledge of  
the spatial distribution and seasonality of  rainfall is relevant for 
the economy and society of  a region (Morales-Acuña et al., 2021). 
Reliable and complete data is required to take action on actions 
such as flood and drought risk prediction and assessment, rainfall 
forecasting, dry spells, desertification, climate variability studies, 
and water resource planning, among others (Canchala et al., 2019; 
Kuok et al., 2010; Miró et al., 2018). Knowing the processes 
involved in the water balance of  a region is essential due to the 
influence of  climate change on precipitation worldwide with 
increasingly variable patterns, according to the projections of  the 
Intergovernmental Panel on Climate Change (2022).

Usually, missing data in rainfall time series have become a 
common problem in gauge stations (Ramos-Calzado et al., 2008; 
Torres et al., 2015; Souza & Leal, 2017; Pinheiro et al., 2022) 
due to measurement instrument failure, observation errors, and 
outliers. In addition, it is common to find logistical, economic, and 
accessibility limitations in the field, which make it challenging to 
establish and maintain networks for measuring hydrometeorological 
variables (Cruz-Roa & Barrios, 2018).

Addi et al. (2022) and Taghi et al. (2017) highlight the 
need to evaluate rainfall missing data estimation methods to 
allow characterizing its spatio-temporal behaviour in detail and 
climate trend analysis. In this sense, different methods have been 
developed to estimate missing data (Miró et al., 2017); among these, 
there are traditional methods based on the estimation of  missing 
data from the nearest neighbouring stations (Auer et al., 2005; 
Burhanuddin et al., 2017; Cruz-Roa & Barrios, 2018; Silva et al., 
2007; Domonkos, 2015; Ramos-Calzado et al., 2008; Taghi et al., 
2017), methods based on spatial interpolation (IDW) widely used 
in hydrology (Armanuos et al., 2020; Cerón et al., 2021a; Silva et al., 
2007; Lee & Kang, 2015; Morales Martínez et al., 2019), multiple 
regression methods (Bárdossy & Pegram, 2011; Moraes Cordeiro 
& Blanco, 2021; Santos et al., 2021; Francisco, 2015; Teegavarapu, 
2012), advanced linear methods such as Iterated Least Squares 
approach (DeGaetano & Allen, 2002), and of  multiple linear 
regression derived from Empirical Orthogonal Functions (EOF’s) 
with principal component analysis (Shahrokhi et al., 2020).

Likewise, more recently used methods that consider nonlinear 
relationships, such as artificial neural networks (Canchala et al., 
2020c; Canchala et al., 2019; Chiu et al., 2021; Kajornrit et al., 2012; 
Khalili et al., 2016; Londhe et al., 2015; Ocampo-Marulanda et al., 
2021), genetic programming (Ismail et al., 2021; Khalili et al., 
2016), among others. The latter are characterized by having higher 
demands for computational cost and knowledge compared to 
traditional methods and multiple linear regression.

Southwestern Colombia recurrently presents a lack of  
information related to climate records due to aspects such as 
the low density of  gauge stations and social and public order 
problems that make it difficult to access them compared to other 
regions of  Colombia (Canchala et al., 2019). This problem affects 
hydroclimatological analyzes for water resource management and 
planning purposes. On the other hand, this region presents a 
complex climatology, due to the influence of  climatic phenomena 
such as El Niño Southern Oscillation (ENSO), Madden-Julián 

Waves, Chocó low-level Jet, among others (Canchala et al., 
2020a; Cerón et al., 2021b; Puertas & Carvajal, 2008; Rueda & 
Poveda, 2006; Sedano-Cruz et al., 2013; Torres, 2012), coupled 
with its proximity to Ecuador and influence of  the Intertropical 
Convergence Zone (ITCZ).

In this sense, the main objective of  this research is to 
evaluate and compare four methods for estimating missing monthly 
rainfall data at 46-gauge stations in southwestern Colombia with 
historical data between 1983-2019, using four performance metrics. 
Hence, this article is arranged as follows: Section 2 describes the 
study area and data. Section 3 describes the methodology used. 
Section 4 includes the results and discussion, and finally, section 
5 shows the conclusions.

STUDY AREA AND DATA

Study area

The study area is in Southwestern Colombia (Department 
of  Nariño). It has an approximate area of  33,268 km2 that 
occupies a geostrategic position because the Andes Mountain 
range crosses its limits, the Tropical Pacific Ocean. It registers 
significant topographic changes in small distances (Canchala et al., 
2020b), which provides the regional diversity of  reliefs, thermal 
floors and microclimates (See Figure 1).

Furthermore, it is in the south of  the Colombian 
Biogeographic Chocó; recognized as a biodiversity hotspot that 
shelters approximately 3% of  the world’s plant species (Poveda 
& Mesa, 2000), characterized by registering three important 
rainfall core that range between 7000 mm. year-1 to 9000 mm. 
year -1 (Cerón et al., 2021b). Likewise, it registers three natural 
regions where 52% is made up of  the Pacific region, with high 
rainfall that ranges between 3000-7000 mm.year-1, 40% belongs to 
the Andean region, where the presence of  moors, volcanoes, and 
relief  stand out. Rugged with rainfall that ranges between 1000-
2000 mm.year-1, and the remaining 8% belongs to the Amazon 
jungle region where there is high biodiversity of  communities 
and species and rainfall that varies between 3500 mm.year-1 – 
4500 mm.year-1 (Canchala et al., 2019, 2020a; Cerón et al., 2021b).

Rainfall dataset

Monthly rainfall time series with 37 years of  observation 
(1983-2019) from 46-gauge stations located in southwestern 
Colombia were used. The data was provided by Instituto de 
Hidrología, Meteorología y Estudios Ambientales (IDEAM) of  
Colombia, and its spatial distribution is shown in Figure 1.

METHODS

Four methodologies for estimating missing monthly rainfall 
data in Southwestern Colombia were used: Normal Ratio (NR), 
Principal Components Regression (PCR), Principal Least Square 
Regression (PLSR), and Artificial Neural Networks. (ANN). The first 
three methods are linear, and the last corresponds to a nonlinear 
methodology. Initially, the rainfall records were organized, and the 
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exploratory and confirmatory data analysis was carried out, where 
the behaviour of  the rainfall was determined through descriptive 
statistical measures, as well as the percentage of  missing data in the 
46 study stations. Subsequently, homogeneous rainfall groups were 
formed using statistical cluster analysis and similarity measures for 
the three linear methods. Finally, missing data were imputed, and 
method performance was assessed using four performance metrics: 
Root Mean Square Error (RMSE), Percent bias (PBIAS), Mean 
Absolute Error (MAE), and Pearson correlation coefficient (r). 
The best method for estimating missing data was selected based on 
these results. In the flowchart of  Figure 2, the methodology used to 
estimate the missing data in the different study stations is registered.

Pre-processing data

Preliminary analysis of  the rainfall time series was performed 
through exploratory and confirmatory data analysis. This analysis 
consists of  applying graphical and quantitative statistical tools to 
identify patterns and anomalies in the data and observe the behaviour 
of  rainfall in the selected stations (Zhao et al., 2011; Castro et al., 2012).

Furthermore, the consistency of  the data was verified 
using the Spearman correlation coefficient (ρ), used to quantify 
the degree of  correspondence between the stations and identify 
anomalous gauge stations. ρ ranges from -1 to 1, with the maximum 
(minimum) value being the perfect positive (negative) correlation. 
The statistical significance of  the correlations was determined using 
the T-student test with a significance level of  𝛼 =0.05.

For the NR method, the Spearman correlation coefficient 
was used as a quantitative criterion for selecting neighbouring 
stations for the estimation of  missing data since it is not multiple 
estimation methods. Stations with values of  ρ ≥ 0.5 were selected, 
a criterion used by Cruz-Roa & Barrios (2018), establishing that 
the stations with correlation coefficients constitute a homogeneous 
hydrological cluster.

Regionalization

Defining homogeneous rainfall regions is essential for 
hydrological applications, particularly for regions with high 
spatio-temporal variability in rainfall patterns (Zhang et al., 2016). 
Therefore, cluster analysis (CA) was used to classify stations with 
similar characteristics and properties.

Figure 1. Geographic location of  the study area and spatial distribution of  rain gauge stations.

Figure 2. Flowchart of  the methodology used in the study.
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For clustering purposes to regionalize the monthly rainfall, 
we use the HCA with square of  Euclidean Distance for measure 
the observations, represented by Equation 1, and Ward’s method 
for the linkage rule. According to Hershey et al. (2010), Darand & 
Reza (2014), Gois et al. (2020) and Silva (2020) this fusion results 
in the most distinctive clusters.:

( )2
1

n

xy i i
i

d x y
=

= −∑  (1)

where ix  and iy  are elements of  comparison, which in this case represent 
the rainfall between stations x and y at the i-th instant of  time.

Subsequently, hierarchical groups were formed by Ward’s 
method, allowing the grouping of  gauge stations with similar 
behaviours of  rainfall. Finally, each region’s spatial coherence and 
rainfall patterns were verified.

This study chose Ward’s method because it has been 
the clustering technique most used in climate regionalization 
(Fazel et al., 2018; Canchala et al., 2022). Overall, it outperforms 
other algorithms in terms of  segregation, providing relatively dense 
groups with minimums within-group variance. Ward’s method 
recognizes the minimum variance within groups, joining elements 
with a minimal sum of  squares between them (Hervada-Sala & 
Jarauta-Bragulat, 2004; Santos et al., 2015).

Missing data estimation

There are different methodologies for estimating missing data 
and reconstructing hydroclimatological time series (Adilah & Hannani, 
2021; Chiu et al., 2021; Shahrokhi et al., 2020; Canchala et al., 2019; 
Lai et al., 2019; Morales-Martínez et al., 2019; Cruz-Roa & Barrios, 
2018; Miró et al., 2017; Kim & Pachepsky, 2010; Burhanuddin et al., 
2017; Zuccolotto, 2012; Silva et al., 2007; Paulhus & Kohler, 1952). 
Due to the complexity of  the study area, four estimation methods 
for missing data were evaluated, including conventional (linear) and 
artificial intelligence (nonlinear) methods, which were NR using 
neighbouring stations, PCR, PLSR, and ANN.

Normal Ratio (NR)

It is a non-multivariate conventional method initially used 
by Paulhus & Kohler (1952) and is currently used in numerous 
hydrological studies (Adilah & Hannani, 2021; Moraes Cordeiro 
& Blanco, 2021; Burhanuddin et al., 2016; Caldera et al., 2016; 
Arango et al., 2012; Puertas & Carvajal, 2008). It is used when 
there are missing data in a specific month for a weather station 
with neighbouring stations without missing records for the same 
months as the station of  interest and with similar topographical 
features. For this, the expression of  Equation 2 is used:

1

1  
n x

x ii i

N
P P

n N=
= ∑  (2)

where; n is the number of  pluviometric stations with continuous 
record data close to station x, in which the record will be completed, 

xP  is the rainfall of  station x during the month to be completed, 
iP  is the rainfall of  stations 1 up to n during the month to be 

completed, xN  is the multiannual monthly rainfall of  station x, 
and iN  the multiannual monthly average rainfall of  stations 1 to n.

Principal Components Regression (PCR)

Principal Component Analysis (PCA) or Empirical 
Orthogonal Functions (FOEs) is a statistical technique used in 
climate research as a tool to analyze meteorological series with 
high spatio-temporal dimensionality and noise (Carvajal-Escobar 
& Marco, 2005; Taylor et al., 2013). Together with regression, 
they are multivariate techniques that allow data from multiple 
monitoring sites to be incorporated into a statistical model 
while minimizing the effects of  non-correlation between the 
measured variables (Shlens, 2014), which is why it is widely 
used in hydroclimatology to extract linear relationships between 
variables in a data set (Lu & Hsieh, 2003), reduce dimensionality 
and avoid multicollinearity (Cerón et al., 2021a; Ocampo-
Marulanda et al., 2022).

Principal Components Regression is a method 
introduced by Massy (1965) that allows transforming the p 
original explanatory variables into a new set of  k uncorrelated 
variables, called Principal Components (PCs), with k p< . These 
variables are later used as explanatory variables in a multiple 
linear regression model to estimate the value of  the response 
variable (Wyatt et al., 2020).

A subset of  PCs was selected to improve the quality of  the 
estimation of  the model, and the Kaiser-Gutman (K-G) criterion was 
used to determine the number of  these to use. The K-G criterion 
recommends choosing the first k PCs associated with eigenvalues 
greater than 1.0. In addition to the above, the empirical criterion 
of  the percentage of  accumulated variance was also used, which 
suggests keeping the PCs that accumulate an explained variance 
of  approximately 80% % (Cuadras, 2007).

The relationship between the set of  gauge stations 
was established using Equation 3, based on the multiple linear 
regression model:

0 1 1 2 2   p pY X X X eβ β β β= + + +…+ +  (3)

where the variable Y represents the rainfall of  one of  the gauge 
stations, 0β  is the intercept, 1  , , pβ β…  is the partial regression 
coefficients associated with the p gauge stations ( ) 1, 2, ,jX j p= …  
to be considered predictors, and e represents the random error 
component associated with the regression model.

The predictors were transformed considering k p<  linear 
combinations to reduce the possible effect of  multicollinearity by 
including monitoring stations that may present a spatial correlation 
as predictor variables:

1 1 2 2   l l l pl pZ a X a X a X= + +…+  (4)

with 1, , ,l k= …  called components, and subsequently adjusting a 
linear regression model (Equation 5) using them as new predictors:

0 1 1 2 2   k kY Z Z Z ea a a a= + + +…+ +  (5)
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Additionally, if  the coefficients jla  (loads or weights) are 

selected as follows 
1

0,  
p

jl jm
j

a a si l m
=

= ≠∑ , components lZ  will be 

orthogonal, therefore avoiding potential problems of  multicollinearity. 
The procedure described above was carried out iteratively, varying 
the gauge station to be considered as the response variable and 
using the other available stations as predictor variables.

Principal Least Square Regression (PLSR)

Partial Least Squares (PLS) regression is a model for 
multivariate prediction or estimation of  data (Andersson, 2009). 
It was introduced by Wold (1975) and combined features of  
principal component analysis and multiple regression. Like Principal 
Component Regression (PCR), it allows the original explanatory 
variables to be transformed into a new set of  independent variables 
(components) (Wold et al., 2001), with the difference that PCR 
regression does not consider the response variable to determine 
the components, since it only maximizes the explained variance 
of  the set of  predictor variables to be introduced in the regression 
model; while PLS regression determines these components 
taking into account both the original predictor variables and the 
response variable (it maximizes the covariance between the original 
explanatory variables and the response variable(s).

PLS regression with a single response variable is called PLS1; 
if  there is more than one response variable, the PLS regression 
is called the PLS2 regression (Andersson, 2009). In this research, 
the PLS1 algorithm was used, and the empirical criterion of  the 
percentage was used, which suggests conserving the components 
that allow accumulating at least 80% of  the explained variability 
of  the response variable.

Artificial Neural Networks (ANN)

Nonlinear Principal Component Analysis (NLPCA) is 
a method using ANN, proposed by Scholz et al. (2005) and 

used in the estimation of  missing hydroclimatological data by 
Miró et al. (2017) and Canchala et al. (2019). This method uses 
an auto-associative neural network approach based on decoding 
(second phase of  NLPCA), better known as inverse NLPCA, 
which corresponds to a nonlinear generalization of  the standard 
Principal Component Analysis (PCA).

The NLPCA uses a reconstruction function :gen y xΦ →  which 
is performed by a feed-forward network ( ) ( )4 3,    genx w y W g W yϕ= = , 
where the objective of  genϕ  is to estimate the data set x  approximated 
the target data y, minimizing the root mean square error 2x x−  
(See Figure 3). The NLPCA toolbox used in this study is available 
at Scholz (2023).

The organization structure of  the input and output layers is 
carried out through different types of  architectures; the most used 
model is the Multi-Layer Perceptron (MLP), which has a structure 
with an input layer, one or several layers hidden and an output 
layer (Canchala et al., 2020a). Rumelhart developed this model, also 
called the error propagation model or back-propagation model, 
which uses the Delta Learning Rule learning method (Demir & 
Keskin, 2021). For this research, the architecture employed in 
Canchala et al. (2019) was used.

A learning algorithm was used for preliminary recognition 
of  the data and identification of  historical rainfall patterns of  the 
time series associated with different weather phenomena that 
influence the region. This was done using the back-propagation 
algorithm, which propagates the error between the actual output 
data and the estimated output data in the neural network. The above 
is described by Equation 6:

( )2
1 1 1

   
M PM n

j mj mjj m j
E E x x

= = =
= = −∑ ∑ ∑  (6)

where E is the total error, M is the number of  input data, jE  is 
the error of  the squared difference between the actual data ( )mjx ) 
and the estimated data ( ˆ )mjx ) (Khalili et al., 2016).

For the ANNs, the architecture [46-45-46] was used, 
and different iterations were evaluated in the neural network 
(5,000, 8,000 and 10,000). The best results were obtained using 

Figure 3. Flowchart of  the NLPCA Inverse. nx  is the input layer (Monthly rainfall dataset), my  is the bottleneck layer of  the NLPCA 
model, and nx  is the output layer (Monthly rainfall dataset reconstructed).
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10,000 iterations; this greater number of  iterations allowed better 
recognition of  the database and identification of  atypical patterns 
resulting from climatic phenomena and anomalies that influence 
the study area.

Performance metrics

The evaluation of  the estimation of  missing data of  the four 
(4) methods used was carried out through three (3) standardized 
performance metrics: RMSE, MAE, and ABIAS, which allowed 
verifying the adjustment in each of  the gauge stations studied. Also, 
the Pearson correlation coefficient (r) was used to measure the 
similarity between the observed and estimated data. The metrics 
used are represented in Table 1.

RESULTS AND DISCUSSION

Descriptive statistical analysis

Table 2 shows the descriptive statistics of  the gauge stations’ 
monthly rainfall time series for the period 1983-2019.

The studied gauge stations showed altitude differences, 
varying from 3 m.a.s.l in the plain of  the Pacific region to 3120 m.a.s.l 
in the Andes Mountain range. The fluctuations of  rainfall in the 
territory are mainly due to the altitude differences, in addition 
to orographic aspects, presence of  the Andes mountain range, 
limits with the Pacific Ocean, proximity to the Amazon basin, and 
influence of  climatic phenomena at different time scales, such as 
the ENSO phenomenon, the Madden-Julián Oscillation, and ITCZ 
migration, among others (Cerón et al., 2021a; Puertas & Carvajal, 
2008; Rueda & Poveda, 2006; Serna et al., 2018; Torres-Pineda 
& Pabón-Caicedo, 2017). It is highlighted that the areas with the 
highest average annual rainfall are located in the Pacific region, 
with records of  up to 8689.39 mm.year-1.

In general, the monthly rainfall time series showed high variation 
with respect to the mean, ranging between 174.11 mm.year1 and 

1347.6 mm.year1, with variation coefficients that ranged between 
9% and 41%, with the greatest variability being recorded in the 
Pacific region. This region is characterized by not presenting a 
defined rainfall trend (Guzmán et al., 2014); some areas register 
high rainfall during the year and, in others, low rainfall, mainly 
in stations near the Pacific Ocean. These results are consistent 
with Cerón et al. (2021b), who reported a core of  high rainfall 
in the south of  the Colombian Pacific (3000 to 7000 mm.year-1), 
and Canchala et al. (2022) who reported in the Pacific region of  
Nariño rainfall ranges from 2500 to 8650 mm.year-1.

The high variability of  rainfall in the study area is mainly 
due to the movement of  the ITCZ, the influence of  the Chocó jet 
stream, and the incidence of  the La Niña and El Niño phases of  
the ENSO, which have been documented by different authors who 
have studied the hydroclimatology of  Colombia and specifically 
the southwestern Colombian (Canchala et al., 2022; Cerón et al., 
2021b; Poveda & Mesa, 1999; Urrea et al., 2019). Furthermore, the 
asymmetry coefficient was positive (negative) in 80.44% (19.56%) 
of  the stations, indicating that in these stations, most of  the rainfall 
values are higher (lower) than the average.

Regionalization of  monthly rainfall

The regionalization of  the monthly rainfall was performed 
using Ward’s method, which showed the conformation of  
3 homogeneous regions formed into three groups of  33-, 12- and 
1-gauge station, which is consistent with the natural regions of  
the Andean region (AR), Pacific region (PR) and Amazon region 
(AMR), respectively, as shown in Figure 4. As well, these results 
are consistent with the rainfall regionalization performed by 
Canchala et al. (2022) through the application of  the nonlinear 
technique called Kohonen’s self-organized maps, also with 
Guzmán et al. (2014), using PCA and Jaramillo-Robledo & Chaves-
Córdoba (2000) who used statistical clusters.

The three identified homogeneous regions show different 
patterns of  rainfall interannual variability. The gauge stations of  
the PR are characterized by registering average rainfall between 

Table 1. Performance metrics used.
Name Abbreviation Equation Perfect score

Root Mean Square Error RMSE
( )2

1

1 ˆn
i ii

Z Z
n =

−∑
0.0

Mean Absolute Error MAE

1

1 ˆn
i ii

Z Z
n =

−∑
0.0

Absolute BIAS ABIAS

1

1

ˆ  
n

i ii
n

ii

Z Z

z

=

=

−∑
∑

0.0

Pearson Correlation r
( )( )

( ) ( )
1

22

1 1

 

   

ˆ ˆ

ˆ

n
i ii

n n
i ii i

Z Z Z Z

Z Z z z

=

= =

− −

− −

∑
∑ ∑

1.0

where, iz  is the original observed value of  monthly rainfall in month i, ˆ
iZ  is the estimated value of  monthly rainfall in month i, Z  is the average of  observed rainfall, 

ẑ is the average of  rainfall estimated, and n is the number of  observations (months).
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2500-8689 mm.year-1 (See Figure 4), with a monomodal regime 
where the highest (lowest) rainfall is recorded from April to July 
(August to March) (See Figure 4a). On the other hand, the gauge 
stations located in AR show a variation of  average rainfall between 
600 to 1500 mm.year-1, showing a bimodal cycle (see Figure 4b), 
where there are two periods of  high rainfall corresponding to 

March-April-May (MAM) and October-November-December 
(OND). Finally, the MON station was classified in the AMR, with 
rainfall between 2500-4500 mm.year-1, registering a monomodal cycle 
(See Figure 4c) with maximum rainfall in the months of  June-July-
August (JJA). These results are consistent with findings reported 
by Canchala et al. (2019), Canchala et al. (2020a), and Cerón et al. 

Table 2. Analysis of  descriptive statistics of  the monthly rainfall in the gauge stations of  Nariño (1983-2019).

Gauge 
Station ID Region* Elevation 

(m.a.s.l)

Rainfall 
mean 

(mm.year-1)

Rainfall 
std dev 

(mm.year-1)

Rainfall CV 
(%) SC* Missing 

data (%)

A. Nariño AAN AR 1796 1191.8 270.07 23 0.64 1.13
A. San Luis ASL AR 2961 875.4 169.40 19 0.30 0.68

Aponte APO AR 1800 1541.3 414.85 27 0.61 0.68
Barbacoas BAR PR 32 6714.9 969.90 14 0.31 3.60
Berruecos BER AR 2200 1736.1 342.65 20 0.28 3.83
Bombona BOM AR 1493 1040.6 217.91 21 0.42 1.35

Botana BOT AR 2820 927.6 175.11 19 0.55 3.60
Buesaco BUE AR 220 1269.7 369.11 29 0.36 1.80
Chiles CHI AR 3100 1091.0 231.66 21 -0.13 1.80
Coco COC PR 20 2680.1 974.36 36 0.40 3.38

Cumbal CUM AR 392 891.5 176.40 20 0.68 0.23
El Charco CHA PR 50 3604.4 609.77 17 0.21 7.66
Guachavéz GCH AR 2834 1648.1 327.70 20 0.10 0.90
Gualmatán GMT AR 2830 942.2 296.59 31 3.00 2.03

Guasca GCA AR 500 584.3 185.89 32 0.42 8.11
Guayacana GYA AR 100 6056.7 864.41 14 -0.38 6.98
Hidromayo HID AR 1820 1332.4 328.46 25 0.56 1.58

Imués IMU AR 2550 999.6 229.43 23 0.14 1.13
José Tapaje JOS PR 80 4762.9 1242.69 26 -0.55 2.93

Junín JUN PR 950 8689.3 1048.47 12 0.33 2.70
La Cruz CRU AR 2248 1343.3 331.75 25 0.79 0.45
Magüí MAG PR 100 4893.1 1347.60 28 -0.26 6.31

Mamaconde MAM AR 650 1325.9 392.22 30 0.12 1.80
Mataje MAT PR 100 3458.1 852.29 25 0.56 9.46
Mira MIR PR 16 2988.4 699.15 23 0.16 1.80

Monopamba MON AMR 1776 3188.3 293.71 9 -0.79 3.38
Mosquera MOS PR 10 3620.3 822.46 23 0.43 4.05

Nariño NAR AR 2590 1985.7 488.99 25 0.40 1.35
Obonuco OBO AR 2710 806.3 250.73 31 1.83 7.21
Paraíso PAR AR 3120 995.6 192.79 19 0.11 0.68
Peñol PEÑ AR 1620 1100.1 239.15 22 0.34 0.23

Pisanda PIS AR 350 1253.0 299.73 24 0.95 0.00
Puerres PUE AR 2817 1025.0 174.11 17 0.77 0.23

Remolino REM PR 40 2797.2 1151.03 41 0.13 11.94
Rio Bobo RBB AR 364 1100.0 252.51 23 0.08 0.68

Rosal Monte RMO AR 2568 1346.4 332.48 25 0.48 0.90
Salahonda SAL PR 3 4800.9 1182.88 25 -0.37 3.15
Samaniego SAM AR 1700 1346.4 480.47 33 -0.19 0.00

San Bernardo SBO AR 2190 2014.9 370.66 18 0.25 1.58
Sande SND AR 840 4503.4 1309.49 29 -0.72 13.06

Sandoná SAN AR 20 1142.3 364.61 32 0.20 1.58
Taminango TAM AR 1875 1687.2 329.08 20 0.49 0.45

Tanama TAN AR 1500 1351.9 252.53 19 0.14 0.45
Tangua TGA AR 2420 1004.1 232.64 23 0.08 0.45

La Unión UNI AR 1745 1982.9 441.05 22 -0.03 1.13
Vergel VER PR 1770 2514.6 456.44 18 0.24 3.38

PR: Pacific Region, AR: Andean Region, AMR: Amazon Region. *SC: Skewness Coefficient.
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(2021b), who studied the rainfall variability in the department of  
Nariño associated with ENSO and other climatic anomalies in 
the period 1983-2016 and identified in their studies the PR and 
AR, as two homogeneous regions with different rainfall regimes. 
In contrast, Arango et al. (2012) and Guzmán et al. (2014) identified 
three regions: PR, AR and AMR in the study area, with different 
interannual patterns consistent with those identified in this study.

Gauge stations correlations

According to the correlation criterion for selecting stations 
(ρ≥0.5) described in the methodology for the NR method and 
according to the results obtained, nine neighbouring stations were 
selected, homogeneously distributed in the three regions. For the 
PR, the BAR, MIR, and RBB stations were selected; for the AR, 
the PIS, RMO, and SAM were selected; and for the AMR, which 
only has one gauge station (MON), three neighbouring stations 
of  the department of  Putumayo CPC, CHP, and TTS (located 
to the east of  the study region) were used. More details about 
the correlation results for PR, AR and AMR are depicted in 
Supplementary Materials S1, S2, and S3, respectively.

Missing data estimation

The missing data estimation results using the NR, PCR, 
PLSR, and ANN methods in the PR, AR, and AMR regions 
are shown in Figures 5, 6, and 7, respectively. For purposes of  
comparative analysis, the results obtained at the gauge station 
with the highest percentage of  missing data for each region are 
depicted in this study. In this sense, the gauge stations selected 
for PR, AR and AMR were Mataje (MAT-9.46%), Guasca (GCA-

8.11%) and Monopamba (MON-3.38%), respectively. The results 
of  the missing data estimation of  all gauge stations are available 
in Supplementary Material S4.

Figure 5 shows the missing data estimation obtained for 
MAT gauge station. For the NR (Figure 5a), PCR (Figure 5b), 
and PLSR (Figure 5c) methods, underestimated values were 
obtained in the periods between the years 1986-1988, 1991-1994, 
1997-1999, and 2013-2014, highlighting that in 1998 the observed 
value was underestimated by more than 60%. On the other hand, 

Figure 4. Average annual rainfall in Nariño (1983-2019) and rainfall regime for the three identified natural regions a) Pacific Region, 
b) Andean Region, and c) Amazon Region.

Figure 5. Comparison of  time series between observed and 
estimated rainfall for the methods evaluated at the MAT gauge 
station (PR). The blue line indicates observed rainfall, and the red 
line indicates the estimated rainfall.
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overestimates of  33% (38%) were obtained for the 2010-2011 (2016-
2019) period. These periods mostly coincide with events related 
to typical increases and decreases in rainfall in the study area, 
mainly associated with the ENSO phenomenon described by 
Trenberth (2018), which in turn are consistent with the results 
obtained in the missing data estimation in southwestern Colombia 
by Canchala et al. (2020a), and Ocampo-Marulanda et al. (2022).

The results of  the missing data estimation in PR show that 
these three methods are sensitive to rainfall variability. In contrast, 
the missing data estimation using the ANN method shows that 
the reconstructed time series for MAT gauge station does not 
record high underestimates and overestimates (Figure 5d); instead, 
the time series estimated follows the behaviour of  the observed 
values. This result shows that the ANN method has a high capacity 
to reconstruct historical data despite the high rainfall variability 
in the region. This shows agreement with the results obtained 
by Santos et al. (2021), Chiu et al. (2021), Canchala et al. (2019), 
Khalili et al. (2016), and Miró et al. (2017), who used ANN models 
to estimate missing data of  rainfall time series in areas with high 
variability and obtained low estimation errors, indicating a high 
capacity in the reconstruction of  time series in areas with climatic 
complexity.

Figure 6 shows the rainfall missing data estimation of  
the GCA gauge station of  the AR. In general, the time series 
presented high variations in rainfall, highlighting high rainfall in the 
years 1985, 2002, 2004, and 2010, where rainfall was greater than 
200 mm.month-1. Particularly in the year 1985, the NR (Figure 6a), 
PCA (Figure 6b) and PLSR (Figure 6c) methods registered 
underestimates of  65%, 70%, and 63%, respectively. In contrast, 
the ANN method (Figure 6d) registered less underestimation (26%), 
showing superiority in its performance over the other methods.

Figure 7 shows the rainfall missing data estimation for 
the MON gauge station of  the AMR, where maximum rainfall 
events are observed in the years 1986, 1988, 1992, 2002, 2011, 
2013, and 2015, which were underestimated with the methods 
PCR (Figure 7b) and PLSR (Figure 7c). For its part, the estimation 
made by NR (Figure 7a), registered a better fit compared to PCR 
and PLSR, showing that, for some periods, this method was 
superior to the two linear methods; however, the estimates made 
with ANN (Figure 7d) showed high precision and accuracy in the 
reconstruction of  the series. For example, the maximum event 
recorded in July 1986 was underestimated by 6%, 51%, 53%, and 
0% with the NR, PCR, PLSR, and ANN methods, respectively.

Broadly, the best rainfall missing data estimation in the gauge 
stations of  the three regions PR, AR and AMR was obtained with 
the nonlinear ANN method. This method showed superiority and 
high capacity for time series reconstruction even when high rainfall 
variability is recorded, which can reduce the performance of  the 
methods. The results of  the linear methods NR, PCR, and PLSR, 
were not the best; however, it is highlighted that in some periods 
the estimations depicted high similarity with the observed values; 
being consistent with the results obtained by Silva et al. (2007) in 
some regions of  Sri Lanka; Pizarro et al. (2009) in the Maulé region 
of  Chile; Cruz-Roa & Barrios (2018) in the Coello river basin, 
in the department of  Tolima, Colombia; Morales-Martínez et al. 
(2019) in Tabasco, Mexico; Armanuos et al. (2020) in Ethiopia 
and Adilah & Hannani (2021) in the state of  Pahang, Malaysia, in 

which the NR obtained a good fit in specific periods of  the time 
series evaluated, and in some cases, throughout the study period.

Performance metrics

The performance metrics described in the methodology 
section were used to quantify the performance of  each of  the missing 
data estimation methods evaluated in this research. The standardized 
performance metrics are shown in Figure 8, which range between 
0.0 and 0.75, where the best (worst) performance is identified with 
values close to 0.0 (0.75). According to the three-error metrics, 
RMSE, MAE, and ABIAS, NR was the method with the largest 
errors, which ranged from 0.24-0.62, 0.23-0.44, and 0.18-0.44, 
respectively. In contrast, the ANN method depicted superiority 

Figure 6. Comparison of  time series between observed and 
estimated rainfall for the methods evaluated at the GCA gauge 
station (AR). The blue line indicates observed rainfall, and the 
red line indicates the estimated rainfall.

Figure 7. Comparison of  time series between observed and 
estimated rainfall for the methods evaluated at the MON station 
(AMR).
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in the imputation of  missing over the other methods registering 
errors that ranged between 0.01-0.29 (RMSE), 0.01-0.22 (MAE), 
and 0.01-0.22 (ABIAS). On the other hand, it was evidenced that 
the estimated errors using NR, PCR, and PLSR were higher in the 
PR than in the AR and AMR, while using the ANN method, the 
lowest errors in their order were registered in the PR (0.01-0.03), 
AR (0.01-0.29) and AMR (0.02). For the PCR method, the error 
metrics ranged between 0.25-0.59 (RMSE), 0.18-0.41 (MAE) and 
0.18-0.41 (ABIAS) and for the PLSR, the error metrics ranged 
0.22-0.54 (RMSE), 0.16-0.48 (MAE) and 0.18-0.41 (ABIAS).

In general, the best method for rainfall missing data estimation 
in Southwestern Colombia is ANN, due to registering the lowest 
errors in the three natural regions of  Nariño. It is highlighted 
that the best performance was recorded in the reconstruction of  
the rainfall time series of  the PR, which registers high variability 
(See Table 2) and requires greater precision in their estimation, 
considering that it is a region with low-density of  gauge stations, 

and therefore with lack hydroclimatological information. This 
result contrasts with Canchala et al. (2019). They obtained higher 
RMSE values in the PR and lower values in the AR of  southwestern 
Colombia, highlighting differences in the study period and the 
number of  gauge stations evaluated. Regarding the three linear 
methods, the best performance was registered by the PLSR, 
followed by the PCR and the NR.

Finally, to measure the statistical relationship between the 
observed and the estimated time series using the four methods 
already described, the Pearson correlation coefficient was estimated 
(See Figure 9).

The correlation coefficients confirmed the results obtained 
through the performance metrics. The Pearson coefficient for the 
estimation performed by the ANN method ranged between 0.81 - 
1.00, showing a high correlation between the estimated and observed 
values. In contrast, it was observed that the lowest correlations 
were recorded in the estimates of  the NR method, highlighting 

Figure 8. Performance metrics between observed and estimated rainfall using NR, PCR, PLSR, and ANN. The reference stations 
correspond to the neighbouring stations used for the NR method.
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that the lowest coefficients are observed in the PR, where there 
is a high variability of  rainfall (See Table 2). Furthermore, using 
the three linear methods, the best estimations were obtained in 
the AR. In contrast, with the nonlinear method (ANN), the best 
estimates were recorded in the PR, showing a high capacity for 
recognising the nonlinear relationships that allow overcoming 
difficulties associated with the high variability, scarce information, 
and low density of  stations in this region.

The results obtained in this study are consistent with 
Miró et al. (2017), who evaluated ten missing data imputation 
methods and reported that the best results were obtained with 
nonlinear methods, highlighting the methods based on the NLPCA 
approach. Additionally, it is consistent with Canchala et al. (2019) 
and Ocampo-Marulanda et al. (2021). They used methodologies 
based on the NLPCA approach to monthly rainfall missing data 
estimation and extreme rainfall indices, registering low errors in 
their estimation. On the other hand, this research shows that 
methods based on artificial neural networks have a higher capacity 
to fill in missing data than linear inference methods, as shown in 
the studies made by Kim & Pachepsky, (2010) in Chesapeake Bay, 
United States; Teegavarapu (2012) in Kentucky, United States; 
Londhe et al. (2015) in Pune district, Maharashtra, India; Miró et al. 
(2017) in the Iberian Peninsula, Spain; Demir & Keskin (2021) 
in Turkey and Khalili et al. (2016) in Mashhad, Iran. Finally, it is 
highlighted that among the linear methods evaluated (PLSR and 
PCR), they show good performance and are easy to apply, being 
very useful when knowledge of  artificial intelligence is unavailable.

CONCLUSIONS

The following conclusions are reached in the study:
The ANN is the best method for the monthly rainfall missing 

data estimation in the AR, PR, and AMR of  Southwestern Colombia 

due to this nonlinear method shows a high capacity to identify atypical 
patterns and reconstruct time series without the need to implement 
auxiliary variables such as altitude, geographical position, among others. 
This result is relevant for the study area, characterized by recording 
complex topographical conditions due to the Andes Mountains, 
the influence of  the ENSO climate variability mode that occurs in 
the Pacific Ocean, the proximity to the Amazon Forest, and other 
conditions that influence the variability of  the rainfall.

Among the linear methods evaluated, PLSR was the method 
that registered the best performance. However, the results were 
similar to those obtained by the PCR method. For both methods, 
the best results were obtained in the AR and AMR, contrary to 
the PR, which showed the highest errors and low correlation rates. 
Furthermore, it is highlighted that for the PLSR, a smaller number 
of  CPs were used, which explained a significant percentage of  the 
variance of  the data. This aspect represents an advantage over PCR.

Using the NR method, a good performance was obtained 
in the time series reconstruction, very similar to that obtained in 
some gauge stations by the PCR and PLSR methods, showing 
synchrony between the observed and estimated data in extreme 
periods of  low and high rainfall linked to ENSO Phenomenon. 
This is a positive aspect because it is a conventional method, 
easy to apply and does not require specific software knowledge; 
however, it cannot be used in areas without neighbouring stations.

Finally, we found that in areas with a lower density of  gauge 
stations, such as PR (12-gauge stations) and AMR (1 gauge station), 
the performance of  the ANN method was better compared to AR 
(33 stations), where a lower performance was observed. According 
to the results obtained in the metrics used, contrary to the NR, PCR, 
and PLSR methods, which presented better results in AR. Notably, 
the ANN method recognized the different rainfall patterns in the 
evaluated time series that are associated with nonlinear behaviour, 
which improved the quality of  the estimates.

Figure 9. Pearson correlations between observed and estimated rainfall using NR, PCR, PLSR, and ANN.



RBRH, Porto Alegre, v. 28, e9, 202312/16

Estimation of  monthly rainfall missing data in Southwestern Colombia: comparing different methods

ACKNOWLEDGEMENTS

This work was supported by the Universidad del Valle 
through the research Projects CI 0521171 and CI 21010, and 
MINCIENCIAS for funding the research project “Análisis de 
eventos extremos de precipitación asociados a variabilidad y cambio 
climático para la implementación de estrategias de adaptación en 
sistemas productivos agrícolas de Nariño”. The second author has 
received research support from Fondo Nacional de Financiamiento 
para la Ciencia, la Tecnología y la Innovación Francisco José de 
Caldas – MINCIENCIAS through the “Convocatoria No 891 de 
2020 para el fortalecimiento de vocaciones y formación en CTeI 
para la reactivación económica en el marco de la postpandemia 
2020”. The authors thank the Research Group in Water Resources 
Engineering and Soil – IREHISA Research Group in Applied Statistics 
- INFERIR, at the Universidad del Valle for their contributions in 
this research paper. Finally, special thanks to Instituto de Hidrología, 
Meteorología y Estudios Ambientales - IDEAM for providing the 
database containing the monthly rainfall in the Department of  Nariño.

REFERENCES

Addi, M., Gyasi-Agyei, Y., Obuobie, E., & Amekudzi, L. K. (2022). 
Evaluation of  imputation techniques for infilling missing daily 
rainfall records on river basins in Ghana. Hydrological Sciences Journal, 
67(4), 613-627. http://dx.doi.org/10.1080/02626667.2022.2030868.

Adilah, N., & Hannani, H. (2021). Comparison of  methods to 
estimate missing rainfall data for short term period at UMP 
gambang. IOP Conference Series. Earth and Environmental Science, 682(1), 
012027. http://dx.doi.org/10.1088/1755-1315/682/1/012027.

Andersson, M. (2009). A comparison of  nine PLS1 algorithms. 
Journal of  Chemometrics, 23(10), 518-529. http://dx.doi.org/10.1002/
cem.1248.

Arango, C., Dorado, J., Guzmán, D., & Ruiz, J. (2012). Climatología 
trimestral de Colombia. Instituto de Hidrología. Meteorología y 
Estudios Ambientales, 1(1), 19.

Armanuos, A. M., Al-Ansari, N., & Yaseen, Z. M. (2020). 
Cross assessment of  twenty-one different methods for missing 
precipitation data estimation. Atmosphere, 11(4), 1-35. http://
dx.doi.org/10.3390/atmos11040389.

Auer, I., Böhm, R., Jurković, A., Orlik, A., Potzmann, R., Schöner, 
W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K., 
Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J. M., Begert, M., 
Brazdil, R., Bochnicek, O., Cegnar, T., Gajić-Čapka, M., Zaninović, 
K., Majstorović, Ž., Szalai, S., Szentimrey, T., & Mercalli, L. (2005). 
A new instrumental precipitation dataset for the greater alpine 
region for the period 1800-2002. International Journal of  Climatology, 
25(2), 139-166. http://dx.doi.org/10.1002/joc.1135.

Bárdossy, A., & Pegram, G. (2011). Downscaling precipitation 
using regional climate models and circulation patterns toward 
hydrology. Water Resources Research, 47(4), http://dx.doi.
org/10.1029/2010WR009689.

Burhanuddin, S. N. Z. A., Deni, S. M., & Ramli, N. M. (2017). 
Imputation of  missing rainfall data using revised normal ratio 
method. Advanced Science Letters, 23(11), 10981-10985. http://
dx.doi.org/10.1166/asl.2017.10203.

Burhanuddin, S. N. Z. A., Mohd Deni, S., & Mohamed Ramli, N. 
(2016). Revised Normal Rtio Methods for Imputation of  Missing 
Rainfall Data. Scientific Research Journal, 13(1), 84-97.

Caldera, H., Piyathisse, V., & Nandalal, K. (2016). A comparison 
of  methods of  estimating missing daily rainfall data. Engineer: 
Journal of  the Institution of  Engineers, 4(49), 1-8. http://dx.doi.
org/10.4038/engineer.v49i4.7232.

Canchala, T., Alfonso-Morales, W., Carvajal-Escobar, Y., Cerón, W. L., 
& Caicedo-Bravo, E. (2020a). Monthly rainfall anomalies forecasting 
for southwestern Colombia using artificial neural networks approaches. 
Water, 12(9), 2628. http://dx.doi.org/10.3390/w12092628.

Canchala, T., Alfonso-Morales, W., Cerón, W. L., Carvajal-Escobar, 
Y., & Caicedo-Bravo, E. (2020b). Teleconnections between monthly 
rainfall variability and large-scale climate indices in Southwestern 
Colombia. Water, 12(7), 1-20. http://dx.doi.org/10.3390/w12071863.

Canchala, T., Carvajal-Escobar, Y., Alfonso-Morales, W., Loaiza Cerón, 
W., & Caicedo, E. (2019). Estimation of  missing data of  monthly 
rainfall in southwestern Colombia using artificial neural networks. Data 
in Brief, 26, 104517. http://dx.doi.org/10.1016/j.dib.2019.104517.

Canchala, T., Cerón, W. L., Francés, F., Carvajal-Escobar, Y., 
Andreoli, R. V., Kayano, M. T., Alfonso-Morales, W., Caicedo-
Bravo, E., & Souza, R. A. F. (2020c). Streamflow variability in 
colombian pacific basins and their teleconnections with climate 
indices. Water, 12(2), 526. http://dx.doi.org/10.3390/w12020526.

Canchala, T., Ocampo-Marulanda, C., Alfonso-Morales, W., 
Carvajal-Escobar, Y., Ceron, W., & Caicedo-Bravo, E. (2022). 
Techniques for monthly rainfall regionalization in southwestern 
Colombia. Anais da Academia Brasileira de Ciências, 94(4), 48. http://
dx.doi.org/10.1590/0001-3765202220201000.

Carvajal-Escobar, Y., & Marco, J. (2005). Caudal Mensual Utilizando 
Variables. Ingeniería y Competitividad, 7(1), 15.

Castro, L. M., Carvajal-Escobar, Y., & Ávila, Á. J. (2012). Análisis 
clúster como técnica de análisis exploratorio de registros múltiples 
en datos meteorológicos. Ingeniería de Recursos Naturales y Del 
Ambiente, 1(11), 11-20.

Cerón, W. L., Andreoli, R. V., Kayano, M. T., Canchala, T., 
Carvajal-Escobar, Y., & Souza, R. A. F. (2021a). Comparison of  
spatial interpolation methods for annual and seasonal rainfall in 
two hotspots of  biodiversity in South America. Anais da Academia 
Brasileira de Ciências, 93(1), 1-22. http://dx.doi.org/10.1590/0001-
3765202120190674.

Cerón, W. L., Kayano, M. T., Andreoli, R. V., Canchala, T., Carvajal-
Escobar, Y., & Alfonso-Morales, W. (2021b). Rainfall variability 

https://doi.org/10.1080/02626667.2022.2030868
https://doi.org/10.1088/1755-1315/682/1/012027
https://doi.org/10.1002/cem.1248
https://doi.org/10.1002/cem.1248
https://doi.org/10.3390/atmos11040389
https://doi.org/10.3390/atmos11040389
https://doi.org/10.1002/joc.1135
https://doi.org/10.1029/2010WR009689
https://doi.org/10.1029/2010WR009689
https://doi.org/10.1166/asl.2017.10203
https://doi.org/10.1166/asl.2017.10203
https://doi.org/10.4038/engineer.v49i4.7232
https://doi.org/10.4038/engineer.v49i4.7232
https://doi.org/10.3390/w12092628
https://doi.org/10.3390/w12071863
https://doi.org/10.1016/j.dib.2019.104517
https://doi.org/10.3390/w12020526
https://doi.org/10.1590/0001-3765202220201000
https://doi.org/10.1590/0001-3765202220201000
https://doi.org/10.1590/0001-3765202120190674
https://doi.org/10.1590/0001-3765202120190674


RBRH, Porto Alegre, v. 28, e9, 2023

Del Castillo-Gómez et al.

13/16

in southwestern Colombia: changes in ENSO-related features. 
Pure and Applied Geophysics, 178(3), 1087-1103. http://dx.doi.
org/10.1007/s00024-021-02673-7.

Chiu, P. C., Selamat, A., Krejcar, O., Kuok, K. K., Herrera-Viedma, 
E., & Fenza, G. (2021). Imputation of  rainfall data using the 
sine cosine function fitting neural network. International Journal of  
Interactive Multimedia and Artificial Intelligence, 6(7), 39-48. http://
dx.doi.org/10.9781/ijimai.2021.08.013.

Cruz-Roa, A. F., & Barrios, M. I. (2018). Estimación de datos 
faltantes de lluvia mensual a través de la asimilación de información 
satelital y pluviométrica en una cuenca andina tropical. Idesia, 36(3), 
107-117. http://dx.doi.org/10.4067/S0718-34292018005001601.

Cuadras, C. M. (2007). Nuevos metodos de analisis multivariante (Vol. 
20, No. 3). Barcelona: CMC Editions.

Darand, M., & Reza, M. (2014). Regionalization of  precipitation 
regimes in iran using principal component analysis and hierarchical 
clustering analysis. Environmental Processes, 1(4), 517-532. http://
dx.doi.org/10.1007/s40710-014-0039-1.

DeGaetano, A. T., & Allen, R. J. (2002). Trends in twentieth-
century temperature extremes across the United States. Journal 
of  Climate, 15(22), 3188-3205. http://dx.doi.org/10.1175/1520-
0442(2002)015<3188:TITCTE>2.0.CO;2.

Demir, C., & Keskin, S. (2021). Artificial neural network approach 
for nonlinear principal components analysis. International Journal 
of  Current Research, 13(1), 15987-15992.

Domonkos, P. (2015). Homogenization of  precipitation time series 
with ACMANT. Theoretical and Applied Climatology, 122(1–2), 303-
314. http://dx.doi.org/10.1007/s00704-014-1298-5.

Fazel, N., Berndtsson, R., Bertacchi, C., Madani, K., & Kløve, B. 
(2018). Regionalization of  precipitation characteristics in Iran’s 
Lake Urmia basin. Theoretical and Applied Climatology, 132(1-2), 
363-373. http://dx.doi.org/10.1007/s00704-017-2090-0.

Francisco, C.-A. D. (2015). Estimación simultánea de datos hidrológicos 
anuales faltantes en múltiples sitios. Ingeniería, Investigación y Tecnología, 
16(2), 295-306. http://dx.doi.org/10.1016/j.riit.2015.03.013.

Gois, G., Oliveira-Júnior, J. F., Silva, C. A., Serafini, B., De Bodas, 
P. M., & Sousa, A. H. (2020). Statistical normality and homogeneity 
of  a 71-year rainfall dataset for the state of  Rio de Janeiro-Brazil. 
Theoretical and Applied Climatology, 141(3-4), 1573-1591. http://
dx.doi.org/10.1007/s00704-020-03270-9.

Guzmán, D., Ruíz, J., & Cadena, M. (2014). Regionalización 
de Colombia según la estacionalidad de la precipitación media 
mensual, através de Componentes Principales (ACP). Instituto 
de Hidrología. Meteorología y Estudios Ambientales, 1, 1-54.

Hershey, R., Mizell, S., & Earman, S. (2010). Chemical and physical 
characteristics of  springs discharging from regional low systems 

of  the carbonate-rock province of  the Great Basin, western 
United States. Hydrogeology Journal, 18(4), 1007-1026. http://dx.doi.
org/10.1007/s10040-009-0571-7.

Hervada-Sala, C., & Jarauta-Bragulat, E. (2004). A program 
to perform Ward’s clustering method on several regionalized 
variables. Computers & Geosciences, 30(8), 881-886. http://dx.doi.
org/10.1016/j.cageo.2004.07.003.

Intergovernmental Panel on Climate Change – IPCC. (2022). 
Climate change 2022: impacts, adaptation and vulnerability - summary for 
policymakers. Geneva: IPCC.

Ismail, A. R., Aziz, N. A., Ralib, A. M., Abidin, N. Z., & Bashath, 
S. S. (2021). A particle swarm optimization levy flight algorithm 
for imputation of  missing creatinine dataset. International Journal 
of  Advances in Intelligent Informatics, 7(2), 225-236. http://dx.doi.
org/10.26555/ijain.v7i2.677.

Jaramillo-Robledo, Á., & Chaves-Córdoba, B. (2000). Distribución 
de la precipitación en Colombia analizada mediante conglomeración 
estadística. Cenicafé, 51(2), 102-113.

Kajornrit, J., Wong, K. W., & Fung, C. C. (2012). Estimation 
of  missing precipitation records using modular artificial neural 
networks. In: Proceedings of  the 19th international conference on Neural 
Information Processing (pp. 52-59). Berlin: Springer.

Khalili, N., Khodashenas, S. R., Davary, K., Baygi, M. M., & Karimaldini, 
F. (2016). Prediction of  rainfall using artificial neural networks for 
synoptic station of  Mashhad: a case study. Arabian Journal of  Geosciences, 
9(13), 624. http://dx.doi.org/10.1007/s12517-016-2633-1.

Kim, J. W., & Pachepsky, Y. A. (2010). Reconstructing missing daily 
precipitation data using regression trees and artificial neural networks 
for SWAT streamflow simulation. Journal of  Hydrology (Amsterdam), 
394(3–4), 305-314. http://dx.doi.org/10.1016/j.jhydrol.2010.09.005.

Kuok, K. K., Harun, S., & Shamsuddin, S. M. (2010). Particle 
swarm optimization feedforward neural network for modeling 
runoff. International Journal of  Environmental Science and Technology, 
7(1), 67-78. http://dx.doi.org/10.1007/BF03326118.

Lai, W. Y., Kuok, K. K., Gato-Trinidad, S., & Derrick, K. X. 
L. (2019). A study on sequential K-nearest neighbor (SKNN) 
imputation for treating missing rainfall data. International Journal 
of  Advanced Trends in Computer Science and Engineering, 8(3), 363-368. 
http://dx.doi.org/10.30534/ijatcse/2019/05832019.

Lee, H., & Kang, K. (2015). Interpolation of  missing precipitation 
data using Kernel estimations for hydrologic modeling. Advances in 
Meteorology, 2015, 1-12. http://dx.doi.org/10.1155/2015/935868.

Londhe, S., Dixit, P., Shah, S., & Narkhede, S. (2015). Infilling of  
missing daily rainfall records using artificial neural network. ISH 
Journal of  Hydraulic Engineering, 21(3), 255-264. http://dx.doi.org
/10.1080/09715010.2015.1016126.

https://doi.org/10.1007/s00024-021-02673-7
https://doi.org/10.1007/s00024-021-02673-7
https://doi.org/10.9781/ijimai.2021.08.013
https://doi.org/10.9781/ijimai.2021.08.013
https://doi.org/10.4067/S0718-34292018005001601
https://doi.org/10.1007/s40710-014-0039-1
https://doi.org/10.1007/s40710-014-0039-1
https://doi.org/10.1175/1520-0442(2002)015%3c3188:TITCTE%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3c3188:TITCTE%3e2.0.CO;2
https://doi.org/10.1007/s00704-014-1298-5
https://doi.org/10.1007/s00704-017-2090-0
https://doi.org/10.1016/j.riit.2015.03.013
https://doi.org/10.1007/s00704-020-03270-9
https://doi.org/10.1007/s00704-020-03270-9
https://doi.org/10.1007/s10040-009-0571-7
https://doi.org/10.1007/s10040-009-0571-7
https://doi.org/10.1016/j.cageo.2004.07.003
https://doi.org/10.1016/j.cageo.2004.07.003
https://doi.org/10.26555/ijain.v7i2.677
https://doi.org/10.26555/ijain.v7i2.677
https://doi.org/10.1007/s12517-016-2633-1
https://doi.org/10.1016/j.jhydrol.2010.09.005
https://doi.org/10.1007/BF03326118
https://doi.org/10.30534/ijatcse/2019/05832019
https://doi.org/10.1155/2015/935868
https://doi.org/10.1080/09715010.2015.1016126
https://doi.org/10.1080/09715010.2015.1016126


RBRH, Porto Alegre, v. 28, e9, 202314/16

Estimation of  monthly rainfall missing data in Southwestern Colombia: comparing different methods

Lu, B., & Hsieh, W. W. (2003). Simplified nonlinear principal 
component analysis. In Proceedings of  the International Joint Conference 
on Neural Networks (pp. 759-763). New York: IEEE. http://dx.doi.
org/10.1109/IJCNN.2003.1223477.

Massy, W. (1965). Principal components regression in exploratory 
statistical research. Journal of  the American Statistical Association, 60(309), 
234-256. http://dx.doi.org/10.1080/01621459.1965.10480787.

Miró, J. J., Caselles, V., & Estrela, M. J. (2017). Multiple imputation 
of  rainfall missing data in the Iberian Mediterranean context. 
Atmospheric Research, 197, 313-330. http://dx.doi.org/10.1016/j.
atmosres.2017.07.016.

Miró, J. J., Estrela, M. J., Caselles, V., & Gómez, I. (2018). Spatial 
and temporal rainfall changes in the Júcar and Segura basins (1955-
2016): fine-scale trends. International Journal of  Climatology, 38(13), 
4699-4722. http://dx.doi.org/10.1002/joc.5689.

Moraes Cordeiro, A. L., & Blanco, C. J. C. (2021). Assessment 
of  satellite products for filling rainfall data gaps in the Amazon 
region. Natural Resource Modeling, 34(2), http://dx.doi.org/10.1111/
nrm.12298.

Morales Martínez, J. L., Horta-Rangel, F. A., Segovia-Domínguez, 
I., Robles Morua, A., & Hernández, J. H. (2019). Analysis of  a 
new spatial interpolation weighting method to estimate missing 
data applied to rainfall records. Atmósfera, 32(3), 237-259. http://
dx.doi.org/10.20937/ATM.2019.32.03.06.

Morales-Acuña, E., Linero-Cueto, J. R., & Canales, F. A. (2021). 
Assessment of  precipitation variability and trends based on satellite 
estimations for a heterogeneous Colombian region. Hydrology, 8(3), 
1-20. http://dx.doi.org/10.3390/hydrology8030128.

Ocampo-Marulanda, C., Cerón, W. L., Avila-Diaz, A., Canchala, T., 
Alfonso-Morales, W., Kayano, M. T., & Torres, R. R. (2021). Missing 
data estimation in extreme rainfall indices for the Metropolitan 
area of  Cali - Colombia: an approach based on artificial neural 
networks. Data in Brief, 39, 107592. http://dx.doi.org/10.1016/j.
dib.2021.107592.

Ocampo-Marulanda, C., Fernández-Álvarez, C., Cerón, W. L., 
Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2022). 
A spatiotemporal assessment of  the high-resolution CHIRPS 
rainfall dataset in southwestern Colombia using combined principal 
component analysis. Ain Shams Engineering Journal, 13(5), 101739. 
http://dx.doi.org/10.1016/j.asej.2022.101739.

Paulhus, J., & Kohler, M. (1952). Monthly weather review. Monthly 
Weather Review, 80(8), 129-133. http://dx.doi.org/10.1175/1520-
0493(1952)080<0129:IOMPR>2.0.CO;2.

Pinheiro, E., Cavalcante, C. J., Silva, P., & Oliveira Júnior, F. (2022). 
MODWT-ANN hybrid models for daily precipitation estimates 
with time-delayed entries in Amazon region. Environmental Monitoring 
and Assessment, 194(296), 296. http://dx.doi.org/10.1007/s10661-
022-09939-0.

Pizarro, R., Ausensi, P., Aravena, D., Sangüesa, C., León, L., & 
Balocchi, F. (2009). Evaluación de métodos hidrológicos para la 
completación de datos faltantes de precipitación en estaciones 
de la región del Maule, Chile. Aqua-LAC, 1(2), 172-185. http://
dx.doi.org/10.29104/phi-aqualac/2009-v1-2-07.

Poveda, G., & Mesa, O. J. (1999). La corriente de chorro superficial 
del oeste (“del Chocó”) y otras dos corrientes de chorro en 
Colombia: climatología y variabilidad durante las fases del ENSO. 
Revista Academia Colombiana de Ciencias de la Tierra, 23(89), 517-528.

Poveda, G., & Mesa, O. J. (2000). On the existence of  Lloró 
(the rainiest locality on earth): enhanced ocean-land-atmosphere 
interaction by a low-level jet. Geophysical Research Letters, 27(11), 
1675-1678. http://dx.doi.org/10.1029/1999GL006091.

Puertas, O., & Carvajal, Y. (2008). Incidencia de El Niño-Oscilación 
del Sur en la precipitación y la temperatura del aire en Colombia, 
utilizando el Climate Explorer. Revista Científica Ingeniería y Desarrollo, 
23, 104-118.

Ramos-Calzado, P., Gómez-Camacho, J., Pérez-Bernal, F., & Pita-López, 
M. F. (2008). A novel approach to precipitation series completion in 
climatological datasets: application to Andalusia. International Journal of  
Climatology, 28(11), 1525-1534. http://dx.doi.org/10.1002/joc.1657.

Rueda, O. A., & Poveda, G. (2006). Variabilidad espacial y temporal 
del chorro del Chocó y su efecto en la hidroclimatología del Pacífico 
Colombiano. Meteorología Colombiana, 10, 132-145.

Santos, E. B., Lucio, P. S., & Silva, C. M. S. (2015). Precipitation 
regionalization of  the Brazilian Amazon. Atmospheric Science Letters, 
16(3), 185-192. http://dx.doi.org/10.1002/asl2.535.

Santos, E. P., Dias, R. L. S., Maciel, I. P., Kolling Neto, A., & Silva, 
D. D. (2021). Estimation of  missing hydrological data in monthly 
rainfall series using meteorological satellite data. Environmental Earth 
Sciences, 80(3), 1-9. http://dx.doi.org/10.1007/s12665-021-09409-9.

Scholz, M. (2023). Nonlinear PCA. Retrieved in 2023, January 20, 
from http://www.nlpca.org/matlab.html

Scholz, M., Kaplan, F., Guy, C. L., Kopka, J., & Selbig, J. (2005). 
Nonlinear PCA: a missing data approach. Bioinformatics, 21(20), 
3887-3895. http://dx.doi.org/10.1093/bioinformatics/bti634.

Sedano-Cruz, K., Carvajal-Escoar, Y., & Ávila, A. (2013). Análisis de 
aspectos que incrementan el riesgo de inundaciones en Colombia. 
Luna Azul, 1(37), 219-238.

Serna, L. M., Arias, P. A., & Vieira, S. C. (2018). Las corrientes 
superficiales de chorro del Chocó y el Caribe durante los eventos 
de El Niño y El Niño Modoki. Revista de la Academia Colombiana 
de Ciencias Exactas, Físicas y Naturales, 42(165), 410. http://dx.doi.
org/10.18257/raccefyn.705.

Shahrokhi, Z., Sohrabi, M. R., & Nik, S. M. (2020). The application 
of  artificial intelligence system and regression methods based on 

https://doi.org/10.1109/IJCNN.2003.1223477
https://doi.org/10.1109/IJCNN.2003.1223477
https://doi.org/10.1080/01621459.1965.10480787
https://doi.org/10.1016/j.atmosres.2017.07.016
https://doi.org/10.1016/j.atmosres.2017.07.016
https://doi.org/10.1002/joc.5689
https://doi.org/10.1111/nrm.12298
https://doi.org/10.1111/nrm.12298
https://doi.org/10.20937/ATM.2019.32.03.06
https://doi.org/10.20937/ATM.2019.32.03.06
https://doi.org/10.3390/hydrology8030128
https://doi.org/10.1016/j.dib.2021.107592
https://doi.org/10.1016/j.dib.2021.107592
https://doi.org/10.1016/j.asej.2022.101739
https://doi.org/10.1175/1520-0493(1952)080%3c0129:IOMPR%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(1952)080%3c0129:IOMPR%3e2.0.CO;2
https://doi.org/10.1007/s10661-022-09939-0
https://doi.org/10.1007/s10661-022-09939-0
https://doi.org/10.29104/phi-aqualac/2009-v1-2-07
https://doi.org/10.29104/phi-aqualac/2009-v1-2-07
https://doi.org/10.1029/1999GL006091
https://doi.org/10.1002/joc.1657
https://doi.org/10.1002/asl2.535
https://doi.org/10.1007/s12665-021-09409-9
https://doi.org/10.1093/bioinformatics/bti634
https://doi.org/10.18257/raccefyn.705
https://doi.org/10.18257/raccefyn.705


RBRH, Porto Alegre, v. 28, e9, 2023

Del Castillo-Gómez et al.

15/16

the spectrophotometric method for fast simultaneous determination 
of  naphazoline and antazoline in ophthalmic formulation. Optik, 
203, 164010. http://dx.doi.org/10.1016/j.ijleo.2019.164010.

Shlens, J. (2014). A tutorial on principal component analysis. 
arXiv, 1404.1100, 1-12.

Silva, M. (2020). Rainfall extremes and drought in Northeast 
Brazil and its relationship with El Niño–Southern Oscillation. 
International Journal of  Climatology, 41(S1), 1-25. http://dx.doi.
org/10.1002/joc.6835.

Silva, R. P., Dayawansa, N. D. K., & Ratnasiri, M. D. (2007). A 
comparison of  methods used in estimating missing rainfall data. 
Journal of  Agricultural Sciences, 3(2), 101. http://dx.doi.org/10.4038/
jas.v3i2.8107.

Souza, C., & Leal, M. F. (2017). Analise comparativa de dados de 
precipitação gerados pelo “Climate Prediction Center – CPC” 
versus dados observados para o Sul do Brasil. Revista Brasileira de 
Geografia Física, 10(4), 1180-1198. http://dx.doi.org/10.26848/
rbgf.v10.4.p1180-1198.

Taghi, S., Rezazadeh-Joudi, A., & Kusiak, A. (2017). Assessment of  
different methods for estimation of  missing data in precipitation 
studies. Nordic Hydrology, 48(4), 1032-1044. http://dx.doi.
org/10.2166/nh.2016.364.

Taylor, M., Losch, M., Wenzel, M., & Jens, S. (2013). On the 
sensitivity of  field reconstruction and prediction using empirical 
orthogonal functions derived from Gappy data. Journal of  Climate, 
26(22), 9194-9205. http://dx.doi.org/10.1175/JCLI-D-13-00089.1.

Teegavarapu, R. S. V. (2012). Spatial interpolation using nonlinear 
mathematical programming models for estimation of  missing 
precipitation records. Hydrological Sciences Journal, 57(3), 383-406. 
http://dx.doi.org/10.1080/02626667.2012.665994.

Torres, C. E. (2012). Efecto de las ondas Madden-Julian en la precipitación 
sobre algunas regiones del territorio colombiano (Maestría thesis). Universidad 
Nacional de Colombia, Bogotá D.C.

Torres, C., Coll, R., Oliveira, J., Gois, G., & Sarmento, A. (2015). 
Avaliação das Estimativas de Precipitação do Produto 3B43-TRMM 
do Estado do Amazonas. Floresta e Ambiente, 22(3), 279-286. http://
dx.doi.org/10.1590/2179-8087.112114.

Torres-Pineda, C. E., & Pabón-Caicedo, J. D. (2017). Variabilidad 
intraestacional de la precipitación en Colombia y su relación con 
la oscilación de Madden-Julian. Revista de la Academia Colombiana 
de Ciencias Exactas, Físicas y Naturales, 41(158), 79. http://dx.doi.
org/10.18257/raccefyn.380.

Trenberth, K. (2018). Climate Data NINO SST INDICES (NINO 
1+2, 3, 3.4, 4; ONI AND TNI). NCAR. Climate Data Guide. 
Retrieved in 2023, January 20, from https://climatedataguide.
ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni

Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of  Rainfall 
in Colombia. Water Resources Research, 55(5), 4149-4162. http://
dx.doi.org/10.1029/2018WR023316.

Wold, H. (1975). Soft Modelling by Latent Variables: The Nonlinear 
Iterative Partial Least Squares (NIPALS) Approach. Journal of  
Applied Probability, 12(S1), 117-142. http://dx.doi.org/10.1017/
S0021900200047604.

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic 
tool of  chemometrics. Chemometrics and Intelligent Laboratory Systems, 
58(2), 109-130. http://dx.doi.org/10.1016/S0169-7439(01)00155-1.

Wyatt, B. M., Ochsner, T. E., Krueger, E. S., & Jones, E. T. (2020). In-
situ soil moisture data improve seasonal streamflow forecast accuracy 
in rainfall-dominated watersheds. Journal of  Hydrology (Amsterdam), 
590(August), 125404. http://dx.doi.org/10.1016/j.jhydrol.2020.125404.

Zhang, Y., Moges, S., & Block, P. (2016). Optimal cluster analysis 
for objective regionalization of  seasonal precipitation in regions of  
high spatial-temporal variability: application to Western Ethiopia. 
Journal of  Climate, 29(10), 3697-3717. http://dx.doi.org/10.1175/
JCLI-D-15-0582.1.

Zhao, J., Chevalier, F., Pietriga, E., & Balakrishnan, R. (2011). 
Exploratory analysis of  time-series with chronolenses. IEEE 
Transactions on Visualization and Computer Graphics, 17(12), 2422-
2431. http://dx.doi.org/10.1109/TVCG.2011.195.

Zuccolotto, P. (2012). Principal component analysis with interval 
imputed missing values. AStA. Advances in Statistical Analysis, 96(1), 
1-23. http://dx.doi.org/10.1007/s10182-011-0164-3.

Authors contributions

Juan Sebastián Del Castillo-Gómez: Conceptualization, data curation, 
formal analysis, methodology, software, writing – original draft.

Teresita Canchala: Conceptualization, data curation, formal 
analysis, investigation, methodology, software, supervision, writing 
– review & editing.

Wilmar Alexander Torres-López: Conceptualization, formal 
analysis, methodology, validation.

Yesid Carvajal-Escobar: Conceptualization, formal analysis, 
methodology, supervision.

Camilo Ocampo-Marulanda: Formal analysis, methodology, 
writing – review & editing.

Editor-in-Chief: Adilson Pinheiro

Associated Editor: Carlos Henrique Ribeiro Lima

https://doi.org/10.1016/j.ijleo.2019.164010
https://doi.org/10.1002/joc.6835
https://doi.org/10.1002/joc.6835
https://doi.org/10.4038/jas.v3i2.8107
https://doi.org/10.4038/jas.v3i2.8107
https://doi.org/10.26848/rbgf.v10.4.p1180-1198
https://doi.org/10.26848/rbgf.v10.4.p1180-1198
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.1175/JCLI-D-13-00089.1
https://doi.org/10.1080/02626667.2012.665994
https://doi.org/10.1590/2179-8087.112114
https://doi.org/10.1590/2179-8087.112114
https://doi.org/10.18257/raccefyn.380
https://doi.org/10.18257/raccefyn.380
https://doi.org/10.1029/2018WR023316
https://doi.org/10.1029/2018WR023316
https://doi.org/10.1017/S0021900200047604
https://doi.org/10.1017/S0021900200047604
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.jhydrol.2020.125404
https://doi.org/10.1175/JCLI-D-15-0582.1
https://doi.org/10.1175/JCLI-D-15-0582.1
https://doi.org/10.1109/TVCG.2011.195
https://doi.org/10.1007/s10182-011-0164-3


RBRH, Porto Alegre, v. 28, e9, 202316/16

Estimation of  monthly rainfall missing data in Southwestern Colombia: comparing different methods

SUPPLEMENTARY MATERIAL

Supplementary material accompanies this paper.
S1. Spearman correlation of  monthly rainfall between 12-gauge stations in the PR for 1983-2019.
S2. Spearman correlation of  monthly rainfall between 33-gauge stations in the AR for 1983-2019.
S3. Spearman correlation of  monthly rainfall between 8-gauge stations in the AMR and Putumayo for 1983-2019.
This material is available as part of  the online article from https://doi.org/10.1590/2318-0331.282320230008


